
Automated Generation of Business Process Models

using Constraint Logic Programming in Python

Tymoteusz Paszun, Piotr Wiśniewski*, Krzysztof Kluza* Antoni Ligęza

AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059 Krakow, Poland

*E-mail: {wpiotr,kluza}@agh.edu.pl

Abstract—High complexity of business processes in real-life
organizations is a constantly rising issue. In consequence, mod-
eling a workflow is a challenge for process stakeholders. Yet, to
facilitate this task, new methods can be implemented to automate
the phase of process design. As a main contribution of this paper,
we propose an approach to generate process models based on
activities performed by the participants, where the exact order of
execution does not need to be specified. Nevertheless, the goal of
our method is to generate artificial workflow traces of a process
using Constraint Programming and a set of predefined rules.
As a final step, the approach was implemented as a dedicated
tool and evaluated on a set of test examples that prove that our
method is capable of creating correct process models.

Index Terms—business process management, process compo-
sition, workflow logs, constraint programming, BPMN

I. INTRODUCTION

T
HE purpose of the existence of any organization or com-

pany is to carry out its mission effectively and efficiently.

Lack of coordination of operational activities may result in the

ineffective achievement of goals, and in extreme cases may

lead to failure of the entire undertaking. This is a particular

threat to enterprises, understood here as organizations whose

mission is to provide specific products in the form of goods or

services. In their case, permanent failure to meet the clients’

needs usually results in bankruptcy or severe difficulties in

operating in a competitive market. In order to minimize the

risk of such turnover, the activities carried out within the

organization in the form of processes are often created. As

the processes are often complex, their modeling is a challenge

for business analysts. To facilitate this task, it is possible to

use some tools to assist analysts in their daily work. This

paper combines issues in the areas of management (process

approach in organizations) and Information Technology (Con-

straint Programming, Process Mining).

The main goal of the approach is to provide a method

to generate complex process models starting from tasks and

constraints obtained from the organization. The construction

of the solution was preceded by the analysis of this topic.

This paper is organized as follows: Section II presents

an analysis of the Business Process Management approach,

including its origins, development, and current trends. The sec-

tion also includes necessary information related to BPMN and

process discovery. In Section III, as the next step to achieving

the goal, the analysis and description of the proposed method

are included. Next, a project of an IT tool, its assumptions,

requirements, and architecture (Section IV) was presented,

as well as the technical description of its implementation

(Section V). Section VI includes the evaluation of the proposed

approach, the description of the developed tool, as well as the

results of its application on a set of test data. The work is

finished with conclusions and a description of the possible

extension of the approach (Section VII).

II. BUSINESS PROCESS MANAGEMENT

This Section discusses the issues related to business pro-

cesses – from their role in management, through the applied

notation of their recording, to the description of their research

techniques.

A. Overview

Business Process Management (BPM) [1] is one of the most

common methods for improving the organization and imple-

mentation of the quality system. The ISO 9001 standard [2]

introduced the obligation to apply the process approach as one

of the key elements of a well-implemented, maintained, and

functioning management system.

However, to talk about the process approach, let us look

at the concept of a business process per se. There are many

definitions of the business process. However, for this study, the

definition presented in "Essential Business Process Modeling"

will be adopted, where the process is described as step-by-

step activities specific to the solution of various problems or

business issues [3].

To answer the key question about the purpose of the process

approach in enterprises, it is worth taking a closer look

at the research carried out in 2009 [4], which shows the

organization’s goals at various stages of process development.

Enterprises in the phase of introducing process-oriented ap-

proach set the implementation of the quality system and the

creation of a process approach in their structures as the primary

goal. In the case of enterprises from this group, the aim is

usually to map processes existing in the organization, and less

frequently to improve their effectiveness or implement IT tools

supporting operational activities. For 38.5% of organizations in

the growth phase, the key goal is to improve efficiency, and for

31% of organizations in this group, the most important goal

is the development of applied IT systems, which will also

improve the organization’s efficiency [4]. Enterprises being

in the improvement phase during the research indicated three

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 733–742

DOI: 10.15439/2019F174

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 733

most important areas of application of the process approach,

which are: improvement of quality, improvement of efficiency,

and implementation of IT systems [4].

