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Abstract—Future demand for managing a huge number of
individually operating small and often volatile energy resources
within the smart grid is preponderantly answered by involving
decentralized orchestration methods for planning and scheduling.
Many planning and scheduling problems are of a multi-objective
nature. For the single-objective case – e. g. predictive scheduling
with the goal of jointly resembling a wanted target schedule –
fully decentralized algorithms with self-organizing agents exist.
We extend this paradigm towards fully decentralized agent-
based multi-objective scheduling for energy resources e. g. in
virtual power plants for which special local constraint-handling
techniques are needed. We integrate algorithmic elements from
the well-known S-metric selection evolutionary multi-objective
algorithm into a gossiping-based combinatorial optimization
heuristic that works with agents for the single-objective case
and derive a number of challenges that have to be solved for
fully decentralized multi-objective optimization. We present a
first solution approach based on the combinatorial optimization
heuristics for agents and demonstrate viability and applicability
in several simulation scenarios.

I. INTRODUCTION

The upcoming smart grid gives rise to several multi-

objective control tasks. Due to the expected huge number of

distributed energy resources (DER) that have to be controlled,

self-organized and decentralized algorithms are seen as the

most promising solution. On the other hand, surprisingly low

effort has been put in developing decentralized multi-objective

approaches so far. Here, we go with the example of the

predictive scheduling problem [1].

To enable small and individually operated energy devices to

responsibly take over control tasks, pooling of different DER

is necessary in order to gain enough potential and flexibility.

An established concept for such pooling is the virtual power

plant (VPP) [2], [3]. Orchestration of such groups of energy

units is done by different scheduling procedures that frequently

involve multi-objective optimization.

Predictive scheduling [1] describes an optimization problem

for day-ahead planning of energy generation in VPPs, where

the goal is to select a schedule for each energy unit –

from an individual search space of feasible schedules with

respect to a future planning horizon – such that as a global

objective the distance to a target power profile for the VPP is

minimized (e. g. a product from an energy market). Actually,

this constitutes a multi-objective problem. Further objectives

like cost minimization, maximization of residual flexibility (for

later planning periods) or environmental impact are usually to

be achieved concurrently [4]. These goals are often conflicting.

So far, the problem is often reduced to the single objective

case for proper solving; if applicable with a combination of

different objectives to a single, weighted sum of objectives.

We propose a fully decentralized multi-objective algorithm

for this problem based on concepts from the combinato-

rial optimization heuristics for agents (COHDA) and the S-

metric selection evolutionary multi-objective algorithm (SMS-

EMOA). The goal is to derive a self-organization approach

that results in autonomously acting agents that determine a

Pareto front (or at least an approximation) without any central

control.

The rest of the paper is organized as follows: We recap

multi-objective optimization in general, a centralized solution

to the predictive scheduling problem and the single objective

approach to the decentralized solution. We define the set of

challenges that have to be solved to make algorithms like

COHDA multi-objective capable and present a first solution

approach that integrates concepts from the SMS-EMOA. We

conclude with evaluation results from a simulation study and

deduce some further research questions.

II. RELATED WORK

Decentralized, multi-agent-based multi-objective optimiza-

tion has so far not gained much attention; at least in the sense

of jointly calculating the Pareto front of a given problem.

Some approaches have been developed for tuning a multi-

agent system or for internal multi-objective decisions. In [5]

an example is given for the emergency response planning

problem, [6] presents an elevator control. These approaches

use centralized algorithms for the multi-objective part. [7]

gives an example for multi-objective reinforcement learning.

A decision model for objective relationships after intra-agent

multi-objective solving is presented in [8].

