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Abstract—The routing and spectrum assignment problem is
an NP-hard problem that receives increasing attention during
the last years. Existing integer linear programming models for
the problem are either very complex and suffer from tractability
issues or are simplified and incomplete so that they can optimize
only some objective functions. The majority of models uses edge-
path formulations where variables are associated with all possible
routing paths so that the number of variables grows exponentially
with the size of the instance. An alternative is to use edge-
node formulations that allow to devise compact models where
the number of variables grows only polynomially with the size
of the instance. However, all known edge-node formulations are
incomplete as their feasible region is a superset of all feasible
solutions of the problem and can, thus, handle only some objective
functions.

Our contribution is to provide the first complete edge-node
formulation for the routing and spectrum assignment problem
which leads to a tractable integer linear programming model.
Indeed, computational results show that our complete model is
competitive with incomplete models as we can solve instances of
the RSA problem larger than instances known in the literature
to optimality within reasonable time and w.r.t. several objective
functions. We further devise some directions of future research.

I. INTRODUCTION

T
ODAY’S communication networks are optical networks

where light is used as communication medium be-

tween sender and receiver nodes. For over two decades,

the Wavelength-Division Multiplexing (WDM) has been the

most popular technology used in fiber-optic communication.

WDM combines multiple wavelengths to simultaneously trans-

port signals over a single optical fiber, but must select the

wavelengths from a rather coarse fixed grid of frequencies

specified by the United Nations agency ITU (International

Telecommunication Union) and leads to inefficient use of

spectral resources and bans allocating more than a single

wavelength to a traffic demand.

In response to the sustained growth of data traffic volumes

in communication networks, a new generation of optical

networks, called flexgrid Elastic Optical Networks (EONs),

has been introduced in the last few years to enhance the

spectrum efficiency and enlarge the network capacity [7].

In EONs, the frequency spectrum of an optical fiber is

divided into many narrow frequency slots of fixed spectrum

width. Any sequence of consecutive slots can form a channel

that can be switched in the network nodes to create a lightpath

(i.e., an optical connection represented by a route and a

channel). EONs enable capacity gain by allocating minimum

required bandwidth thanks to a finer spectrum granularity than

in the traditional WDM networks.

However, the spectrum assignment in EONs leads to the

Routing and Spectrum Assignment (RSA) problem that is

much harder to handle in practice than its counterpart using

Wavelength-Division Multiplexing. In fact, the RSA problem

consists of two parts: the routing (to select for each traffic

demand a path through the communication network) and the

spectrum assignment (to assign for each demand an interval

of consecutive frequency slots within the optical spectrum

such that the intervals of lightpaths using a same edge in the

network are disjoint), see e.g. [15] and Section II for details.

Thereby, the following constraints need to be respected when

dealing with the RSA problem:

1) spectrum continuity: the frequency slots allocated to a

demand remain the same on all the links of a route;

2) spectrum contiguity: the frequency slots allocated to a

demand must be contiguous;

3) non-overlapping spectrum: a frequency slot can be allo-

cated to at most one demand.

The RSA problem is a generalization of the well-studied

Routing and Wavelength Assignment (RWA) problem that is

associated with a fixed grid of frequencies [3].

The former problem has started to receive a lot of attention

over the last few years. It has been shown to be NP-hard [2],

[18]. In fact, if for each demand the route is already known, the

RSA problem reduces to the so-called Spectrum Assignment

(SA) problem and only consists of determining the demands’

channels. The SA problem has been shown to be NP-hard on

paths [14] which makes the SA problem (and thus also the

RSA problem) much harder than the RWA problem which is

well-known to be polynomially solvable on paths, see e.g. [3].

To solve the RSA problem, various approaches have been

studied in the literature, based on different Integer Linear

Programming (ILP) models. Hereby, detailed models aiming

at precisely describing all technological aspects of EONs

and being able to handle various criteria for optimization

typically suffer from tractability issues resulting from their
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greater complexity such that the tendency is to use simplified

or restricted models.

