


Abstract—Many industrial machine vision problems,
particularly real-time control of manufacturing processes such
as laser cladding, require robust and fast image processing.
The inherent disturbances in images acquired during these
processes makes classical segmentation algorithms uncertain.
Among many convolutional neural networks introduced
recently to solve such difficult problems, U-Net balances
simplicity with segmentation accuracy. However, it is too
computationally intensive for usage in many real-time
processing pipelines.

In this work we present a method of identifying the most
informative levels of detail in the U-Net. By only processing the
image at the selected levels, we reduce the total computation
time by 80%, while still preserving adequate quality of
segmentation.

I. INTRODUCTION

EGMENTATION of complex, noisy images is a core

problem in many industrial applications of machine vi-

sion, especially in monitoring and control of laser additive

manufacturing processes, such as laser cladding [1]. Where

classical image processing algorithms cannot provide neces-

sary robustness (against, for example, plasma emissions or

powder scattering), machine-learning-based solutions are

applied – recently, convolutional neural networks in particu-

lar. However, they are notoriously computationally heavy.

For off-line applications this issue can be trivially solved

with using more compute power, but in some on-line, real-

time applications it is a critical problem. If the process state

changes rapidly, any delay in its measurement degrades per-

formance of the control algorithm.

S

U-Net is a well-known and proven convolutional neural

network architecture for image segmentation [2]. Its distin-

guishing property is a highly modular, symmetric, dual-path

structure. In the “down” path, which comprises blocks of

max-pooling and convolution layers, features are being ex-

tracted from progressively smaller inputs. Those blocks can

This work was supported from the statutory research of Mechanical

Faculty of WUST. The source material (images from laser cladding process)

for the dataset preparation was supplied by National Centre for Research

and Development - Project AMpHOra - Additive Manufacturing Processes

and Hybrid Operations Research for Innovative Aircraft Technology

Development – INNOLOT/I/6/NCBR/2013.

be thought of as observing the input at progressively smaller

scales. As a result, they produce feature maps with gradually

more contextual information, but less spatial resolution. On

the other hand, the “up” path integrates the high-context but

low-resolution feature maps with intermediate levels of low-

context but high-resolution information. This allows produc-

ing highly detailed segmentations for objects of different

scales.

Training the U-Net on laser cladding monitoring images

is a relatively straightforward task, even with a small

amount of annotated data. The baseline configuration as de-

scribed by Ronneberger et al. [2] outputs segmentations of

satisfactory quality without the need to apply any tricks or

problem-specific tuning. However, the time of a single im-

age inference, on our in-house hardware, is approximately

250ms. This is unacceptable for any on-line processing pur-

pose – especially for real-time control.

The simplest yet very effective way to decrease process-

ing time is to reduce the size of the input images. This might

have an additional benefit of reducing the cost of data acqui-

sition, or allowing higher processing frame rates. A more

advanced method would be to downsample the images in the

“down” path earlier, skipping some detail scales during in-

ference if the information they contain does not significantly

contribute to the overall segmentation quality. However, it is

difficult to determine a priori, at which scale should the in-

put be observed and at which intermediate scales should it

be processed. Intuitively, this depends on the specific char-

acteristics of a particular problem. Detecting large objects

might require more context – hence, deeper “down” path –

than small ones. On the other hand, segmenting objects with

fuzzy boundaries might not benefit from very high-resolu-

tion features as much as when objects have very clear and

detailed edges.

In this study, we present a method of determining which

blocks in a U-Net are really important for correctly segment-

ing the objects, and which can be removed or skipped to

save computation time without significant degradation of

prediction quality. Our contribution is primarily a way of

optimizing a neural network architecture. However, identi-

fying the levels of detail at which the objects vary can also

Improving Real-Time Performance of U-Nets
for Machine Vision in Laser Process Control

Przemysław Dolata
Wrocław University of Science and Technology, ul.