On the other hand, some approaches have been developed

for acceleration by distributing fitness evaluation in multi-

objective optimization. An example for a general framework

is given in [9]. But, this is not decentralized problem solving

by local, agent-based decisions in a collaboration scenario, as

we strive for.
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A. Predictive scheduling

We here consider rather small, distributed electricity pro-

ducers that are supposed to pool together with likewise dis-

tributed electricity consumers and prosumers (like batteries)

in order to jointly gain more degrees of freedom in choosing

load profiles. In this way, they become a controllable entity

with sufficient market power. In order to manage such a pool

of DER, the following distributed optimization problem has

to be frequently solved: A partition of a demanded aggregate

schedule has to be determined in order to fairly distribute the

load among all participating DER. A schedule x is a real

valued vector with each element xi denoting the amount of

energy generated or consumed during the ith time interval

withing the planning horizon Optimality usually refers to

local (individual cost) as well as to global (e.g. environmental

impact) objectives in addition to the main goal: Resemble the

wanted overall load schedule as close as possible.

In [10], a support vector decoder has been introduced to

cope with individual constraints of different types of energy

units. Constraints may be technically rooted like the state of

charge of attached batteries or thermal buffer stores or be

economically soft rooted or be due to individual preferences.

The basic idea is to learn the enclosing envelope around the

set of feasible schedules in data space and to derive a formal

description that allows mapping any given schedule to or into

the feasible regions. In this way solution repair and space

mapping can be achieved. Such constraint handling technique

is in general referred to as decoder [11], [12]. Formally, a

decoder function γ with

γ : [0, 1]d → F[0,1] ⊆ [0, 1]d

x 7→ γ(x)
(1)

transforms any given (maybe in-feasible) schedule (scaled to

[0, 1]d) into a feasible one. Thus, the scheduling problem is

transformed into an unconstrained formulation when using a

decoder:

δ

(

d
∑

i=1

si ◦ γi(x
′

i), ζ

)

→ min, (2)

where γi denotes the decoder of unit i that produces feasible

schedules x′ ∈ [0, 1]d and si scales these schedules entrywise

to correct power values resulting in schedules that are operable

by that unit. Technically, scaling can also be integrated into

the decoding process by combining both functions. Thus, for

the rest of the paper we refer with γ to a decoder function

that maps an infeasible schedule into the feasible region and

scales it appropriately to the rated power of the respective

energy unit. Please note that this constitutes only a single

objective solution and multi-objective scenarios so far have

to combine different objectives to a single one by a weighted

aggregation. Unfortunately, this is not possible in case of a

mixture of global and local objectives.

For the single objective case several solutions exist. In

[13] an example for a centralized approach can be found,

examples for decentralized approaches are given in [14]–

[16]. A centralized multi-objective variant based on parallel

tempering that harnesses a decoder extension to co-encode

different key performance indicators can be found in [17].

On the other hand, several approaches neglecting or relaxing

individual constraint-handling can be found [2], [18].

For multi-objective optimization in general many approa-

ches exist. In optimization problems with more than one and

at least two conflicting objectives, Pareto optimization has

become an appropriate means for solving [19]. As improving

on one objective degrades each conflicting one, multi-objective

optimization deals with finding a set of Pareto optimal so-

lutions as trade-off between opposing solutions. Different

algorithms have been designed to find an approximation to

the Pareto-optimal set M = {x ∈ S| ∄x∗ ∈ S : x∗ ≺ x

for a set of objective functions f1,...,n : S → R defined

on some search space S [20]; and with x ≺ x∗ denoting

that x dominates x∗, i. e. all objective values of x are

better than x∗. Different algorithms have been proposed [20];

among them are evolutionary algorithms [21], [22], genetic

algorithms including the famous NSGA-II [23], or swarm-

based approaches [24].

Predictive scheduling imposes some special needs on con-

straint handling to ensure that all local schedules are within

the feasible phase-space of the individual energy resources

[1], [25]. For constraint-handling in multi-objective optimi-

zation two general concepts are usually applied [26]. Either

a penalty [27], [28] is added to each objective function

degrading constraint violating solutions or the definition of

Pareto-dominance is extended to take into account constraint

violation [26], [29]. Introducing a penalty term changes the

objective function and as in multi-objective optimization the

impact on different objectives has to be balanced, a too weak

set of penalties may lead to infeasible solutions whereas a too

strong impact leads to poor distributions of solutions [26].