The majority of the existing models uses an edge-path

formulation where for each demand, variables are associated

either with all possible routing paths or with all possible light-

paths for this demand. One characteristic of this formulation is,

therefore, an exponential number of variables issued from the

total number of all feasible paths between origin-destination

pairs in the network, which grows exponentially with the size

of the network.

To bypass the exponential number of variables, edge-path

formulations with a precomputed subset of all possible paths

per demand have been studied e.g. in [8], [9], [16], [19],

see [19] for an overview. However, such formulations cannot

guarantee optimality of the solutions in general (as only

a precomputed subset of paths is considered and, thus, a

restricted problem solved). In order to be able to find optimal

solutions of the RSA problem w.r.t. any objective function with

the help of an edge-path formulation, all possible paths have

to be taken into account. As the explicit models are far too

big for computation, it is in order to apply column-generation

methods. However, computational results from e.g. [10], [11],

[13] show that the size of the instances that can be solved that

way is rather limited.

An alternative to edge-path formulations is to use edge-node

formulations that lead to less intuitive models for the routing,

but have the advantage that the number of variables grows

only polynomially with the size of the instance. Despite this

advantage, edge-node formulations are not yet well-studied.

Only few authors made use of this type of model, as Cai et

al. [1], Velasco et al. [16], Zotkiewiez et al. [19], and Jia et

al. who used in [6] an edge-node formulation to treat a more

general problem.

All three models from [1], [16], [19] are compact models as

both the number of variables and constraints is polynomial in

terms of the size of the instance. However, all three models are

incomplete as their feasible region is a superset of all feasible

solutions of the RSA problem and can, thus, handle only some

objective functions (see Section IV for details).

Our contribution is to provide the first complete edge-node

formulation for the RSA problem that precisely encodes the

set of all feasible solutions and can, therefore, be used to

optimize any chosen objective function. For that, we propose

an appropriate combination of variables and constraints (partly

using new variables and constraints), see Section III for details.

Our model uses, as in [1], [16], [19], a polynomial number of

variables, but an exponential number of constraints to ensure

the exact encoding of feasible solutions. As we are able

to separate the exponentially-sized families of constraints in

polynomial time, our model is computationally tractable and,

therefore, competitive with the compact but incomplete models

from [1], [16], [19].

While Zotkiewiez et al. [19] do not give computational

results, Velasco et al. [16] tested their formulation on a

network topology of Spain with 35 edges (64 slots per edge)

and 21 nodes with a very small number of 12 demands and

requested numbers of slots in {1, 2, 4}. The results show that

Cplex version 12 could optimally solve the problem after 6
hours by minimizing the number of edges activated for the

routing (which can be looked as a network design problem).

Cai et al. [1] tested their formulation on two small network

topologies, one with 6 nodes and 9 links and the other with

10 nodes and 22 links, one demand between each pair of

nodes in the network and requested numbers of slots in

{1, ..., 3}, . . . , {1, ..., 9}. The results show that Gurobi 5.0
could optimally solve the problem after 1 hour by minimizing

the max-slot position for the 6 nodes and 9 links topology

(but did not report on time limits to solve the instances on the

other network).

Our model allows us to solve instances of the RSA problem

larger than the instances in [1], [16] to optimality within

reasonable time w.r.t. several objective functions (see Section

V for details).

The paper is organized as follows. In Section II, we describe

in detail the input and the desired output of the RSA problem

together with the studied objective functions. In Section III,

we present our new edge-node formulation and compare it

in Section IV with existing models from the literature [1],

[16], [19]. In Section V, we report on computational results

achieved with the help of our formulation. We close with some

concluding remarks and future research.

II. THE RSA PROBLEM

In this section, we formally define the RSA problem

by describing in detail the input and the desired output of

the RSA problem together with the studied objective functions.

As input of the RSA problem, we are given

• an optical spectrum S = {1, . . . , s̄} of available fre-

quency slots;

• an optical network, represented as an undirected, loopless,

connected graph G = (V,E) that may have parallel edges

(if parallel optical fibers are installed between two nodes),

and for each edge e ∈ E its length ℓe ∈ R+ (in kms),

• a multiset K of demands where each demand k ∈ K is

specified by

– an origin node ok ∈ V and a destination node dk ∈
V \ {ok},

– a requested number wk ∈ N+ of slots, and

– a transmission reach ℓ̄k ∈ R+ (in kms).