In the mid-nineties, Business Process Management was

introduced as the next wave of approach to managing the

processes in the organization. BPM postulates, inter alia,

mapping, visualization, and analysis of processes in the orga-

nization. Thanks to these activities, it is possible to standardize

the implemented activities, control their course, and perform

much easier analysis of decision situations [5], [6].

Modeling processes in firms can be implemented using

a variety of notations. Initially, many organizations used their

own methods of describing and modeling processes, which,

however, hindered readability and negatively affected cooper-

ation between organizations. In response to this problem, many

formal notations and languages of business process modeling

were created. The most popular standards used to model busi-

ness processes are the Unified Modeling Language (UML) [7]

and Business Process Model and Notation (BPMN) [8].

In the last three decades, a change in the approach to

information systems can be observed. Process-aware systems

increasingly replace formerly used data-aware systems. To

support business processes implemented within the framework

of an organization, enterprise information systems must be

somewhat aware of the existence of these processes and the or-

ganizational context within which they are implemented. Early

examples of process-aware systems were called Workflow

Management systems (WFM). In recent years, IT solutions

companies have preferred a more precise term of BPM.

Business Process Management systems cover a wider range

than classical Workflow Management systems and do not focus

only on process automation. Business Process Management

systems attach more importance to supporting various forms

of analysis (e.g. process simulation) and management (e.g.

monitoring key performance indicators). Both Workflow Man-

agement systems and Business Process Management systems

seek to support operational processes, which we refer to as

workflow processes or simply workflows [9].

B. Business Process Model and Notation

The BPMN standard consists of a set of graphic elements

for constructing diagrams showing components of the process

and the way in which it should be executed. Graphic symbols

and the way of combining them constitute the syntax of the

notation and have defined semantics. In addition to the graph-

ical representation of the model, the BPMN specification [10]

also describes the format of the record in the form of XML

files.

The basic subset of BPMN symbols used in the developed

model generator is presented in Figure 1, its elements are

described below.

• Task – atomic activity performed as part of the process

which is not subject to further decomposition. It presents

actions taken by the end user or software.

• Gateways – elements used to control how sequential flows

separate and merge as part of the process. They can

support many input and many output flows, although best

practices suggest that the gateway should only perform

one of these functions. Therefore, in the diagrams, the

pair of gates usually serves first to separate and then

connect the process flows.

– OR-gateway – flow object used to create alternative

paths within the process flow. A single process

instance contains only one of the possible paths

selected. This gateway is interpreted as a decision

at a given point in the process. It can be understood

as a question, and sequence flows from it will be

associated with responses.

– AND-gateway – flow object used to create parallel

flows or synchronize them (join). Separation of the

flow is not subject to any conditions, the connection,

in turn, requires the completion of all input flows

of the gate. A single process instance contains all

possible paths associated with a given pair of parallel

gates.

• Process start and end event – process start event indicates

where flows begin within a given process. The process

end event symbolizes the end of all flows.

• Sequence flow – indicates the order of flow objects in the

process. It always has one source and one target element.

Task

Parallel (AND)
Gateway

Start Event End Event

Sequence Flow

Exclusive (XOR)
Gateway

Figure 1. BPMN elements.

C. Process Discovery

Process mining is a relatively new field of research, between

machine learning and data exploration on the one hand, and

modeling and analysis of processes on the other. Today’s

information systems store huge amounts of data about activ-

ities performed in the form of event logs. The assumptions

for the exploration of processes are to discover, control, and

streamline real processes by extracting knowledge from read-

only event logs in these systems.

In general, process mining methods are often classified into

one of the following classes [11]:

• process discovery,

• conformance checking,

• process enhancement.

734 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

Input
Data

CSP Solving
Component Workflow Log

Process
Discovery &

BPMN
Generation
Component

BPMN
Diagram

Figure 2. Overview of the process generation method.

For the purpose of this paper, our attention will be focused

only on the first group – methods of discovering the process

model. Discovery techniques rely on event logs and generate

a process model without any known process information. An

example is the α algorithm, which results in a Petri net [12]

that reflects the behavior recorded in the event log. Using

dedicated algorithms, Petri nets can be automatically converted

to BPMN [13], [14], [15].