Nevertheless, all approaches for constraint integration so

far need a closed form description of constraints. Constraints

are given as a set of (possibly non-linear) in-equalities and

equalities as well as a box-constraint demanding all parameters

being from a specific range. In the smart grid domain, often

no closed form descriptions of constraints are available. Such

closed form description does not exist in decentralized energy

resource scheduling that includes (at least in general) arbitrary

unit types [30].

A first solution approach to hybridizing multi-objective

optimization and decoder was given in [31], with a centralized

approach based on SMS-EMOA.

B. SMS-EMOA

Using S-metric selection for evolutionary multi-objective

algorithms has first been proposed by [22]. The S-metric is

based on the hypervolume encapsulated by the set of non-

dominated solutions and a reference point [21] and can thus

be described as the Lebesgue measure Λ of the union of

hypercubes defined by the reference point xr and the set of

non-dominated points mi [19], [22]:

S(M) = Λ(
⋃

{ai|m ∈M}). (3)
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Algorithm 1 Basic algorithmic scheme of the SMS-EMOA

(cf. [22]).

P (0) ← randomPopulation()

t← 0
while t < max iterations do

o← mutate ◦ crossover(P (t))
{R1, . . . , Rk} ← fast-nondominated-sort(P (t) ∪ {o})
p← argmins∈Rk

[∆S(s,Rk))]
P (t+1) ← P (t)\{p}
t← t+ 1

end while

This metric constitutes an unary quality measure by mapping

a solution set to a single value in R: the size of the dominated

space [32]. As it is desirable to have a large S-metric value

for solution sets in multi-objective optimization, [32] first used

this measure in a Simulated Annealing approach and [22]

developed an evolution strategy (SMS-EMOA) based on this

measure. Algorithm 1 shows the basic idea of SMS-EMOA.

The algorithm repeatedly evolves a population of µ solutions.

in each iteration, first a new solution is generated and added to

the population. Subsequently, a selection process is started to

find the worst individual in the solution which is then removed

from the population. Thus, the number of individuals stays

constant from a steady state perspective. Selection is done

by first issuing a fast non-dominated sort after [23]. In this

way, the Pareto fronts are ranked and from the front with

the lowest rank the individual with the lowest contribution

to the hypervolume (measured by the S-metric) is removed.

This process is repeated until some stopping criterion – e. g. a

number of maximum objective evaluations – is met.

In [31] the latter has already been hybridized with a decoder

approach for flexibility modeling and constraint-handling in

multi-objective energy management.

In general, two types of objective have to be considered.

In [30] constraints have been identified on different locality

levels. The same holds true for objectives in a VPP. Objectives

on a global as well as on a local level have to be integrated.

Objectives on a global level have to be achieved jointly. An

example is given by the minimization of the deviation of

the aggregated joint schedule from a given product schedule

that has to be delivered as contracted. These objectives can

only be achieved with joint effort. In contrast, local objectives

like individual cost minimization are also to be integrated.

Although evaluation can only be performed locally (individual

cost), help from other to be able to choose a cheaper schedule

is often necessary to achieve the goal. In the following we

denote with f local and with F global objectives.

C. COHDA

In general, decentralized algorithms are considered advan-

tageous in many fields of smart grid computation [33], [34].

For the case of predictive scheduling, [35] developed a de-

centralized algorithm for constrained combinatorial problems:

The Combinatorial Optimization Heuristics for Distributed

Agents (COHDA). Combined with an appropriate abstraction

for individual flexibilities [10]. So far, this fully decentralized

approach works with a single objective function and integrates

multiple objectives only by combining different objectives into

a single one as weighted sum. We extended COHDA to a full-

fledged decentralized multi-objective optimization algorithm.

COHDA has been designed as a fully distributed solution

to the predictive scheduling problem (as distributed constraint

optimization formulation) in smart grid management [36].

Each agent in the multi-agent system is in charge of con-

trolling exactly one distributed energy resource (generator or

controllable consumer) with procuration for negotiating the

energy. All energy resources are drawn together to a virtual

power plant and the controlling agents form a coalition that

has to control the VPP in a distributed way.