The task is to determine for each demand k ∈ K a

lightpath composed of an (ok,dk)-path Pk in G respecting the

transmission reach ℓ̄k and a subset Sk ⊂ S of wk consecutive

frequency slots that is available on all edges of Pk and disjoint

from the subsets Sk′ of all other demands k′ routed along an

edge of Pk, thereby minimizing some objective function.

Hence, the desired output of the RSA problem is, for each

demand k ∈ K, a lightpath composed of

• an (ok,dk)-path Pk in G with
∑

e∈E(Pk)
le ≤ ℓ̄k,
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Fig. 1. The network G used in Example 2.1.

• a subset Sk ⊂ {1, . . . , s̄} of wk consecutive slots with

Sk ∩ Sk′ = ∅ for each demand k′ ∈ K routed along an

edge e ∈ E(Pk).

This output can be given in terms of a matrix M ∈ N
|E|×s̄

with

Me,s =







k if slot s ∈ S is allocated to

demand k ∈ K on edge e ∈ E,

0 otherwise.

In addition, the selected set of lightpaths is supposed to

minimize a chosen objective function. In this paper, we will

focus on the following objective functions that have been used

in [1], [16], [19] to be able to compare our computational

results with those from the literature:

O1: minimize the sum of hops in paths (where the term hops

refers to the number of edges in a path Pk) [19],

O2: minimize the number of edges from the network used to

route the demands [16],

O3: minimize the maximal used slot position (and, thus, the

width of the subspectrum of S used for the spectrum

assignment) [1].

Note that the first two objective functions are only related

to the routing (provided that a feasible spectrum assignment

within S exists for this routing), whereas the third objective

function seeks for the most efficient spectrum assignment over

all possible routings.

Example 2.1: Consider the following small instance of the

RSA problem, given by a spectrum of width s̄ = 10, the

network G shown in Figure 1 with edge length as indicated,

and the following set K of demands:

k ok → dk wk ℓ̄k
1 a → c 2 4
2 a → d 1 4
3 b → f 2 4
4 b → e 1 4
5 d → f 3 4

An optimal solution w.r.t. objective function

• O1 with minimum sum 11 of hops in paths is represented

by matrix M1,

• O2 with minimum number 5 of edges from the network

used to route the demands is represented by matrix M2,

• O3 with minimum maximal used slot position 4 is rep-

resented by matrix M3.

M1 =





























1 2 3 4 5 6 7 8 9 10
ab 3 3 4
af 1 1 3 3 2 4
bc

cd

cf 1 1
de 2
df 5 5 5
ef 2 4





























M2 =





























1 2 3 4 5 6 7 8 9 10
ab 3 3 4
af 1 1 3 3 2 4
bc

cd

cf 1 1
de 5 5 5 2
df

ef 5 5 5 2 4





























M3 =





























1 2 3 4 5 6 7 8 9 10
ab 4 2
af 1 1 4
bc 3 3 2
cd 3 3 2
cf 1 1
de 3 3
df 5 5 5
ef 3 3 4





























III. A NOVEL EDGE-NODE FORMULATION

In this section we introduce our novel edge-node ILP model

for the RSA problem in the general variant where demands

may be rejected.

a) Variables: For the routing, demand-edge variables

xk
e =

{

1 if demand k is routed through edge e,

0 otherwise,

are used for all k ∈ K and all e ∈ E as in [17], [19].

For the spectrum assignment, several different variables are

necessary. As in [2], [16], demand-slot variables

zks =

{

1 if slot s is the last slot allocated for demand k,

0 otherwise,

are used which indicate that s is the last of the wk consecutive

slots allocated for the demand k ∈ K, with s ∈ S. The

consecutive slots s′ ∈ {s−wk+1, ..., s} shall form the channel

assigned to this demand k whenever zks = 1.

We newly propose demand-edge-slot variables

tke,s =

{

1 if slot s is assigned to demand k on edge e,

0 otherwise,

for all demands k ∈ K, all edges e ∈ E and all slots s ∈ S.