Example algorithms of process discovery include:

• α algorithm [16], used in the developed tool,

• Inductive Miner [17], used in the developed tool,

• Heuristics Miner [18] and its Fodina variant [19],

• Evolutionary Tree Miner [20],

• Structured Miner [21],

• Region-Based Mining [22],

• Split Miner [23].

III. METHOD

The process model generator presented in this paper uses

the adapted method of generating process models based on

the one described in the work [24]. It consists of three stages

presented in Figure 2. In this Section, the formalization of the

method is presented.

The first stage of the method is the preparation and pro-

vision of input data in the appropriate format. Such data

can be extracted from a system-based source such as data

warehouse [25] or acquired directly from business roles [24].

The approach described in this paper requires the provision of

input data consisting of:

• matrix for prerequisite tasks,

• matrix of task effects,

• vector of the initial state,

• matrix of acceptable final states of the process,

• the maximum number of executions of each task.

The next stage of the method’s operation is the use of

a component that uses the Constraint Programming techniques,

based on a model built of input data and predefined constraints.

The result of its operation is an artificially created log of all

possible traces of the process.

The final stage of the method is the part that explores the

process (called process exploration) directly from the event

log and creates a process representation in BPMN.

A. Expected Input Data

In our approach, T denotes a set of all tasks:

T = {τ (1), τ (2), . . . , τ (n)}.

Table I
MEANING OF VALUES IN USED STRUCTURES.

Velue MTC MTE MST s0

-1 not relevant not changed not relevant -
0 forbidden deleted forbidden forbidden
1 required created required required

Tasks, or activities, are performed within the course of the

process. For our method, the concept of data entity was

introduced. Unlike data objects used in BPMN, data entities

do not exist in the generated model, but a part of the process

specification that is required in the applied method. In other

words, the data entity is a variable about a simple or complex

type of data that accompanies the execution of the tasks of the

process. The set of all data entities is denoted by ∆:

∆ = {δ1, δ2, . . . , δm}.

Cardinality of T and ∆ is equal to n and m, respectively. For

the needs of the constraint model, it is necessary to build two

matrices of dimensions n×m:

1) MTC : for the prerequisites required for each task,

2) MTE : for the effects caused by each task.

The prerequisites and effects are understood as the occurrence

of the data entity before and after the task.

Additionally, assuming g as the number of allowed final

states, it is necessary to define the matrix MST of dimensions

g×m, which describes all acceptable terminal states. The m-

element vector s0 is defined in order to give information about

the presence of the data entity before the process is executed.

All structures described can contain integer values from the

set {−1, 0, 1}. Table I explains the meaning of values in the

context of the data entity in each structure.

The last of the input structures is the n-element vector et
containing the number of maximum executions for each task.

By default, its values should be equal to 1 unless the process

contains loops or tasks performed iteratively.

B. Workflow Log

Workflow log W = {σ1, σ2, . . . , σL} is a multiset of

individual workflow traces σ, which can be defined as or-

dered sequences of activities in the course of the process:

σ = (τ1, τ2, . . . , τK), τi ∈ T. Although the workflow log

definition permits the appearance of identical process traces

TYMOTEUSZ PASZUN ET AL.: AUTOMATED GENERATION OF BUSINESS PROCESS MODELS USING CONSTRAINT LOGIC PROGRAMMING IN PYTHON 735

many times, the purpose of the described method is to generate

a complete log artificially. The generated log contains all

acceptable process traces. Therefore, in further considerations,

the multiset W will be treated as an ordinary set.

C. Constraints

For the purpose of finding a set of solutions, the concept

of the process state S is introduced. It is represented by the

state vector of the data entity in every step of the process.

The state of the data entity si is the vector representing the

occurrence of the data entity in i-th step of the process. The

values 0 and 1 mean respectively the absence and occurrence

of the data entity.

S = [s0, s1, . . . , sK], where K > 0,K ∈ N,

si = [d(i,1), d(i,2), . . . , d(i,m)],

d(i,j) ∈ {0, 1}, where i ∈ {1, . . . ,K}, j ∈ {1, . . . ,m}.