An agent in COHDA does not represent a complete solution

as it is the case for instance in population-based approaches

[37], [38]. Each agent represents a class within a multiple

choice knapsack combinatorial problem [39]. Applied to pre-

dictive scheduling each class refers to the feasible region in

the solution space of the respective energy unit. Each agent

chooses schedules as solution candidate only from the set of

feasible schedules that belongs to the DER controlled by this

agent. This selection is done according to local constraints and

to a given objective that usually reflects solely the distance

(dissimilarity) of the sum of this selection and the schedules

of all other agents to the given target schedule.

Each agent is connected with a rather small subset of

other agents from the multi-agent system and may only

communicate with agents from this limited neighborhood. The

neighborhood (communication network) is defined by a small

world graph [40]. As long as this graph is at least simply

connected, each agent collects information from the direct

neighborhood and as each received message also contains

(not necessarily up-to-date) information from the transitive

neighborhood, each agent may accumulate information about

the choices of other agents and thus gains his own local belief

of the aggregated schedule that the other agents are going to

operate. With this belief each agent may choose a schedule

for the own controlled energy unit in a way that the coalition

is put forward best while at the same time own constraints

are obeyed and own interests are pursued. Thus, we have a

multi-objective optimization problem when deciding on the

best schedule.

All choices for own schedules are rooted in incomplete

knowledge and beliefs in what other agents do; gathered

from received messages. The taken choice (together with the

basis for decision-making that has been received with prior

messages) is communicated to all neighboring agents and,

in this way, knowledge is successively spread throughout the

coalition without any central memory. Thus, COHDA is a type

of gossiping algorithm [41].

Each information update results in recalculating the own

best schedule contribution and spreading it to the direct neig-

hbors. By and by all agents accumulate complete information

and as soon as no agent is capable of offering a schedule
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leading to a better solution, the algorithm converges and

terminates. Convergence has been proved in [42].

More formally, each time an agent receives a message, three

successive steps are conducted. First, during the perceive phase

an agent aj updates its own working memory κj with the

received working memory κi from agent ai. From the foreign

working memory the objective of the optimization (i. e. the

target schedule) is imported (if not already known) as well

as the configuration that constitutes the calculation base of

neighboring agent ai. An update is conducted if the received

configuration is larger or has achieved a better objective value,

what is only directly possible with a single-objective. In this

way, schedules that reflect the so far best choices of other

agents and that are not already known in the own working

memory are imported from the received memory.

During the decision phase agent aj has to decide on the

best choice for its own schedule based on the updated belief

about the system state S
(aj)
k . Index k indicates the age of the

system state information. The agent knows from a subset of

(or from all) other agents, which schedules they are going to

operate (the system state S(aj)k). Thus, the schedule that fills

the gap to the desired target schedule exactly can be easily

identified. Due to operational constraints of the controlled

DER, this optimal schedule can usually not be operated. In

addition, other reasons might render some schedules largely

unattractive due to high cost.

Because of this reason, each agent is equipped with a so

called decoder that automatically maps the identified optimal

schedule to a nearby feasible schedule that is operable by the

DER and thus feasible. Based on a set of feasible schedules

sampled from an appropriate simulation model for flexibility

prediction [43], a decoder can e. g. be based directly on this set

(by linearly searching the schedule with the smallest deviation)

or be built by learning a support vector model after the

approach of [10]. Both approaches have individual advantages

and drawbacks regarding computational complexity, search

space size and accuracy. Here, we used the support vector

version for efficiency reasons.

As the whole procedure is based exclusively on local

decisions, each agent decides privately which schedules are

taken. Private interest and preferences can be included and all

information on the flexibility of the local DER is kept private.

D. Challenges

The COHDA approach can be adapted to many different

optimization problems as has been demonstrated e. g. in [3],

[30], [44], [45]. Basically, solution encoding, objective evalu-

ation and internal, local decision method have to be adapted to

the problem at hand. On the other hand, adapting to the multi-

objective case entails some additional challenges that have to

be solved:

a) Solution representation: As the goal now is a Pareto

front, each agent will have to manage a set of schedules (a

set of own contributions to the joint set of schedules). In the

multi-objective case, determining the best own selection will

no longer work by just determining the missing difference to

the target and repairing it with a decoder.

b) Solution quality assessment: Each time an agent in

COHDA decides on a new contribution to a solution (remem-

ber: an agent represents just the local contribution, not a full

solution) the quality of the solution with the old contribution

is compared to the one resulting from the new contribution.

