Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 18

Proceedings of the 2019 Federated Conference on Computer Science and Information Systems

Generating Human Mobility Route Based on Generative Adversarial Network

, ,

DOI: http://dx.doi.org/10.15439/2019F320

Citation: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 9199 ()

Full text

Abstract. Recently, many researches on human mobility are aiming to suggest the personal customized solution in the diverse field, usually by academia and industry. Combined with deep learning methods, the mobility data can predict and generate routes of objects from the given past trends. In this work, the Generative Adversarial Network (GAN) model is introduced for creating individual mobility routes based on sets of accumulated personal mobility data. The mobility data had been collected by use of geopositioning system and personal mobile devices. GAN has Discriminator and Generator which are composed of neural networks, and can extract and train geopositionig information. A sequence of longitude and latitude can be geographically mapped and such images can be handled by GAN. The GAN based model successfully handled individual mobility routes in this way. Consequently, our model can generate and suggest unexplored routes from the existing sets of personal geolocation data.

References

  1. D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches in query processing for moving object trajectories,” in Proceedings of the 26th International Conference on Very Large Data Bases, ser. VLDB ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000. ISBN 1-55860-715-3 pp. 395–406. [Online]. Available: http://dl.acm.org/citation.cfm?id=645926.672019
  2. J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng, “Semantic trajectory mining for location prediction,” in Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ser. GIS ’11. New York, NY, USA: ACM, 2011. http://dx.doi.org/10.1145/2093973.2093980. ISBN 978-1-4503-1031-4 pp. 34–43. [Online]. Available: http://doi.acm.org/10.1145/2093973.2093980
  3. M. Gorawski and P. Jureczek, “Continuous pattern mining using the fcpgrowth algorithm in trajectory data warehouses,” in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 187–195. [Online]. Available: https://doi.org/10.1007%2F978-3-642-13769-3_23
  4. J. W. Lee, O. H. Paek, and K. H. Ryu, “Temporal moving pattern mining for location-based service,” Journal of Systems and Software, vol. 73, no. 3, pp. 481–490, nov 2004. http://dx.doi.org/10.1016/j.jss.2003.09.021. [Online]. Available: https://doi.org/10.1016%2Fj.jss.2003.09.021
  5. A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “Wherenext: a location predictor on trajectory pattern mining,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009. http://dx.doi.org/10.1145/1557019.1557091 pp. 637–646.
  6. H. Jeung, Q. Liu, H. T. Shen, and X. Zhou, “A hybrid prediction model for moving objects,” in 2008 IEEE 24th International Conference on Data Engineering. IEEE, apr 2008. http://dx.doi.org/10.1109/icde.2008.4497415. [Online]. Available: https://doi.org/10.1109%2Ficde.2008.4497415
  7. M. Morzy, “Prediction of moving object location based on frequent trajectories,” in Computer and Information Sciences ISCIS 2006. Springer Berlin Heidelberg, 2006, pp. 583–592. [Online]. Available: https://doi.org/10.1007%2F11902140_62
  8. M. Morzy, “Mining frequent trajectories of moving objects for location prediction,” in Machine Learning and Data Mining in Pattern Recognition. Springer Berlin Heidelberg, 2007, pp. 667–680. [Online]. Available: https://doi.org/10.1007%2F978-3-540-73499-4_50
  9. F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern mining,” in Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2007. http://dx.doi.org/10.1145/1281192.1281230 pp. 330–339.
  10. V. T. H. Nhan and K. H. Ryu, “Future location prediction of moving objects based on movement rules,” in Intelligent Control and Automation. Springer Berlin Heidelberg, 2006, pp. 875–881. [Online]. Available: https://doi.org/10.1007%2F11816492_112
  11. H. Y. Song and D. Y. Choi, “Defining measures for location visiting preference,” Procedia Computer Science, vol. 63, pp. 142–147, 2015. http://dx.doi.org/10.1016/j.procs.2015.08.324. [Online]. Available: https://doi.org/10.1016%2Fj.procs.2015.08.324
  12. A. Sudo, T. Kashiyama, T. Yabe, H. Kanasugi, X. Song, T. Higuchi, S. Nakano, M. Saito, and Y. Sekimoto, “Particle filter for realtime human mobility prediction following unprecedented disaster,” in Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ser. SIGSPACIAL ’16. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2996913.2997000. ISBN 978-1-4503-4589-7 pp. 5:1–5:10. [Online]. Available: http://doi.acm.org/10.1145/2996913.2997000
  13. M. Baratchi, N. Meratnia, P. J. M. Havinga, A. K. Skidmore, and B. A. K. G. Toxopeus, “A hierarchical hidden semi-markov model for modeling mobility data,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp 14 Adjunct. ACM Press, 2014. http://dx.doi.org/10.1145/2632048.2636068. [Online]. Available: https://doi.org/10.1145%2F2632048.2636068
  14. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint https://arxiv.org/abs/1511.06434v2, 2016.
  15. Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Jun 2018. http://dx.doi.org/10.1109/cvpr.2018.00916. [Online]. Available: https://doi.org/10.1109%2Fcvpr.2018.00916
  16. M. Molano-Mazon, A. Onken, E. Piasini, and S. Panzeri, “Synthesizing realistic neural population activity patterns using generative adversarial networks,” arXiv preprint https://arxiv.org/abs/1803.00338, 2018.
  17. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Jun 2018. http://dx.doi.org/10.1109/cvpr.2018.00240. [Online]. Available: https://doi.org/10.1109%2Fcvpr.2018.00240
  18. M. Alzantot, S. Chakraborty, and M. Srivastava, “Sensegen: A deep learning architecture for synthetic sensor data generation,” in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, Mar 2017. http://dx.doi.org/10.1109/percomw.2017.7917555. [Online]. Available: https://doi.org/10.1109%2Fpercomw.2017.7917555
  19. S. Na, L. Xumin, and G. Yong, “Research on k-means clustering algorithm: An improved k-means clustering algorithm,” in 2010 Third International Symposium on intelligent information technology and security informatics. IEEE, 2010. http://dx.doi.org/10.1109/IITSI.2010.74 pp. 63–67.
  20. P. Reinecke, T. Krauss, and K. Wolter, “Hyperstar: Phase-type fitting made easy,” in 2012 Ninth International Conference on Quantitative Evaluation of Systems. IEEE, Sep 2012. http://dx.doi.org/10.1109/qest.2012.29. [Online]. Available: https://doi.org/10.1109%2Fqest.2012.29
  21. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
  22. W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Goodfellow, “Many paths to equilibrium: Gans do not need to decrease adivergence at every step,” 10 2017.