Before specifying the constraints needed to generate the

correct process flow log, it is necessary to define a predicate

that determines whether the data vector state of the data entity

si meets the requirements of the task to be performed:

sat(si, TC(τ (i))) ⇐⇒

∀j = 1 . . .m : d(i,j) = TC(τ (i))j ∨ TC(τ (i))j = −1,

where TC(τ (i)) is the i-th row of matrix MTC and dj is the

j-th element of state vector si.

In addition, a predicate is defined, meaning that the state

meets one of the allowed end states:

satSet(si,MST) ⇐⇒ ∃j = 1 . . . g : sat(si,MSTj
),

where MSTj
means the j-th row of admissible solution matrix.

To generate a complete workflow log W , the problem being

analyzed must be modeled using constraints over variables.

This concept is based on three principles:

1) Search space: all completed task sequences.

2) Decision variables: single process flow, process state

matrix.

3) Variable constraints: defined by the input data as well

as by the set of predefined rules.

Predefined constraints that ensure the correctness of the

generated process runs are:

1) The overall limit of task executions MAXEX .

2) The number of executions of each τ (i) task must be less

than or equal to the corresponding value in the vector

of the maximum number of executions of the et task or

the general MAXEX limit.

3) Maximal length of a single workflow trace σ to K =
n×MAXEX .

4) The input state of the first completed task is equal to s0.

5) Every non-idle task τ (k) in the i-th step changes the

elements of its successor state si+1:

si+1 = [d(i+1,1), d(i+1,2), . . . , d(i+1,n)],

d(i+1,j) =

d(i,j), dla TE(τ (k))j = −1,

1, dla TE(τ (k))j = 1,

0, dla TE(τ (k))j = 0,

where TE (τ (k))j means the j-th element of the k-th

row of matrix MTE .

6) The process ends when one of the specified final states

is reached.

satSet(si,MST) ⇐⇒ τi = τ (0),

where τi means the i-th task of a single workflow trace

σ and τ (0) is an idle task.

7) The last process state sK satisfies one of the admissible

goal states MST :

satSet(sk,MST).

8) The task can be performed only if the current state meets

its initial conditions:

τi = τ (k) ⇐⇒ sat(si, TC(τ (k))).

The program built on the basis of the above-mentioned

constraints and input data is performed by the system solving

the problems of meeting restrictions (called solver). Executing

a program by a solver to find all solutions results in an

artificially generated process log W , needed in the next stage

of generating the process model.

D. Generating a BPMN model from a workflow log

In the work [24], two approaches to building a process

model based on the delivered process log are listed. The first

approach involves the use of process discovery algorithms

from the delivered process log. These algorithms were de-

scribed in more detail in Section II-C. The result of their op-

eration is the process model in the form of a Petri net. One of

the methods of converting Petri nets to BPMN was presented

in [14]. The second approach is a process composition method

based on activity graphs that does not require conversion of the

Petri net to the BPMN form because the BPMN composition

is directly from the artificially generated workflow log.

In the process model generator described in this paper, the

implemented implementations of process discovery and con-

version algorithms for BPMN contained in library Numberjack

were used. The tool uses the α and Inductive-Miner algorithms

described in [26] and [17] respectively.

IV. TOOL

This section presents the tool design – from specifying

functional and non-functional requirements, by specifying the

input data format specification, to the architecture description

of the developed process model generator.

At the initial stages of work, functional (Section IV-A) and

non-functional requirements (Section IV-B) were defined.

736 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

<< Generator >>

Use additional file
with task names

User

Generate process model
for given input file

Generate process models
for example set of input files

<<include>>

<<extend>>

Figure 3. Use case diagram.

A. Functional Requirements

1) The tool should accept a set of input data in a specified

format at the input.

2) The tool should optionally accept a file with the speci-

fication of task names at the input.

3) The tool as a result of the action should generate:

a) BPMN diagrams in graphic form,

b) BPMN diagrams in XML format according to the

standard,

c) artificially generated process log,

d) Petri net diagrams resulting from the operation of

process discovery algorithms.