This assessment is usually done using the objective function

evaluating both candidates. In the multi-objective case an agent

represents a set of contributions to a set of solutions, thus it

is not possible to compare an old solution directly with a new

one using the objective.

This problem can be overcome by using measures that

evaluate the quality of a set of solutions with regard to the

Pareto front. When using concepts from SMS-EMOA, the

achieved hypercube volume can be used.

c) Incomplete solutions: During the initial setting time

of COHDA, solutions are incomplete by design. COHDA has

been developed for predictive scheduling. One agent starts

by issuing a schedule (as local solution contribution) for the

own energy resource. At this point in time, a solution consists

only of this single contribution (as if it was a VPP with just

a single energy resource). For the single-objective predictive

scheduling case this is admissible as such a solution is always

worse regarding the single objective of resembling the wanted

target schedule as close as possible. After some negotiation

steps, more agents join in and finally a contribution from all

agents are on hand. For the multi-objective case it cannot

be guaranteed that solutions with incomplete contribution are

worse than complete solutions. An example may be given

by minimizing cost as objective. Cost dominated by primary

energy would deteriorate the objective if more energy re-

sources joint to contribute to the solution; contradicting a

minimization.

Several solutions are possible.

1) The protocol could be altered and each agent could be

requested to calculate an initial contribution in order to

avoid incomplete solutions. Depending on the problem

at hand these initial contributions might be nonsense as

they have been determined without knowledge on the

others’ decisions.

2) A penalty term could be added to the objective in order

to deteriorate solutions based on the number of agents

that still have to join. In this case the agents would need

knowledge on the number of agents that are in the group.

3) Solutions with a larger number of contributions are

always considered better regardless of the evaluation

result. This might not hold for all objectives and may

lead to wrong convergence directions.

For some objective functions there seems be no issue at least if

the number agents is low enough compared with the number

of network connections in between them and if the agents

join in quick enough. For the simulations conducted with the

first approach proposed here, after an initial deterioration of

the solution quality a convergence could be observed towards

196 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



better solutions. Improved versions should integrate one of the

afore mentioned approaches to guarantee convergence.

d) Localization of objectives: In standard COHDA each

agent knows the global objective function. In multi-objective

COHDA all global objective functions might also be known

by all agents. On the other hand, not all objectives can be

calculated by using the schedules of other agents directly, as

it is the case in predictive scheduling. Calculating individual

costs for example requires knowledge on private cost factors

of other energy resources. Such factors are usually not known

publicly nor communicated. Thus essential information for

calculating the objectives is missing in a fully decentralized

scenario.

In [46], an extension to the decoder approach has been

proposed that is capable of annotating individual schedules

with performance indicators. In [47] an ontology has been

presented to capture and reliantly interpret these information

in a decentralized scenario. In the first approach presented

here, this issue is currently neglected and only objectives that

can be calculated without further information are used.

e) Convergence detection: In standard COHDA the so-

lution converges to a single solution and eventually all agent

represent the same solution. In the multi-objective case. all

solution sets converge towards the same Pareto front and

eventually all agents represent (an approximation) to the same

Pareto front, but with probably different solution sets. Whether

this is a problem or not highly depends on the specific problem

at hand.

III. A FIRST APPROACH

A. Implementation

We implemented a fully decentralized multi-objective ap-

proach for predictive scheduling by extending the COHDA

algorithm. First, we had to define the solution format. A

solution to the overall problem (Eq. 2) is – in the multi-

objective case – a set of sets of schedules for the virtual power

plant; each one consisting of a schedule for the respective

energy resource in the group:

X = {X1, . . . ,Xn}, (4)

with

Xk = (xij) ∈ Rm×d (5)

where xij denotes the mean real power of energy resource i

during the jth time period. Thus each row of the matrix Xk

represents a schedule for the respective energy resource. This

solution set X is determined in a way that it approximates the

Pareto front. In this way, each agent holds and negotiates on

a set of schedules for the own energy resource.