Wyb. Wyspianskiego 27,

50-370 Wrocław, Poland

Email: przemyslaw.dolata@pwr.edu.pl

Jacek Reiner
Wrocław University of Science and Technology

ul. Wyb. Wyspiańskiego 27,

50-370 Wrocław, Poland

Email: jacek.reiner@pwr.edu.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 29–33

DOI: 10.15439/2019F190

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 29

be seen as an important insight, helpful in better understand-

ing of the problem.

II. RELATED WORKS

The original U-Net [2] builds on the concepts of Fully

Convolutional Networks [3]. While the FCN allowed using

only some of the earlier layers to improve the fidelity of seg-

mentation, U-Net's core concept is to merge even the most

early blocks to capture high-resolution features. Further de-

velopment on these ideas included Pyramid Scene Parsing

[4] – where the input is sequentially pooled into separately

processed streams and then upsampled and merged together

before final prediction – and Feature Pyramid Networks [5],

similar to U-Nets except that at every scale a complete seg-

mentation is produced.

Optimization of neural network architectures was always

of great interest. Early attempts such as Optimal Brain Sur-

geon [6] were primarily focused on improving the general-

ization capability of the learner. In more recent days, most

architecture optimization work is focused on improving in-

ference performance or energy efficiency [7], but there are

also attempts to use these techniques to help extract classifi-

cation rules [8]. The two major directions in network struc-

ture optimization are: architecture search and network prun-

ing. The objective of architecture search is to find the opti-

mal network structure during training, often using genetic

algorithms or growing/pruning strategies [9, 10]. Network

pruning focuses on removal of inactive or inefficient units

from an already trained network in order to preserve its pre-

dictive power but reduce inference time [11].

There is not much research examining the influence of

particular levels of detail on the object segmentation or de-

tection quality. Chevalier et al. [12] studied the influence of

input image resolution on classification performance, how-

ever they did not investigate the influence of deeper, highly

downsampled layers. In this work, we propose a method of

optimizing not only the size of the network input, but also

its intermediate levels of detail as well.

III. EXPERIMENT SETUP

A. Scale-specialized blocks

U-Net consists of distinct “blocks”, comprising two 3x3

convolutional layers of various kernel depths, each followed

by ReLU nonlinearity. From here onwards we will refer to

them as simply blocks. Blocks are usually separated by max-

pooling (in the “down” path) or upsampling and merge lay-

ers (in the “up” path). Thus, different blocks learn to extract

features on different levels of detail.

Intuitively, depending on the characteristics of the prob-

lem, some of those blocks might be less useful for segmen-

tation. This would mean that features of the data at these

levels of detail are not important for a proper recognition.

Blocks detecting those features would therefore waste com-

pute power and memory. However, the problem of identify-

ing them is not trivial.

Naively, one could envision training and comparison of

multiple networks with different selection of blocks (e.g.

one with 3 blocks and downsampling by a factor of 2, or 2

blocks and downsampling by 4). Such a brute-force ap-

Fig 1. Drop-path regularization algorithm adapted to the general U-Net. In this example, “down” block 1 detects features from data downsampled to

some specific resolution (scale level), and the corresponding “up” block integrates context extracted the corresponding level. Level 2 is shown in a dis-

abled state – the “down” block only downsamples the data, while the “up” block only upsamples and merges it, both without any other processing.

30 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

proach might be infeasible, especially if the dataset is large

and the network to be optimized is very deep. Ideally, a sin-

gle network would be designed and trained in such a way

that individual blocks could be freely removed from it with-

out causing a structural failure, but instead only degrading

performance – in the case the block was actually useful for

prediction. Identifying the useless blocks would then pro-

ceed in a manner resembling a structural kind of ablation

study.

B. Drop-path regularization

Larsson et al. [13] presented a regularization algorithm,

drop-path, that allowed them to train a very deep, multi-path

network so that it behaves like an ensemble of networks.

The core idea of drop-path is that if, during every training it-

eration, a random subset of individual paths in the network

is disabled, the rest of the net will be forced to learn to still

produce a correct answer. This allows the network to learn

robustness against random removal of some sub-paths. Ef-

fectively, even though the network trains as a whole, every

sub-path tries to become a fully capable standalone predictor

itself. Larsson et al. report that they were able to extract

even a single path of their FractalNet and it still worked al-

most as good as the whole.