When we optimize objective functions involving max-used

slot positions, we newly propose edge-max-slot-position vari-

ables pe ∈ Z
+ for all edges e ∈ E (which indicate the position

YOUSSOUF HADHBI ET AL.: A NOVEL INTEGER LINEAR PROGRAMMING MODEL FOR ROUTING AND SPECTRUM ASSIGNMENT 129



of the last slot allocated on the edge e ∈ E), as well as a max-

slot-position variable p ∈ Z
+ (which represents the position

of the highest slot used over all the edges e ∈ E as in [2]).

When we optimize the number of edges used for the routing,

we newly propose edge-activation variables

ae =

{

1 if some demand k is routed throught edge e,

0 otherwise,

for all edges e ∈ E.

b) Constraints: To formulate the constraints, we employ

the following notations. For any non-empty subset X ⊂ V , let

δ(X) denote the set of edges having one endnode in X and

the other endnode in V \X . The pair (X,V \X) is called a

cut of G, the edges in δ(X) are said to cross this cut. In the

special case X = {v}, we write δ(v) instead of δ({v}).
For the routing, we use demand-edge variables xk

e and have

to ensure by appropriate constraints that the subset

E(k) = {e ∈ E : xk
e = 1}

of edges selected for the routing of demand k indeed forms

an (ok, dk)-path Pk in G, for each demand k ∈ K. For that,

we use the following constraints. The origin constraints
∑

e∈δ(ok)

xk
e ≤ 1, for all k ∈ K (1)

ensure that at most one path Pk can leave the origin ok as at

most one of the edges e ∈ δ(ok) incident to ok can be selected

for E(k). Similarly, destination constraints

∑

e∈δ(dk)

xk
e −

∑

e∈δ(ok)

xk
e = 0, for all k ∈ K (2)

force that the path Pk enters its destination dk, provided that

there is a path Pk leaving ok. (Note that if no path is selected

for demand k, then
∑

e∈δ(ok)
xk
e = 0 holds and ensures that no

edge from δ(dk) can be selected either for E(k).) Origin and

destination constraints are used in [1], [16], [19] in a slightly

different manner.

In addition, we newly propose path-continuity constraints
∑

e∈δ(X)

xk
e −

∑

e∈δ(ok)

xk
e ≥ 0, ∀k ∈ K, ∀X, ok ∈ X, dk ∈ V \X.

(3)

These constraints are important whenever a path Pk is selected

for demand k (and, thus,
∑

e∈δ(ok)
xk
e = 1 holds): they

guarantee that there is an edge e ∈ δ(X) ∩ E(k) such that

the path Pk indeed crosses the cut (X,V \ X) for each X

with ok ∈ X and dk ∈ V \X .

Hence, origin, destination and path-continuity constraints

together imply that E(k) contains an (ok, dk)-path Pk. It is

left to prevent E(k) from having more edges than needed for

Pk and Pk from having a length exceeding the transmission

reach of demand k.

For that, we use as in [6], [16] degree constraints
∑

e∈δ(v)

xk
e ≤ 2, for all k ∈ K, and all v ∈ V \ {ok, dk} (4)

to prevent that more than two edges from E(k) are incident

to any node. Furthermore, we newly propose cycle-elimination

constraints

∑

e′∈δ(Xe)

xk
e′ ≥

{

2xk
e if |Xe ∩ {ok, dk}| = 0

xk
e if |Xe ∩ {ok, dk}| = 1

∀k ∈ K, ∀e ∈ E, ∀Xe ⊂ V

(5)

where Xe ⊂ V denotes a subset of nodes containing both

endnodes of edge e, to avoid cycles isolated from Pk (note

that isolated edges also fall into this case).

Moreover, we newly propose a transmission-reach con-

straint
∑

e∈E

lex
k
e − ℓ̄k

∑

e∈δ(ok)

xk
e ≤ 0, for all k ∈ K (6)

to ensure that the length of Pk does not exceed the

transmission reach of k if the demand k is accepted,

otherwise all the variables xk
e are forced to equal zero.