Let {x
(aj)
1 , . . . ,x

(aj)
n } denote the set of local schedules (for

the own, controlled device) that is negotiated by agent aj . Let

κj be the current working memory of agent aj (updated by

an incoming message; cf. II-C). Let

XO = {x
(a1)
1 , . . . ,x(a1)

n }, . . . , {x
(am−1)
1 , . . . ,x(am−1)

n } ∈ κj

(6)

be the currently known schedule selections (local solution

candidates) from all the other agents a1, . . . , am−1 ∈ A\aj .

Basically, this is the system state belief S(aj)k without the

agent’s own contribution from decision k:

XO = S(aj)k\{x
(aj)
1 , . . . ,x(aj)

n }. (7)

Now the procedure (performed by agent aj) for deciding on

the own schedule selection is as follows: The sum of schedules

of the other agents is calculated as

O = {O, . . . ,On} (8)

with

Oi =
∑

xi∈XO

xi. (9)

Now a solution of the MAS (cf. Eq. 4) to the joint Problem

can be represented as
[

O1

x
(aj)
1

]

, . . . ,

[

On

x
(aj)
n

]

(10)

with x
aj)
1 , . . . ,x

(aj)
n being the decision variables of the local

problem of deciding on the best local schedules under the

assumption that the other agents’ schedules are operated as

communicated.

Solution candidate x
(aj)
1 , . . . ,x

(aj)
n is initialized randomly

and evolved for some iterations towards the Pareto front. For

each evolution step one randomly chosen schedule xk ∈

x
(aj)
1 , . . . ,x

(aj)
n is mutated to x′

k by adding a Gaussian delta

r ∈ N (0, 1) to one randomly chosen element of xk. As

crossover operator, uniform crossover is applied. Please note,

as an agent can only decide on its own schedules, mutation

and crossover may not be applied to other agents’ schedules

from O. Then, the agent performs a fast non-dominated sort

on O ∪
[

Ok

x
′

k

]

.

For applying the fast non-dominance-sort as introduced in

[48], from the worst front the worst individual (solution with

the lowest hypercube contribution) is removed. For sorting

and selecting the worst individual by S-metric selection, the

dominance of solutions has to be determined by using the

objective functions. For this purpose, we extend the definition

of dominance by integrating the decoder set:

y ≺ y∗ ≡ ∀i = 1, . . . , d : yi < y∗i (11)

in order to keep track of the individual (technical) constraints

of the energy resources by setting

y =

























f1,1(γ1(x1)) + · · ·+ f1,n(γn(xn))
f2,1(γ1(x1)) + · · ·+ f2,n(γn(xn))

...

fm,1(γ1(x1)) + · · ·+ fm,n(γn(xn))
F1(M)

...

Fℓ(M)

























(12)

as introduced in [31]. In this way, variations of the previous

solutions in the solution set are produced by applying variation
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Fig. 1. Resulting solution sets of the 4 agents of the small scenario depicting the individually approximated Pareto fronts.

operators to the genotype. In this way the selection and cros-

sover operators merely have to obey an easy to integrate box

constraint that ensures that each value of a solution candidate

is kept within [0, 1] if max power is scaled to 1 (corresponding

to 100% rated power). No further constraints have to be

integrated. Thus, the problem formulation can be regarded

as constraint-free. Constraint-handling is introduced by using

decoder functions that abstract from individual capabilities

or technical constraints of energy units. The set of decoders

ensures that selection is done on feasible solutions only and

thus that the solution set approaches a Pareto front without

any knowledge about controlled energy units.

The last step in the COHDA process requires comparing

the result achieved in the previous round with the current

achievement. If the new one is better, it is communicated

to the neighboring agents, else it is discarded and the old is

kept without communicating any achievement. In the single

objective case, the achieved objective values can be compared

directly. This is not possible in the multi-objective case as the

result constitutes a set of solutions. Thus, we decided to com-

pare both results using the hypervolume between a reference

point and the solution set as rather usual in multi-objective

algorithms. For fast calculation of exact hypervolumes we

applied the WFG (walking fish group) algorithm [49].

