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Abstract—Many  industrial  machine  vision  problems,
particularly real-time control of manufacturing processes such
as  laser  cladding,  require  robust  and fast  image  processing.
The  inherent  disturbances  in  images  acquired  during  these
processes  makes  classical  segmentation algorithms uncertain.
Among  many  convolutional  neural  networks  introduced
recently  to  solve  such  difficult  problems,  U-Net balances
simplicity  with  segmentation  accuracy.  However,  it  is  too
computationally  intensive  for  usage  in  many  real-time
processing pipelines.

In this work we present a method of  identifying the most
informative levels of detail in the U-Net. By only processing the
image at the selected levels,  we reduce the total computation
time  by  80%,  while  still  preserving  adequate  quality  of
segmentation.

I. INTRODUCTION

EGMENTATION of complex,  noisy images is a core

problem in many industrial applications of machine vi-

sion, especially in monitoring and control of laser additive

manufacturing processes, such as laser cladding [1]. Where

classical image processing algorithms cannot provide neces-

sary robustness (against, for example, plasma emissions or

powder  scattering),  machine-learning-based  solutions  are

applied – recently, convolutional neural networks in particu-

lar.  However,  they are notoriously computationally heavy.

For  off-line  applications  this  issue  can  be  trivially  solved

with using more compute power, but in some on-line, real-

time applications it is a critical problem. If the process state

changes rapidly, any delay in its measurement degrades per-

formance of the control algorithm.

S

U-Net is a well-known and proven convolutional neural

network architecture for image segmentation [2]. Its distin-

guishing property is a highly modular, symmetric, dual-path

structure.  In  the “down” path,  which  comprises  blocks of

max-pooling and convolution layers, features are being ex-

tracted from progressively smaller inputs. Those blocks can
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be thought of as observing the input at progressively smaller

scales. As a result, they produce feature maps with gradually

more contextual information, but less spatial resolution. On

the other hand, the “up” path integrates the high-context but

low-resolution feature maps with intermediate levels of low-

context but high-resolution information. This allows produc-

ing  highly  detailed  segmentations  for  objects  of  different

scales.

Training the U-Net on laser cladding monitoring images

is  a  relatively  straightforward  task,  even  with  a  small

amount of annotated data. The baseline configuration as de-

scribed by Ronneberger  et al. [2] outputs segmentations of

satisfactory quality without the need to apply any tricks or

problem-specific tuning. However, the time of a single im-

age inference, on our in-house hardware,  is approximately

250ms. This is unacceptable for any on-line processing pur-

pose – especially for real-time control.

The simplest yet very effective way to decrease process-

ing time is to reduce the size of the input images. This might

have an additional benefit of reducing the cost of data acqui-

sition,  or  allowing higher processing  frame rates.  A more

advanced method would be to downsample the images in the

“down” path earlier, skipping some detail scales during in-

ference if the information they contain does not significantly

contribute to the overall segmentation quality. However, it is

difficult to determine a priori, at which scale should the in-

put be observed and at which intermediate scales should it

be processed. Intuitively, this depends on the specific char-

acteristics of  a particular  problem. Detecting large objects

might require more context – hence, deeper “down” path –

than small ones. On the other hand, segmenting objects with

fuzzy boundaries might not benefit from very high-resolu-

tion features as much as when objects have very clear and

detailed edges.

In this study, we present a method of determining which

blocks in a U-Net are really important for correctly segment-

ing the objects,  and which can be removed or  skipped to

save  computation  time  without  significant  degradation  of

prediction  quality.  Our  contribution  is primarily  a way of

optimizing a neural network architecture.  However, identi-

fying the levels of detail at which the objects vary can also
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be seen as an important insight, helpful in better understand-

ing of the problem.

II. RELATED WORKS

The original  U-Net [2]  builds  on the concepts  of  Fully

Convolutional Networks [3]. While the FCN allowed using

only some of the earlier layers to improve the fidelity of seg-

mentation, U-Net's core concept is to merge even the most

early blocks to capture high-resolution features. Further de-

velopment on these ideas included Pyramid Scene Parsing

[4] – where the input is sequentially pooled into separately

processed streams and then upsampled and merged together

before final prediction – and Feature Pyramid Networks [5],

similar to U-Nets except that at every scale a complete seg-

mentation is produced.