When we optimize the number of edges used for the routing,

we need in addition the following constraints

ae − xk
e ≥ 0, for all k ∈ K, and all e ∈ E (7)

to force ae = 1 when xk
e = 1 for some k ∈ K, and

ae ≤
∑

k∈K

xk
e , for all e ∈ E (8)

to guarantee ae = 0 if edge e is not used in any routing.

For the spectrum assignment, we have to guarantee that,

whenever demand k is accepted and an (ok, dk)-path Pk has

been selected,

• a channel Sk ⊂ S of wk consecutive frequency slots is

assigned to k,

• this channel is the same on all edges of Pk and disjoint

from the channels Sk′ of all other demands k′ routed

along an edge of Pk.

We newly propose channel selection constraints

s̄
∑

s=wk

zks −
∑

e∈δ(ok)

xk
e = 0, for all k ∈ K (9)

that do not allow to assign a channel to demand k when no

path Pk is selected (by not allowing to assign a slot s as last

slot in the channel), but force to select such a last slot in

the channel whenever a path is leaving ok. In addition, we

specify the available last slots for the channel of demand k by

forbidden-slot constraints

wk−1
∑

s=1

zks = 0, for all k ∈ K, (10)

to prevent demand k to occupy a slot s as last slot in the

channel whenever s < wk. Klinkowski et al. [9] proposed a

similar idea using demand-edge-first-slot variables.
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We newly propose edge-slot constraints

∑

s∈S

tke,s − wkx
k
e = 0, for all k ∈ K and all e ∈ E (11)

to ensure that precisely wk slots are allocated on edge e to

demand k if and only if demand k is routed through edge e.

Spectrum contiguity and continuity are handled by the

following new demand-edge-slot constraints

xk
e+

min(s+wk−1,s̄)
∑

s′=s

zks′−tke,s ≤ 1, ∀k ∈ K, ∀e ∈ E, ∀s ∈ S (12)

to force that slot s on edge e is allocated to demand k if and

only if demand k passes through edge e and slot s belongs to

the channel assigned to demand k (which is the case if one

slot s′ ∈ {s, . . . , s+ wk − 1} is the last slot of the channel).

We newly propose non-overlapping constraints

∑

k∈K

tke,s ≤ 1, for all e ∈ E and all s ∈ S (13)

to ensure that a slot s on edge e can be allocated to at most

one demand.

When we optimize objective functions involving max-used

slot positions, we newly propose two additional constraints

stke,s − pe ≤ 0, for all k ∈ K, all e ∈ E and all s ∈ S (14)

to guarantee that no slot s above pe is used on edge e and

pe −
∑

k∈K

∑

s∈S

stke,s ≤ 0, for all e ∈ E (15)

to force the max used slot position on edge e to equal 0 if no

demand is routed through edge e, set the bounds pe ≤ p ≤ s̄,

and force pe ∈ N for all e ∈ E and p ∈ N to be integral.

Finally, we force all other variables to be binary and require

non-negativity for all variables.

c) Objective functions: With the help of these variables,

the considered objective functions read as follows:

• min
∑

e∈E,k∈K

xk
e to minimize the sum of number of hops

in the paths,

• min
∑

e∈E

ae to minimize the number of edges used for the

routing, and

• min p to minimize the max-used slot position.

Recall that our model encodes the general variant of the RSA

problem when demands may be rejected. This situation does

not comply with the objective functions studied in [1], [16],

[19] (as for all three objective functions, rejecting all demands

would yield the optimal solution, with objective function value

equal to 0). Our model can be easily adapted to the special case

where all demands have to be served, by requiring equality in

the origin constraint (1) and simplifying the constraints (2),

(3), (6) and (9) by replacing the term
∑

e∈δ(ok)
xk
e by 1.

IV. COMPARISON OF EDGE-NODE FORMULATIONS

All three edge-node formulations from [1], [16], [19] for

the RSA problem are compact models as both the numbers of

variables and constraints grow only polynomially in the size

of the instance, i.e., in the size of the network G = (V,E)
(measured by |V | and |E|), the width of the optical spectrum S

(measured by |S|), and the number of demands (measured by

|K|). Table I summarizes the order of the number of variables

and constraints for the three models1.