We adapt the drop-path concept to U-Nets in order to al-

low them to learn robustness against removal of particular

levels of detail. In a U-Net, the information from a particular

scale is utilized twice during a single pass: once in the

“down” path, where the features are extracted, and once

again in the “up” path where the features are used to im-

prove prediction resolution. Therefore, in our version of

drop-path, whenever we randomly disable a “path”, we actu-

ally disable both blocks processing data on a particular

scale. Overview of the algorithm is shown in Fig. 1.

To allow uninterrupted flow of the data through the dis-

abled blocks, we replace each disabled “down” block with a

simple bilinear downsampling layer, and the corresponding

“up” block with a similar upsampling layer. We expect the

network to learn to segment the images in the absence of in-

formation from particular scales, thus allowing evaluation of

their influence on segmentation performance by means of a

structural ablation test.

C. Simplified U-Net

As the original architecture, U-Net does not naturally ac-

commodate images of every size, requiring cropping and

matching between “down” and “up” blocks, depending on

the input size. However, as a meta-architecture it is very

scalable – one can easily add or remove deeper blocks at dif-

ferent scales in order to capture more or less context in the

data. We introduce several changes to the U-Net architecture

to simplify it and make it more suitable for the drop-path

regularization algorithm.

We add zero padding (1px wide border) to every convolu-

tional layer, making each block preserve its input size. This

eliminates the need for complex cropping and matching of

data tensors throughout the “up” path.

We set every convolution in every block to produce the

exact same number of channels (64), making every layer

have exactly the same number of parameters. This is crucial

in implementing drop-path: if different blocks produced out-

puts of different depths (as in the original U-Net), skipping a

connection would necessitate a non-trivial mapping between

the tensors.

Additionally, we introduce BatchNorm [14] after every

convolution layer in order to stabilize the gradients. This is

particularly important in the “up” path where data from two

separate sources is combined.

Finally, following the practice of FPN, we change the

type of connections between the “up” and “down” paths

from concatenation (as originally in U-Net) to addition. This

forms a residual connection between the paths, similar as de-

scribed in [15]. This is not a critical change, but it reduces

the number of parameters in the “up” convolutions by a fac-

tor of two, additionally speeding up the computation.

D. Evaluation by ablation

We expect such a U-Net, trained using drop-path regular-

ization, to behave like an ensemble of smaller networks,

each processing data at a particular level of detail. This en-

semble should be robust against removal of one member – at

most, this should cause the overall performance to degrade,

if that member (scale path) strongly contributes to the en-

semble's response. Therefore, we can measure the influence

of a particular scale level by a structural ablation study. To

test how important a particular level of detail is, we disable

its corresponding block and evaluate the network on a vali-

dation set, measuring the change in segmentation perfor-

mance. Additionally, we measure the average inference time

to estimate the influence of disabling a block on wall-clock

performance of the network.

In the experiment to follow, we use this evaluation strat-

egy to reason about the data – and thus the problem at hand

– in two ways.

Fig 2. Example data and segmentations. Top row, left to right: source

image, ground truth (“ignore” label in white); bottom row: segmenta-

tions – left: reduced model (see results, section B), right: full model.

PRZEMYSŁAW DOLATA, JACEK REINER: IMPROVING REAL-TIME PERFORMANCE OF U-NETS FOR MACHINE VISION 31

By progressively disabling all blocks starting from the

most high-resolution one, we attempt to identify the mini-

mum scale level at which the network can observe the input

images while still reliably segmenting the objects. The goal

of this experiment is similar to Chevalier et al., except we

consider segmentation instead of classification.

By disabling subsequent blocks, starting from some given

one, in different combinations, we attempt to find which of

the intermediate levels of detail that extract contextual infor-

mation are actually useful for a correct segmentation. This

may provide an insight about how much context and on

which level is really necessary, and which levels could be

skipped to conserve compute time.