Optimization of neural network architectures was always

of great interest. Early attempts such as Optimal Brain Sur-

geon [6] were primarily focused on improving the general-

ization capability of the learner. In more recent days, most

architecture optimization work is focused on improving in-

ference performance or energy efficiency [7], but there are

also attempts to use these techniques to help extract classifi-

cation rules [8]. The two major directions in network struc-

ture optimization are: architecture search and network prun-

ing. The objective of architecture search is to find the opti-

mal network  structure during training,  often using genetic

algorithms or  growing/pruning  strategies  [9,  10].  Network

pruning focuses on removal of inactive or inefficient units

from an already trained network in order to preserve its pre-

dictive power but reduce inference time [11].

There  is  not  much research  examining  the influence  of

particular levels of detail on the object segmentation or de-

tection quality. Chevalier et al. [12] studied the influence of

input image resolution on classification performance, how-

ever they did not investigate the influence of deeper, highly

downsampled layers. In this work, we propose a method of

optimizing not only the size of the network input, but also

its intermediate levels of detail as well.

III. EXPERIMENT SETUP

A. Scale-specialized blocks

U-Net consists of distinct “blocks”, comprising two 3x3

convolutional layers of various kernel depths, each followed

by ReLU nonlinearity. From here onwards we will refer to

them as simply blocks. Blocks are usually separated by max-

pooling (in the “down” path) or upsampling and merge lay-

ers (in the “up” path). Thus, different blocks learn to extract

features on different levels of detail.

Intuitively, depending on the characteristics of the prob-

lem, some of those blocks might be less useful for segmen-

tation.  This would mean that  features  of the data at  these

levels of detail are not important for a proper recognition.

Blocks detecting those features would therefore waste com-

pute power and memory. However, the problem of identify-

ing them is not trivial.

Naively,  one could envision training and comparison of

multiple  networks  with  different  selection  of  blocks  (e.g.

one with 3 blocks and downsampling by a factor of 2, or 2

blocks  and  downsampling  by  4).  Such  a  brute-force  ap-

Fig 1. Drop-path regularization algorithm adapted to the general U-Net. In this example, “down” block 1 detects features from data downsampled to

some specific resolution (scale level), and the corresponding “up” block integrates context extracted the corresponding level. Level 2 is shown in a dis-

abled state – the “down” block only downsamples the data, while the “up” block only upsamples and merges it, both without any other processing.
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proach might be infeasible, especially if the dataset is large

and the network to be optimized is very deep. Ideally, a sin-

gle network would be designed and trained in such a way

that individual blocks could be freely removed from it with-

out causing a structural failure, but instead only degrading

performance – in the case the block was actually useful for

prediction.  Identifying  the useless blocks would then pro-

ceed in a manner  resembling a structural  kind of  ablation

study.

B. Drop-path regularization

Larsson  et al. [13]  presented a regularization algorithm,

drop-path, that allowed them to train a very deep, multi-path

network  so that  it  behaves  like an  ensemble  of  networks.

The core idea of drop-path is that if, during every training it-

eration, a random subset of individual paths in the network

is disabled, the rest of the net will be forced to learn to still

produce a correct answer. This allows the network to learn

robustness against random removal of some sub-paths. Ef-

fectively, even though the network trains as a whole, every

sub-path tries to become a fully capable standalone predictor

itself.  Larsson  et  al. report  that  they  were  able to  extract

even a single path of their FractalNet and it still worked al-

most as good as the whole.

We adapt the drop-path concept to U-Nets in order to al-

low them to learn robustness against removal of particular

levels of detail. In a U-Net, the information from a particular

scale  is  utilized  twice  during  a  single  pass:  once  in  the

“down”  path,  where  the  features  are  extracted,  and  once

again in the “up” path where the features  are used to im-

prove  prediction  resolution.  Therefore,  in  our  version  of

drop-path, whenever we randomly disable a “path”, we actu-

ally  disable  both  blocks  processing  data  on  a  particular

scale. Overview of the algorithm is shown in Fig. 1.