TABLE I
THE ORDER OF THE NUMBER OF VARIABLES AND CONSTRAINTS IN THE

MODELS FROM THE LITERATURE.

number of variables number of constraints

model in [16] O(|K|2|E||S|) O(|K|2|E||S|)
model in [19] O(|K|(|E|+ |S|)) O(|K|2|E||S|)
model in [1] O(|K|(|E|+ |S|+ |K|)) O(|K|(|E|+ |V |+ |K|))

Our model uses also a polynomial number of variables,

namely O(|K||E||S|), but an exponential number of con-

straints due to

• path-continuity constraints (3) for all subsets X ⊂ V with

ok ∈ X, dk ∈ V \X , for all demands k ∈ K,

• cycle-elimination constraints (5) for all subsets Xe ⊂ V

containing both endnodes of edge e, for all edges e ∈ E

and all demands k ∈ K.

Recall that path-continuity constraints (3) are used to force

that the set E(k) of edges selected for the routing of demand

k contains an (ok, dk)-path Pk, whereas cycle-elimination

constraints (5) are used to prevent E(k) from containing cycles

isolated from Pk, see Figure 2 for illustration. None of the

ok kP kd

Fig. 2. A set E(k) containing an (ok, dk)-path Pk together with a cycle
isolated from Pk .

models from [1], [16], [19] can exclude the occurrence of

cycles isolated from Pk, the model presented in [19] can even

not exclude cycles attached to Pk, see Figure 3 for illustration.

ok kP kd

Fig. 3. A set E(k) containing an (ok, dk)-path Pk together with a cycle
attached to Pk .

1To allow a comparison, we count integer variables with n possible values
as n binary variables, and express variables encoding possible channels in
terms of the spectrum width |S|.
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In addition, none of the three models checks whether the

transmission reach of routing paths is respected. Hence, all

three models from [1], [16], [19] are incomplete as their

feasible region is a superset of all feasible solutions of the

RSA problem and can, thus, handle only some objective

functions (where the optimal solution does neither contain

cycles isolated from Pk nor cycles attached to Pk).

Our model is the first complete edge-node formulation for

the RSA problem as it precisely encodes the set of all feasible

solutions, i.e., any integral vector satisfying all constraints

from our model indeed corresponds to a feasible solution

of the RSA problem. Therefore, our model can be used to

optimize any objective function chosen as quality measure by

the network operator.

In addition, our model is not only complete, but still

tractable as we are able to separate the two exponentially-sized

families of constraints (3) and (5) in polynomial time.

In fact by the polynomial equivalence between separation

and optimization over rational polyhedra [5], the linear relax-

ations of our model can be solved in polynomial time if and

only if the separation problem associated with inequalities (3)

and (5) can be solved in polynomial time. The separation prob-

lem for the path-continuity constraints (3) reduces to O(|K|)
minimum-cut problems in G and the separation problem for

the cycle-elimination constraints (5) to O(|K||E|) minimum-

cut problems in an auxiliary graph.

Therefore the separation problem associated with (3) and

(5) is polynomially solvable using any polynomial-time

maximum-flow algorithm (e.g., the preflow-push algorithm of

Goldberg and Tarjan [4] running in O(|V |3) time). Note that

this separation approach provides the most-violated inequality

if any w.r.t. a demand or a pair of a demand and an edge.

V. COMPUTATIONAL RESULTS

In this section we present some preliminary computational

results that mainly aim at assessing the empirical performances

of a branch-and-cut framework based on our model for the

three objectives functions presented in Section II and at

comparing them with the results obtained by Velasco et al.

[16] for O2 and by Cai et al. [1] for objective O3.

In our experiments we therefore consider the Spanish Tele-

fónica network represented in Figure 4 from [16] and three

networks represented in Figure 5 from [1]. The characteristics

of the topology of these four networks are given in Table II

together with the available numbers of slots per link.