Functional requirements are presented in the use case dia-

gram (Figure 3).

B. Non-functional Requirements

1) The tool is distributed in an easy-to-use form, in par-

ticular without having to manually install all dependent

libraries.

2) The tool is implemented with division into independent

modules so that it can be further expanded.

C. Input File Format

The input tool accepts text files with the input data value

definition described in Section III-A. The file should contain

in sequence:

• initial state vector,

• matrix of task prerequisites,

• task results matrix,

• matrix of allowed final states,

• vector of the possible number of task executions.

The vectors and matrices should be separated from each other

by at least one empty line. The line in the file may contain

a comment beginning with the # character. Comments are

ignored by the input data parser. The values of subsequent

elements of the introduced vectors and matrices are separated

by commas. An example input file is shown in Listing 1.

Listing 1. Example input file of the tool.

s_0

0 , 1 , 0 , 0

m_tc

0 , 1 , 0 , 0

0 , 1 , 1 , −1

0 , 1 , 1 , 0

m_te

−1, −1, 1 , −1

1 , −1, −1, −1

−1, −1, −1, 1

m_st

1 , −1, −1, −1

e _ t

2 , 2 , 2

D. Architecture

While working on the tool, three functional areas were

identified as separate modules. The modular division of the

tool is aimed at introducing a clear structure of responsibility

for individual parts, as well as facilitating further development

by providing other implementations. The identified software

modules are:

1) Parser module for input files.

2) Log module of the process log generator (based on

programming techniques with limitations).

3) Module for process discovery and generation of process

model diagrams.

The modules are presented in the component diagram

(Figure 4). Coordination of the use of these modules by the

tool is presented in the sequence diagram (Figure 5).

TYMOTEUSZ PASZUN ET AL.: AUTOMATED GENERATION OF BUSINESS PROCESS MODELS USING CONSTRAINT LOGIC PROGRAMMING IN PYTHON 737

«component»
Input Data Parser

input datainput file

«component»
Artificial Workflow Log

Generator artificially generated
workflow loginput data

«component»
Process Model

Generator output process model filesworkflow log

Figure 4. Components diagram.

: Tool : Log generator : Model generator

process(inputFile)

outputFiles

: Input data
parser

parse(inputFile)

inputData

generateLog(inputData)

log

generateProcess(log)

diagrams

Figure 5. Sequence diagram of model generation.

738 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

V. IMPLEMENTATION

In this section, we present the details of the implementation

of the process model generator.

A. Constraint Programming

Constraint Programming is a technique for solving the

problems of satisfying constraints. These problems can be

defined using variables that take values from their domains

and the constraints over variables. The solution to the problem

is a set of variable value assignments that meet the given

constraints [27].

In addition, the problems expressed in Constraint Pro-

gramming languages are characterized by declarativeness, i.e.

a description of the problem becomes a program solving this

problem [28].

The Constraint Programming technique can be used in

imperative languages by means of libraries that allow building

a problem model (variables and constraints) with the help

of structures appropriate to a given language. These libraries

can themselves implement solvers or provide an interface to

solvers implemented in other languages. Examples of widely

used solvers are: CP-SAT Solver from the Google OR-Tools

package, Gecode, Mistral, Mistral2, ILOG Solver.

B. Used Techniques

Python was chosen as the implementation language of the

developed tool. It is a popular language in the academic envi-

ronment, as well as widely used in the IT industry. Support for

programming with restrictions is ensured by the library Num-

berjack (https://github.com/eomahony/Numberjack), which al-

lows for high-level modeling of problems and the use of

several solvers. Discovering the process is carried out using

the library pm4py (http://pm4py.pads.rwth-aachen.de/), which

provides the implementation of the algorithms: alpha and

Inductive Miner. It enables the presentation of discovered pro-

cesses in the form of Petri nets, as well as their conversion to

the BPMN diagram in XML and graphical format. Functions

related to BPMN diagram support are currently in the imple-

mentation phase (they are not shared with a stable version of

the library) and have been taken from the appropriate branch

of the library version control repository. The result of their

use is described in more detail in the Section VII.