It is important to notice that the initial block of U-Net (on

full scale) cannot be disabled – all subsequent layers require

the input to be of a certain channel depth, and this first block

transforms the original channel to a feature map of a com-

mon depth. This means that the initial convolutions will still

be performed on the input of original resolution, constituting

an approximately constant part of the computation time that

cannot be trivially reduced.

IV. RESULTS

A. Reference network

We conduct the experiments on an in-house dataset of im-

ages acquired by coaxial on-line monitoring of a laser

cladding process. Images obtained during this process are

inherently noisy and blurry due to plasma emissions and

powder scattering. However, they carry important informa-

tion about process status, encoded in the shape of the pool of

metal molten by the laser beam. The dataset consists of 250

grayscale images 600x600 pixels, manually annotated in 4

classes: background, two object classes of different shape

characteristics (“edge” and “pool”) and an ignore label. Data

was split in training and validation sets (150 and 100 im-

ages, respectively). Example data and segmentations shown

in Fig. 2.

The reference network consists of 5 levels of feature ex-

traction blocks, at following scale levels: 600px, 300px,

150px, 75px, 25px and 5px. Each block comprises two 3x3

convolutional layers with 64 kernels, each followed by a

BatchNorm layer and a ReLU nonlinearity. The network

was trained using the Adamax [16] optimizer under the

cross-entropy loss function. The complete training parame-

ters are given in Table I.

Due to a small number of data samples and the need to

train from scratch, heavy data augmentation routine was

used in the form of elastic deformations [17] and horizontal

and vertical flips. All augmentations were performed on-line

in a random manner, directly before feeding data into the

network. For testing, the intersection-over-union (IoU) met-

ric was used. Results are given separately for either object

class, due to different characteristics of their shapes.

Experiments were conducted in the PyTorch framework

[18] using a single Nvidia RTX 2080 Ti GPU for training

and an Nvidia TITAN Z for performance testing.

The reference network trained in approximately 11 hours

achieving an IoU metric of 0.654 for the “edge” class and

0.809 for “pool” class. The average inference time (with

gradient computation disabled) was 154.5ms, which is al-

ready approximately 38% faster than the original U-Net.

Fig 3. Results of the input size study. Segmentation performance (IoU

for both classes, red and green plots) on the left axis, inference time

(blue plot) on the right axis.

Fig 4. Results of the context levels study.

Annotations the same as in Fig. 4.

TABLE I.
LEARNING HYPERPARAMETERS

Parameter Value

Learning rate schedule constant 0.01

Adamax momenta 0.99, 0.999

Weight decay 0.0001

Batch size 64

Total iterations 750 000

Drop-path probability 0.25

32 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

B. Input size study

Results of the progressive structural ablation study show

relatively small degradation of segmentation quality when

disabling the early, high-resolution blocks. As illustrated in

Fig. 3, removing only the first block cuts the inference time

in half, down to 77.2ms while only reducing the IoU score

by 0.02. Performance improvements continue to be signifi-

cant up until the scale levels of 150-75px, saturating at ap-

proximately 50ms (80% reduction with respect to the origi-

nal U-Net). After that point, any potential speed-up is

smaller than the cost of repeatedly downsampling the data to

the desired resolution, while segmentation accuracy falls

rapidly.

Fig. 2 visually compares segmentations produced by a

full model (bottom right) and a model reduced by disabling

scale levels 300 px and 150 px (bottom left).

C. Context levels study

By disabling blocks at lower scale levels, we can deter-

mine the influence of particular context sizes. In this exam-

ple we disable the first 2 levels (300px and 150px scales),

fix the 75px scale as enabled and proceed to disable the re-

maining scale blocks (25px and 5px) in different combina-

tions. We observe that in our case, disabling any level of

context beyond the initial scale of 75px causes a rapid dete-

rioration of segmentation quality, while providing zero prac-

tical improvement in inference time. Notice in Fig. 4 how

disabling scale level 25px has a much more significant ef-

fect on the “edge” class (green) than on “pool” (red). Those

most contextual blocks operate at very high relative scales

(downsampling by the factors of 3 and 5, respectively) – we

surmise that due to this, they learn very independent features

that are critical to correct segmentation.