As none of the instances considered in [1], [16] were

available, we randomly generated multisets of traffic demands,

some of them using Net2Plan [12], while guaranteeing that

some of those multisets share the properties described in [1],

[16], that is, the same number of traffic demands (12 for

Spanish Telefónica and 30 for n6s9) and the same range

of values for the requested numbers of slots (in {1, 2, 4}
for Spanish Telefónica and in {1, . . . , 3}, . . . , {1, . . . , 9} for

n6s9). Table III summarizes the different types of traffic-

demand multisets we considered for each network.

Fig. 4. Spanish Telefónica Network from [16]

Fig. 5. n6s9, SmallNet, and NSFNET Networks from [1]

All our results were obtained on a laptop, running Microsoft

Windows 10 Pro (64-bit), equipped with a 2.5GHz Intel Core

i5-7300 HQ processor and 16-GB RAM. The branch-and-

cut framework was implemented using IBM ILOG CPLEX

Optimization Studio 12.8 C++ library. Note that using user-cut

callbacks (needed for the separation of constraints (3) and (5))

in CPLEX 12.8 automatically deactivates the multithreading.

To balance some struggles that the default heuristic of CPLEX

has to generate good feasible solutions, we implemented a

heuristic callback based on

• first decomposing for each demand k ∈ K its flow (given

by the xk
e -variables) into (ok, dk)-paths and

• second using a first-fit greedy approach to assign the best

possible channels to the demands,

The first objective function O1 was considered in neither

[1] nor [16]. Within a one-hour time limit, our branch-and-cut

framework was able to solve to optimality all our instances
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TABLE II
CHARACTERISTICS OF THE NETWORK TOPOLOGIES

Network’s name number of nodes number of links number of slots per link

Spanish Telefónica 21 35 64
n6s9 6 9 80
SmallNet 10 22 {80, 100, 140, 180}
NSFNET 14 21 {120, 160, 210, 285}

TABLE III
CHARACTERISTICS OF THE TRAFFIC DEMANDS

Network’s name number of demands number of requested slots

Spanish Telefónica {12, 15} {1, 2, 4}
n6s9 {30, 50} {1, . . . , i}, i = 3, . . . , 9
SmallNet {100, 150, . . . , 500} {1, . . . , 4}
NSFNET {100, 150, . . . , 250} {2, . . . , 6}

but the ones with 500 demands for which the optimality gap

was under 0.5%. Over the course of the solution process, both

the lower and upper bounds kept improving and only towards

the end, optimal solutions were found.

For the second objective function O2, Velasco et al. [16]

were able to solve to optimality a single instance of Spanish

Telefónica with 12 demands in over 6 hours. It took less than 3

hours for our branch-and-cut framework to solve to optimality

the Spanish Telefónica instances with 12 demands and less

than 6 hours for the Spanish Telefónica instances with 15

demands. We also ran our branch-and-cut framework on all the

instances associated with n6s9 and were able to get optimal

solutions within at most 15 minutes. Very early in the solution

process, optimal solutions were found meaning that most of

the solution time is dedicated to proving the optimality of those

solutions (e.g., for the Spanish Telefónica with 12 demands,

an optimal solution is found after about 15 minutes but proved

optimal after about 2 hours and 40 minutes).

Cai et al. [1] only considered the third objective function

O3 in their experiments with the additional property that given

any two distinct nodes o and d of G, the multiset K of traffic

demands contains either both demands having nodes o and d as

their extremities (with the same requested number of slots) or

none of them, and for the former case one assigned route is the

reverse of the other one. Some of our generated instances for

n6s9 fulfilled that property and were all solved to optimality

within 20 minutes while Cai et al. [1] needed up to one hour

to solve their similar instances (with CPLEX multithreading

being active). We also ran our branch-and-cut framework on

n6s9 instances without the reverse-demand property and for

most of the instances were able to find optimal solutions within

two hours and an optimality gap lower than 5% for the others.

We noticed a similar behavior of the lower and upper bounds

as for objective function O1.

VI. CONCLUDING REMARKS

The RSA problem in flexgrid elastic optical networks is an

NP-hard problem for which various ILP models have been

proposed in the literature. Hereby, detailed models aiming at

precisely describing all technological aspects and being able to

handle different criteria for optimization typically suffer from

tractability issues resulting from their greater complexity such

that the tendency is to use simplified models.