For the purpose of easily recreating the entire working

environment of the tool and simplifying its use on other

computers, the Docker software (https://www.docker.com/)

used for virtualization at the operating system level was used.

The application image, containing the generator of process

models and the configured environment for its launch and

proper operation, was prepared.

VI. EVALUATION

As part of the research, tests were carried out on synthetic

examples. Simple processes have been selected that contain:

a single task,

b sequential submission of two tasks,

c two tasks covered by the XOR-gateway,

d two tasks performed concurrently,

e two tasks covered by XOR-gateway preceded and

completed by one task,

f two tasks performed concurrently preceded and

ended with one task,

g three tasks performed sequentially, in which the

middle one is optional.

They are presented in Figure 6. For the needs of the tests,

input data corresponding to these processes was prepared.

A

B

A

A B

B

A

C

B

A D

C

B

A D

a)

b)

c)

d)

e)

f)

B

A C

g)

Figure 6. Example test cases in BPMN.

Analysis of test results was divided into two parts. The first

one included verification of the correctness of the generated

process logs. The second one focused on checking the gener-

ated model diagrams.

A. Generated Workflow Logs

The first of the test models – a process containing a single

task – has only one possible trace consisting of this task.

Also, the second test model, which is the composition of two

tasks, should generate one pass. The generated process logs

(respectively "A" and "A""B" confirm the correctness of this

stage of the tool for given models.

TYMOTEUSZ PASZUN ET AL.: AUTOMATED GENERATION OF BUSINESS PROCESS MODELS USING CONSTRAINT LOGIC PROGRAMMING IN PYTHON 739

In the case of two successive process models (two tasks con-

nected with the OR gate, two tasks performed concurrently),

we expect logs consisting of two process runs. The correct

behavior of the tool was also found here - logs were created

with the forms "A","B" and "A""B","B""A".

The next two test cases are the extension of the previous

ones by adding tasks at the beginning and end of the process.

Here too, the proper generation of logs has been observed

("A""B""D","A""C""D" and "A""B""C""D","A""C"

"B""D").

The last example (optional execution of the task in the

middle of the process) gives the tool the expected log in the

form "A""B""C","A""C".

The above analysis confirms the correctness of the method

used to generate an artificial process log for each of the test

cases.

B. Generated Process Models

The result of the comparison of generated process model

diagrams in the form of BPMN for test cases is shown in

Table II.

The following deviations from the expected results were

found during the analysis:

1) algorithm α for example c) generated BPMN diagram

without XOR-gateways (Fig. 7),

2) Inductive Miner for example c) generated a BPMN

diagram containing doubled XOR-gateways (Fig 8),

3) algorithm α for example d) generated a BPMN diagram

without parallel gateways (Fig. 9),

4) algorithm α for example f) generated a BPMN diagram

not containing initial and final tasks (Fig. 10),

5) algorithm α for example g) generated a BPMN diagram

without the first task and with the wrong XOR-gateway

instead of a parallel one (Fig. 11).

Table II
GENERATED MODELS AND THE EXPECTED RESULTS.

Test case α Algorithm Inductive Miner

single task (a) correct correct
two tasks (b) correct correct

XOR-gateway (c) incorrect incorrect
parallel gateway (d) incorrect correct

XOR-gateway in a process (e) correct correct
parallel gateway in a process (f) incorrect correct

optional task (g) incorrect correct

C. Example

Apart from test cases, the tool was also evaluated on the

basis of a more complicated example – the process of opening

a bank account. Synthesis of the input file was made on the

basis of the process initially presented in [29]. The results

of BPMN generation using the Inductive Miner algorithm are

shown in Figure 12.

Figure 7. Diagram generated by the α algorithm for case c)

Figure 8. Diagram generated by Inductive Miner for case c)

Figure 9. Diagram generated by α algorithm for case d)

740 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

Figure 10. Diagram generated by α algorithm for case f)

Figure 11. Diagram generated by α algorithm for case g)

VII. CONCLUSIONS AND FUTURE WORKS

The works on the generator of process models presented in

this paper are topped off with half-hearted success. The mod-

ule for generating an artificial log of the process flow provides

the correct results. They can be the basis for discovering the

process. However, the process discovery and BPMN diagram

generation module generates diagrams far from expectations.