With these settings we addressed all challenges identified

in section II-D to constitute a fully decentralized, agent-based

determination of the Pareto front of a joint multi-objective

problem.

B. Results

For our evaluation we simulated different virtual power

plants consisting of different co-generation plants. The model

has already been used and evaluated in different projects,

e. g. [13], [46], [50], [51]. We started with a rather small

setting of four agents and 96-dimensional schedules resulting

in a 384-dimensional search space which has already been

evaluated to be highly multi-modal and ragged [52]. As goal,

two objectives were set: F1 denotes the deviation of the joint

schedule from the desired target schedule (‖ · ‖2) and f2
equalizes the run of the co-generation plants by minimizing

peak loads:

f2 =
∑

xi∈X

d
∑

j=1

(xij − µ)2, (13)
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Fig. 2. Combination of local Pareto fronts of agents from solution Fig. 1.
Solutions are marked with a cross; non-dominated solutions are marked by a
circle. In this example, no solution is dominated by a solution from another
agent.
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Fig. 3. Convergence and inter-agent variability (error bars) of the small
scenario. Only the first 50 (out of ∼ 1700) measuring points are depicted.
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Fig. 4. Consolidated Pareto fronts from the large example. Non-dominated
solutions are additionally marked with a circle. As COHDA is a heuristic,
this example has obviously not completely reached a common front approx-
imation. Maybe, a post-processing that removes dominated solutions could
improve the approach significantly.
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Fig. 5. Convergence and inter-agent variability (error bars) of the large
scenario.

with µ being the mean power over the whole planning horizon.

In this way, the variance in power levels is minimized. Figure 1

shows an example of the resulting Pareto front approximations

of the individual 4 agents. The evolutionary part during the

decision phase has been run for 500 iterations each. A cross

marks an individual for the solution set (50 schedules per

agent) and a circle marks a non-dominated solution from the

front. Note, that solution here denotes already a solution (joint

schedule) for the predictive scheduling problem. Even if all

schedules from the individual result sets of the agents are

plotted jointly in a single plot, all solutions are non-dominated;

see Figure 2. Thus, all solutions that are individually generated

by the agents stem from the same Pareto front approximation,

although there are slight differences in the solution sets

(regarding distribution on the front) as can be visually seen in

Figure 1. The agents approximate the same front but exhibit

differences in the individual solution sets.

Some statistics on this scenario with different numbers of

evolutionary iterations are given in Table I.

As the proposed approach is still a heuristic, results are as

yet not that perfect with growing problem size. Figure 4 shows

another example from a scenario with 50 agents approximating

a 50 schedule solution set each.

Here another objective has been tested: Achieve a desired

state of charge (SOC) for some of the thermal buffer stores

that are attached to the co-generation plants.

f3 =
∑

δ(SOCi, soc(xi)). (14)

In this larger scenario some of the solutions in the joint so-

lution set are still dominated by the solutions from others, even

though 5000 iterations have been conducted during decision

phases. Obviously, the number of necessary iterations quickly

grows with problem size: deteriorating needed negotiation

time.

On the other hand, the mean hypervolume (as quality

measure for a solution) converges quite early to an acceptable

value. Figure 3 shows the convergences of the process that led

to result 1. Here, the mean (so long achieved) hypervolume

of all agents is measured at discrete points in time from

the concurrently asynchronously running multi-agent system.

Error bars show the inter-agents variance. At the same time

the variance among all agents is determined. Depicted are

only the first iterations, not the full process. Depending on

the specific use case at hand, it might thus be possible to stop

the negotiation at an earlier stage with a still acceptably good

solution. Some more investigations will be necessary here.

Figure 5 shows the situation for the second case.