The majority of the existing models uses edge-path formu-

lations where the numbers of variables and constraints grow

exponentially with the size of the instance, due to the huge

number of feasible paths between all origin-destination pairs in

the network. Hence, models based on edge-path formulations

are often simplified by considering only subsets of precom-

puted paths (which cannot guarantee optimality, except for few

objective functions) or require column-generation techniques

(which limits the size of the instances that can be solved to

optimality).

An alternative to edge-path formulations is to use edge-

node formulations that have the advantage that the number

of variables grows only polynomially with the size of the

instance. Three compact edge-node formulations are presented

in [1], [16], [19] where both the number of variables and

constraints is polynomial in terms of the size of the instance.

However, all three models are incomplete as their feasible

region is a superset of all feasible solutions of the RSA

problem and can, thus, handle only some objective functions.

Our contribution is to provide the first complete edge-node

formulation for the RSA problem that precisely encodes the

set of all feasible solutions and can, therefore, be used to

optimize any chosen objective function. For that, we propose

an appropriate combination of variables and constraints (partly

using new variables and constraints) which results in a model

having, as in [1], [16], [19], a polynomial number of variables,

but an exponential number of constraints to ensure the exact

encoding of feasible solutions.

As we are able to separate the exponentially-sized families

of constraints in polynomial time, our model is computation-

ally competitive with the compact but incomplete models from

[1], [16], [19]. The computational results support this as our

branch-and-cut solver was able, on the one hand, to efficiently

handle larger instances and, on the other hand, to find optimal

solutions for instances similar to those in [1], [16] in shorter

time.

Hereby, we noticed by analyzing the computational results

for objective function O2 that for most instances the optimal

solution was found early in the computation process, but

that most of the computation time was needed to certify

its optimality. Hence, our future research also includes to

strengthen lower bounds for the value of different objective

functions in order to shorten the time during the computation

needed for certifying optimality of a solution.

Therefore, we plan as future research, on the one hand, to

strengthen our model further by devising new inequalities, e.g.

derived as Chvátal-Gomory cuts from the initial constraints,

and, on the other hand, to further improve the separation

procedure for the exponentially-sized families of constraints.

Finally, recall that many different objective functions may

be considered, depending on the network operator’s choice.

Besides O1, O2, O3, the following objective functions may

be of interest:
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O4: minimize the sum of the total length of paths (taking the

edge weights le into account),

O5: minimize the maximum load over all edges (where the

load of an edge e is expressed by the number se of slots

allocated on edge e),

O6: minimize the total cost of the solution (where the cost is

expressed as the product of the length le and the load se
of an edge e, summed up over all edges e).

Hereby, the optimal solutions w.r.t. different objective func-

tions may significantly differ such that an optimal solution for

one objective may provide rather bad values according to other

optimality criteria. For instance, the three optimal solutions

presented in Example 2.1 (M1 for O1, M2 for O2, M3 for

O3 which is also optimal for O5 minimizing the maximum

edge load of 3) differ from each other and from the optimal

solution for O4 and O6 presented in M4 (with minimum total

length 13 of paths and minimum total cost 22).

M4 =





























1 2 3 4 5 6 7 8 9 10
ab 1 1 2
af

bc 1 1 3 3 2 4
cd 2 4
cf 3 3
de 5 5 5 4
df

ef 5 5 5





























We notice that the objective functions

• O1, O2, O4 for the routing may lead to solutions where

some edges are highly loaded (with 6 slots in M1, M2

and M4 where 3 slots suffice as in M3) which also forces

a large used spectrum width (6 slots in M1, M2 and M4

where 4 slots suffice as in M3),

• O3 and O5 for the spectrum assignment may lead to

routings along longer paths (total length of 17 in M3

where 13 suffice as in M4) which may also increase the

total cost of the solution (29 for M3 where 22 suffice as

in M4).

Hence, it is also in order to develop strategies to cope

simultaneously with different quality measures of solutions.
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