Inconsistencies appear at the stage of testing the test cases. If

the observed behavior is recorded in an event log, it is possible

to repair such a model [30]. However, our goal is to provide

a prototype model based on the provided input data. Thus, in

order to accurately diagnose the reason for this behavior of

the module, a broader review of process discovery algorithms

Figure 12. Diagram generated by Inductive Miner for the example process
of bank account opening.

TYMOTEUSZ PASZUN ET AL.: AUTOMATED GENERATION OF BUSINESS PROCESS MODELS USING CONSTRAINT LOGIC PROGRAMMING IN PYTHON 741

and a comparison of their properties should be made. The

implementation of the Petri net conversion algorithm to BPMN

provided in the experimental branch of pm3py can also be one

of the causes of the problem.

The possibilities of the process model generator extensions

are as follows:

• The use of other process discovery algorithms mentioned

in the section II-C, in particular the implementation of the

process composition method based on the activity graphs

described in work [24]. The use of this approach should

give better results during the process discovery phase

from the artificially generated log flow of the process

than the α and Inductive-Miner algorithms used.

• Performing a GUI facilitating the input of data, or en-

abling cooperation with the organization’s business roles

in order to collect information about tasks, data entities

and their relationships.

• Improving the layouting of the generated BPMN di-

agrams, arranging elements on the diagram in a way

similar to how they are visualized in commercial tools.

• Extension of the tool to include information about various

departments within the organization, linking them to tasks

and extending the generated model with pools and lanes.

• Adding the possibility of exporting the generated process

log to the standardized event log format. The XES format

is the standard for text-event logs for further analysis us-

ing tools that implement the process discovery functions

(for example, the ProM framework [31]).

REFERENCES

[1] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers et al., Fundamentals

of business process management. Springer, 2013, vol. 1.
[2] V. Jovanovic and D. Shoemaker, “Iso 9001 standard and software quality

improvement,” Benchmarking for Quality Management & Technology,
vol. 4, no. 2, pp. 148–159, 1997.

[3] M. Havey, Essential business process modeling. O’Reilly Media, Inc.,
2005.

[4] W. Cieśliński, “Procesowa orientacja przedsiębiorstw: wyniki badań
empirycznych,” Prace Naukowe Uniwersytetu Ekonomicznego we

Wrocławiu, no. 52 Podejście procesowe w organizacjach, pp. 41–48,
2009.

[5] S. Lusk, S. Paley, and A. Spanyi, “The evolution of business process
management as a professional discipline,” BP Trends, vol. 20, pp. 1–9,
2005.

[6] E. Kucharska, “Heuristic method for decision-making in common
scheduling problems,” Applied Sciences, vol. 7, no. 10, p. 1073, 2017.

[7] K. Kluza, P. Wiśniewski, K. Jobczyk, A. Ligęza, and A. Suche-
nia (Mroczek), “Comparison of selected modeling notations for process,
decision and system modeling,” in Proceedings of the 2016 Federated

Conference on Computer Science and Information Systems, ser. Annals
of Computer Science and Information Systems, M. Ganzha, L. Maci-
aszek, and M. Paprzycki, Eds., vol. 11. IEEE, 2017, pp. 1095–1098.

[8] P. Pasamonik, “Modelowanie procesów biznesowych zorientowane na
czynności,” Zeszyty Naukowe Wyższej Szkoły Informatyki, vol. 9, no. 2,
pp. 102–116, 2010.

[9] W. M. van der Aalst, “Process-aware information systems: Lessons to
be learned from process mining,” in Transactions on petri nets and other

models of concurrency II. Springer, 2009, pp. 1–26.
[10] OMG. (2011) Business process model and notation. [Online]. Available:

https://www.omg.org/spec/BPMN/2.0

[11] W. M. van der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri,
T. Baier, T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen,
J. Buijs et al., “Process mining manifesto,” in International Conference

on Business Process Management. Springer, 2011, pp. 169–194.
[12] M. Szpyrka, Sieci Petriego w modelowaniu i analizie systemów współ-

bieżnych. Wydawnictwa Naukowo-Techniczne, 2008.
[13] A. A. Kalenkova, M. De Leoni, and W. M. van der Aalst, “Discovering,

analyzing and enhancing BPMN models using ProM,” in BPM (Demos),
2014, p. 36.