To allow uninterrupted flow of the data through the dis-

abled blocks, we replace each disabled “down” block with a

simple bilinear downsampling layer, and the corresponding

“up” block with a similar upsampling layer. We expect the

network to learn to segment the images in the absence of in-

formation from particular scales, thus allowing evaluation of

their influence on segmentation performance by means of a

structural ablation test.

C. Simplified U-Net

As the original architecture, U-Net does not naturally ac-

commodate  images  of  every  size,  requiring  cropping  and

matching between “down” and “up” blocks,  depending on

the input  size.  However,  as  a  meta-architecture  it  is  very

scalable – one can easily add or remove deeper blocks at dif-

ferent scales in order to capture more or less context in the

data. We introduce several changes to the U-Net architecture

to simplify it and make it more suitable for  the drop-path

regularization algorithm.

We add zero padding (1px wide border) to every convolu-

tional layer, making each block preserve its input size. This

eliminates the need for complex cropping and matching of

data tensors throughout the “up” path.

We set every convolution in every block to produce the

exact  same number  of  channels  (64),  making  every  layer

have exactly the same number of parameters. This is crucial

in implementing drop-path: if different blocks produced out-

puts of different depths (as in the original U-Net), skipping a

connection would necessitate a non-trivial mapping between

the tensors.

Additionally,  we introduce  BatchNorm [14]  after  every

convolution layer in order to stabilize the gradients. This is

particularly important in the “up” path where data from two

separate sources is combined.

Finally,  following  the  practice  of  FPN,  we  change  the

type  of  connections  between  the  “up”  and  “down”  paths

from concatenation (as originally in U-Net) to addition. This

forms a residual connection between the paths, similar as de-

scribed in [15]. This is not a critical change, but it reduces

the number of parameters in the “up” convolutions by a fac-

tor of two, additionally speeding up the computation.

D. Evaluation by ablation

We expect such a U-Net, trained using drop-path regular-

ization,  to  behave  like  an  ensemble  of  smaller  networks,

each processing data at a particular level of detail. This en-

semble should be robust against removal of one member – at

most, this should cause the overall performance to degrade,

if that member (scale path) strongly contributes to the en-

semble's response. Therefore, we can measure the influence

of a particular scale level by a structural ablation study. To

test how important a particular level of detail is, we disable

its corresponding block and evaluate the network on a vali-

dation  set,  measuring  the  change  in  segmentation  perfor-

mance. Additionally, we measure the average inference time

to estimate the influence of disabling a block on wall-clock

performance of the network.

In the experiment to follow, we use this evaluation strat-

egy to reason about the data – and thus the problem at hand

– in two ways.

Fig 2. Example data and segmentations. Top row, left to right: source

image, ground truth (“ignore” label in white); bottom row: segmenta-

tions – left: reduced model (see results, section B), right: full model.
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By progressively  disabling  all  blocks  starting  from  the

most high-resolution one, we attempt to identify the mini-

mum scale level at which the network can observe the input

images while still reliably segmenting the objects. The goal

of this experiment is similar to Chevalier  et al., except we

consider segmentation instead of classification.

By disabling subsequent blocks, starting from some given

one, in different combinations, we attempt to find which of

the intermediate levels of detail that extract contextual infor-

mation are actually useful for a correct segmentation. This

may  provide  an  insight  about  how  much  context  and  on

which level is really necessary, and which levels could be

skipped to conserve compute time.

It is important to notice that the initial block of U-Net (on

full scale) cannot be disabled – all subsequent layers require

the input to be of a certain channel depth, and this first block

transforms the original channel to a feature map of a com-

mon depth. This means that the initial convolutions will still

be performed on the input of original resolution, constituting

an approximately constant part of the computation time that

cannot be trivially reduced.

IV. RESULTS

A. Reference network

We conduct the experiments on an in-house dataset of im-

ages  acquired  by  coaxial  on-line  monitoring  of  a  laser

cladding  process.  Images obtained  during this process  are

inherently  noisy  and  blurry  due  to  plasma  emissions  and

powder scattering. However, they carry important informa-

tion about process status, encoded in the shape of the pool of

metal molten by the laser beam. The dataset consists of 250

grayscale images 600x600 pixels, manually annotated in 4

classes:  background,  two object  classes  of  different  shape

characteristics (“edge” and “pool”) and an ignore label. Data

was split in training and validation sets (150 and 100 im-

ages, respectively). Example data and segmentations shown

in Fig. 2.