TABLE I
PERFORMANCE INDICATORS FOR BOTH TEST SCENARIOS. THIS TIME f2

WAS USED FOR BOTH.

indicator 4 agents 50 agents

hypervolume 0.401 ± 0.213 0.533 ± 0.258

best F1 0.103 ± 0.110 0.083 ± 0.006

best f2 1.785 ± 0.213 1.745 ± 0.142

# messages 2191.6 ± 2407.1 679.6 ± 516.6

# decisions 1064.1 ± 1166.6 328.4 ± 245.3

Mean achieved results for 100 runs each are depicted in

Table I. The achieved hypervolume in the larger scenario larger

due to the better aggregated schedule (F1). This observation

is consistent with the single-objective case and rooted in the

higher flexibility of larger VPPs. The number of exchanged

messages and decisions decreases significantly with growing

scenario size probably allowing for more complex decision

routines of the agents in future improvements.
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IV. CONCLUSION

For many applications within the smart grid scheduling

domain, multi-objective optimization problems have to be

solved. As for scalability reasons decentralized (agent-based)

algorithms are seen as a promising solution, multi-objective

capability has to be integrated into these methods. At the

same time, proper constraint-handling is indispensable for

acceptance.

With the approach demonstrated here, we integrated multi-

objective capabilities taken from SMS-EMOA into fully de-

centralized energy scheduling.

Applicability and effectiveness of the proposed approach

have been demonstrated by simulations. Nevertheless, some

questions remain for further research: Replacing the decoder

decision by a more complex optimization based decision

method entails the need for tuning additional parameters;

e. g. the (probably adaptive) number of iterations during each

decision procedure. Maybe a substantial acceleration could

be reached with additional convergence detection methods.

Designing mutation, crossover and selection is also still subject

to specialized improvements. Moreover, an integration of

indicators into the communicated solution data format could

improve privacy as local objectives (and thus their calculation

details) would no longer be publicly known. Nevertheless,

this first approach demonstrated the general feasibility of fully

decentralized multi-objective optimization.
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[33] A. Nieße, S. Lehnhoff, M. Tröschel, M. Uslar, C. Wissing, H. J. Appel-
rath, and M. Sonnenschein, “Market-based self-organized provision of
active power and ancillary services: An agent-based approach for smart
distribution grids,” in Complexity in Engineering (COMPENG), 2012,
June 2012, pp. 1–5.

[34] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R. Jennings,
“Putting the ’smarts’ into the smart grid: A grand challenge for artificial
intelligence,” Commun. ACM, vol. 55, no. 4, pp. 86–97, Apr. 2012.

[35] C. Hinrichs, S. Lehnhoff, and M. Sonnenschein, “A Decentralized
Heuristic for Multiple-Choice Combinatorial Optimization Problems,”
in Operations Research Proceedings 2012. Springer, 2014, pp. 297–
302.

[36] C. Hinrichs, M. Sonnenschein, and S. Lehnhoff, “Evaluation of a Self-
Organizing Heuristic for Interdependent Distributed Search Spaces,” in
International Conference on Agents and Artificial Intelligence (ICAART

2013), J. Filipe and A. L. N. Fred, Eds., vol. Volume 1 – Agents.
SciTePress, 2013, pp. 25–34.

[37] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[38] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm,”
Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, Nov. 2007.

[39] T. Lust and J. Teghem, “The multiobjective multidimensional knapsack
problem: a survey and a new approach,” CoRR, vol. abs/1007.4063,
2010.

[40] D. Watts and S. Strogatz, “Collective dynamics of ’small-world’ net-
works,” Nature, no. 393, pp. 440–442, 1998.

[41] J. Liu, B. Anderson, M. Cao, and A. Morse, “Analysis of accelerated
gossip algorithms,” Automatica, vol. 49, no. 4, pp. 873–883, 4 2013.

[42] C. Hinrichs, “Selbstorganisierte Einsatzplanung dezentraler Akteure im
Smart Grid,” Ph.D. dissertation, Department for Computing Science,
2014. [Online]. Available: http://oops.uni-oldenburg.de/1960/

[43] J. Bremer and M. Sonnenschein, “Sampling the search space of energy
resources for self-organized, agent-based planning of active power pro-
vision,” in 27th International Conference on Environmental Informatics

for Environmental Protection, Sustainable Development and Risk Ma-

nagement, EnviroInfo 2013, Hamburg, Germany, September 2-4, 2013.

Proceedings, ser. Berichte aus der Umweltinformatik, B. Page, A. G.
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