[14] A. A. Kalenkova, W. M. van der Aalst, I. A. Lomazova, and V. A. Rubin,
“Process mining using BPMN: relating event logs and process models,”
Software & Systems Modeling, vol. 16, no. 4, pp. 1019–1048, 2017.

[15] A. Kalenkova, A. Burattin, M. de Leoni, W. van der Aalst, and
A. Sperduti, “Discovering high-level BPMN process models from event
data,” Business Process Management Journal, 2018.

[16] W. M. van der Aalst, A. Weijters, and L. Maruster, “Workflow mining:
Which processes can be rediscovered,” BETA Working Paper Series,
WP 74, Eindhoven University of Technology, Eindhoven, Tech. Rep.,
2002.

[17] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Scalable process
discovery with guarantees,” in International Conference on Enterprise,

Business-Process and Information Systems Modeling. Springer, 2015,
pp. 85–101.

[18] A. Weijters and J. Ribeiro, “Flexible heuristics miner (fhm),” in
2011 IEEE symposium on computational intelligence and data mining

(CIDM). IEEE, 2011, pp. 310–317.
[19] S. K. van den Broucke and J. De Weerdt, “Fodina: a robust and flexible

heuristic process discovery technique,” decision support systems, vol.
100, pp. 109–118, 2017.

[20] J. C. Buijs, B. F. Van Dongen, and W. M. van der Aalst, “On the role of
fitness, precision, generalization and simplicity in process discovery,”
in OTM Confederated International Conferences "On the Move to

Meaningful Internet Systems". Springer, 2012, pp. 305–322.
[21] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,

“Automated discovery of structured process models: Discover structured
vs. discover and structure,” in International Conference on Conceptual

Modeling. Springer, 2016, pp. 313–329.
[22] W. M. van der Aalst, Process mining: discovery, conformance and

enhancement of business processes. Springer, 2011, vol. 2.
[23] A. Augusto, R. Conforti, M. Dumas, and M. La Rosa, “Split miner:

Discovering accurate and simple business process models from event
logs,” in 2017 IEEE International Conference on Data Mining (ICDM).
IEEE, 2017, pp. 1–10.

[24] P. Wiśniewski, K. Kluza, and A. Ligęza, “An approach to participatory
business process modeling: BPMN model generation using constraint
programming and graph composition,” Applied Sciences, vol. 8, no. 9,
p. 1428, 2018.

[25] M. L. Owoc et al., “Benefits of knowledge acquisition systems for
management. an empirical study,” in 2015 Federated Conference on

Computer Science and Information Systems (FedCSIS). IEEE, 2015,
pp. 1691–1698.

[26] W. M. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.
[27] E. Tsang, Foundations of constraint satisfaction: the classic text. BoD–

Books on Demand, 2014.
[28] A. Niederliński, Programowanie w logice z ograniczeniami: Łagodne

wprowadzenie dla platformy ECLiPSe. Wydawnictwo Pracowni Kom-
puterowej Jacka Skalmierskiego, 2010.

[29] P. Wiśniewski, K. Kluza, M. Ślażyński, and A. Ligęza, “Constraint-
based composition of business process models,” in Business Process

Management Workshops, E. Teniente and M. Weidlich, Eds. Cham:
Springer International Publishing, 2018, pp. 133–141.

[30] A. A. Cervantes, N. R. van Beest, M. La Rosa, M. Dumas, and
L. García-Bañuelos, “Interactive and incremental business process model
repair,” in OTM Confederated International Conferences" On the Move

to Meaningful Internet Systems". Springer, 2017, pp. 53–74.
[31] B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and

W. M. Van Der Aalst, “The ProM framework: A new era in process
mining tool support,” in International conference on application and

theory of petri nets. Springer, 2005, pp. 444–454.

742 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