V. CONCLUSION

In this work we presented a simplified and parameterized

version of U-Net and adapted the drop-path algorithm to

help the network learn as an ensemble of blocks specialized

to detect features at specific levels of detail. This allowed us

to analyze the importance of individual blocks on the collec-

tive network using a structural ablation study. That in turn

let us identify blocks that did not contribute significantly to

the segmentation, enabling us to make an informed decision

to remove them in order to save compute time.

We argue that if the block was deemed unimportant, this

might mean that at this particular scale there are no valuable

features to be extracted – the data itself contains little valu-

able information. Therefore, processing inputs at this size is

not worth the compute time. Aside from being a useful find-

ing for optimizing a solution, this might also be a valuable

insight into the nature of the problem itself.

ACKNOWLEDGMENT

We wish to thank Mariusz Mrzygłód for valuable com-

ments and discussions.

REFERENCES

[1] W. Rafajłowicz, P. Jurewicz, J. Reiner, and E. Rafajłowicz, “Iterative

Learning of Optimal Control for Nonlinear Processes With

Applications to Laser Additive Manufacturing,” IEEE Transactions

on Control Systems Technology, pp. 1–8, 2018.

https://doi.org/10.1109/TCST.2018.2865444

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional

Networks for Biomedical Image Segmentation,” in Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015,

2015, pp. 234–241. http://dx.doi.org/10.1007/978-3-319-24574-4_28

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

https://doi.org/10.1109/TPAMI.2016.2572683

[4] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing

Network,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 6230–6239.

[5] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature Pyramid Networks for Object Detection,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 936–944. https://doi.org/10.1109/CVPR.2017.106

[6] B. Hassibi and D. G. Stork, “Second order derivatives for network

pruning: Optimal brain surgeon,” in Advances in neural information

processing systems, 1993, pp. 164–171.

[7] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing

Deep Neural Networks with Pruning, Trained Quantization and

Huffman Coding,” presented at the International Conference on

Learning Representations (ICLR 2016), 20176

[8] H. Lu, R. Setiono, and Huan Liu, “Effective data mining using neural

networks,” IEEE Transactions on Knowledge and Data Engineering,

vol. 8, no. 6, pp. 957–961, 1996. https://doi.org/10.1109/69.553163

[9] C. Liu et al., “Progressive Neural Architecture Search,”

arXiv:1712.00559 [cs, stat], Dec. 2017. [preprint]

[10] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural Architecture

Optimization,” in Advances in Neural Information Processing

Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp.

7816–7827.

[11] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning

Convolutional Neural Networks for Resource Efficient Inference,”

presented at the International Conference on Learning

Representations (ICLR 2017), 2017.

[12] M. Chevalier, N. Thome, M. Cord, J. Fournier, G. Henaff, and E.

Dusch, “Low resolution convolutional neural network for automatic

target recognition,” in 7th International Symposium on Optronics in

Defence and Security, Paris, France, 2016.

[13] G. Larsson, M. Maire, and G. Shakhnarovich, “FractalNet: Ultra-Deep

Neural Networks without Residuals,” arXiv:1605.07648 [cs], May

2016. [preprint]

[14] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift,” in

International Conference on Machine Learning, 2015, pp. 448–456.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016, pp. 770–778.

https://doi.org/10.1109/CVPR.2016.90

[16] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic

Optimization,” in 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[17] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for

convolutional neural networks applied to visual document analysis,”

in Seventh International Conference on Document Analysis and

Recognition, 2003. Proceedings., 2003, pp. 958–963.

[18] A. Paszke et al., “Automatic differentiation in PyTorch,” in NIPS-W,

2017.

PRZEMYSŁAW DOLATA, JACEK REINER: IMPROVING REAL-TIME PERFORMANCE OF U-NETS FOR MACHINE VISION 33