The reference network consists of 5 levels of feature ex-

traction  blocks,  at  following  scale  levels:  600px,  300px,

150px, 75px, 25px and 5px. Each block comprises two 3x3

convolutional  layers  with  64  kernels,  each  followed  by  a

BatchNorm  layer  and  a  ReLU  nonlinearity.  The  network

was  trained  using  the  Adamax  [16]  optimizer  under  the

cross-entropy loss function. The complete training parame-

ters are given in Table I.

Due to a small number of data samples and the need to

train  from  scratch,  heavy  data  augmentation  routine  was

used in the form of elastic deformations [17] and horizontal

and vertical flips. All augmentations were performed on-line

in a random manner,  directly  before feeding data into the

network. For testing, the intersection-over-union (IoU) met-

ric was used. Results are given separately for either object

class, due to different characteristics of their shapes.

Experiments were conducted in the PyTorch framework

[18] using a single Nvidia RTX 2080 Ti GPU for training

and an Nvidia TITAN Z for performance testing.

The reference network trained in approximately 11 hours

achieving an IoU metric of 0.654 for the “edge” class and

0.809  for  “pool”  class.  The  average  inference  time  (with

gradient  computation disabled)  was 154.5ms,  which is al-

ready approximately 38% faster than the original U-Net.

Fig 3. Results of the input size study. Segmentation performance (IoU

for both classes, red and green plots) on the left axis, inference time

(blue plot) on the right axis.

Fig 4. Results of the context levels study.

Annotations the same as in Fig. 4.

TABLE I.
LEARNING HYPERPARAMETERS

Parameter Value

Learning rate schedule constant 0.01

Adamax momenta 0.99, 0.999

Weight decay 0.0001

Batch size 64

Total iterations 750 000

Drop-path probability 0.25
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B. Input size study

Results of the progressive structural ablation study show

relatively small  degradation  of  segmentation  quality  when

disabling the early, high-resolution blocks. As illustrated in

Fig. 3, removing only the first block cuts the inference time

in half, down to 77.2ms while only reducing the IoU score

by 0.02. Performance improvements continue to be signifi-

cant up until the scale levels of 150-75px, saturating at ap-

proximately 50ms (80% reduction with respect to the origi-

nal  U-Net).  After  that  point,  any  potential  speed-up  is

smaller than the cost of repeatedly downsampling the data to

the  desired  resolution,  while  segmentation  accuracy  falls

rapidly.

Fig.  2  visually  compares  segmentations  produced  by  a

full model (bottom right) and a model reduced by disabling

scale levels 300 px and 150 px (bottom left).

C. Context levels study

By disabling blocks at lower scale levels, we can deter-

mine the influence of particular context sizes. In this exam-

ple we disable the first 2 levels (300px and 150px scales),

fix the 75px scale as enabled and proceed to disable the re-

maining scale blocks (25px and 5px) in different combina-

tions.  We observe that  in our case,  disabling any level of

context beyond the initial scale of 75px causes a rapid dete-

rioration of segmentation quality, while providing zero prac-

tical improvement in inference time. Notice in Fig. 4 how

disabling scale level 25px has a much more significant ef-

fect on the “edge” class (green) than on “pool” (red). Those

most contextual blocks operate at very high relative scales

(downsampling by the factors of 3 and 5, respectively) – we

surmise that due to this, they learn very independent features

that are critical to correct segmentation.

V. CONCLUSION

In this work we presented a simplified and parameterized

version  of  U-Net  and  adapted  the  drop-path  algorithm to

help the network learn as an ensemble of blocks specialized

to detect features at specific levels of detail. This allowed us

to analyze the importance of individual blocks on the collec-

tive network using a structural ablation study. That in turn

let us identify blocks that did not contribute significantly to

the segmentation, enabling us to make an informed decision

to remove them in order to save compute time.

We argue that if the block was deemed unimportant, this

might mean that at this particular scale there are no valuable

features to be extracted – the data itself contains little valu-

able information. Therefore, processing inputs at this size is

not worth the compute time. Aside from being a useful find-

ing for optimizing a solution, this might also be a valuable

insight into the nature of the problem itself.

ACKNOWLEDGMENT

We wish to thank Mariusz Mrzygłód for valuable com-

ments and discussions.

REFERENCES

[1] W. Rafajłowicz, P. Jurewicz, J. Reiner, and E. Rafajłowicz, “Iterative

Learning  of  Optimal  Control  for  Nonlinear  Processes  With

Applications to  Laser Additive Manufacturing,”  IEEE Transactions

on  Control  Systems  Technology,  pp.  1–8,  2018.

https://doi.org/10.1109/TCST.2018.2865444

[2] O.  Ronneberger,  P.  Fischer,  and  T.  Brox,  “U-Net:  Convolutional

Networks  for  Biomedical  Image  Segmentation,”  in  Medical  Image

Computing  and  Computer-Assisted  Intervention –  MICCAI  2015,

2015, pp. 234–241. http://dx.doi.org/10.1007/978-3-319-24574-4_28

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in  2015 IEEE Conference on Computer

Vision  and  Pattern  Recognition  (CVPR),  2015,  pp.  3431–3440.

https://doi.org/10.1109/TPAMI.2016.2572683

[4] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing

Network,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 6230–6239. 

[5] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature  Pyramid  Networks  for  Object  Detection,”  in  2017  IEEE

Conference  on  Computer  Vision  and  Pattern  Recognition  (CVPR),

2017, pp. 936–944. https://doi.org/10.1109/CVPR.2017.106

[6] B. Hassibi  and D. G. Stork, “Second order derivatives for network

pruning: Optimal brain surgeon,” in Advances in neural information

processing systems, 1993, pp. 164–171. 

[7] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing

Deep  Neural  Networks  with  Pruning,  Trained  Quantization  and

Huffman  Coding,”  presented  at  the  International  Conference  on

Learning Representations (ICLR 2016), 20176 

[8] H. Lu, R. Setiono, and Huan Liu, “Effective data mining using neural

networks,” IEEE Transactions on Knowledge and Data Engineering,

vol. 8, no. 6, pp. 957–961, 1996.  https://doi.org/10.1109/69.553163

[9] C.  Liu  et  al.,  “Progressive  Neural  Architecture  Search,”

arXiv:1712.00559 [cs, stat], Dec. 2017. [preprint]

[10] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural Architecture

Optimization,”  in  Advances  in  Neural  Information  Processing

Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp.

7816–7827. 

[11] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning

Convolutional  Neural  Networks  for  Resource  Efficient  Inference,”

presented  at  the  International  Conference  on  Learning

Representations (ICLR 2017), 2017. 

[12] M. Chevalier,  N.  Thome,  M. Cord,  J.  Fournier,  G.  Henaff,  and  E.

Dusch, “Low resolution convolutional neural network for automatic

target recognition,” in  7th International Symposium on Optronics in

Defence and Security, Paris, France, 2016. 

[13] G. Larsson, M. Maire, and G. Shakhnarovich, “FractalNet: Ultra-Deep

Neural  Networks  without  Residuals,”  arXiv:1605.07648  [cs],  May

2016. [preprint]

[14] S.  Ioffe  and C.  Szegedy,  “Batch Normalization:  Accelerating  Deep

Network  Training  by  Reducing  Internal  Covariate  Shift,”  in

International Conference on Machine Learning, 2015, pp. 448–456.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” in  2016 IEEE Conference on Computer Vision

and  Pattern  Recognition  (CVPR),  2016,  pp.  770–778.

https://doi.org/10.1109/CVPR.2016.90

[16] D.  P.  Kingma  and  J.  Ba,  “Adam:  A  Method  for  Stochastic

Optimization,”  in  3rd  International  Conference  on  Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[17] P.  Y.  Simard,  D.  Steinkraus,  and  J.  C.  Platt,  “Best  practices  for

convolutional neural networks applied to visual document analysis,”

in  Seventh  International  Conference  on  Document  Analysis  and

Recognition, 2003. Proceedings., 2003, pp. 958–963.

[18] A. Paszke et al., “Automatic differentiation in PyTorch,” in  NIPS-W,

2017.

PRZEMYSŁAW DOLATA, JACEK REINER: IMPROVING REAL-TIME PERFORMANCE OF U-NETS FOR MACHINE VISION 33


