
The Low-Area FPGA Design for the Post-Quantum

Cryptography Proposal Round5

Michał Andrzejczak

Military University of Technology in Warsaw

ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland

Email: michal.andrzejczak@wat.edu.pl

Abstract—Post-Quantum Cryptography (PQC) is getting atten-
tion recently. The main reason of this situation is the announce-
ment by the U.S. National Institute for Standard and Technology
(NIST) about an opening of the standardization process for PQC.
Recently NIST published a list of submissions qualified to the
second round of this process. One of the selected algorithms is
Round5, offering a key encapsulation mechanism (KEM) and
public key encryption (PKE). Due to high complexity of post-
quantum cryptosystems, only a few FPGA implementations have
been reported to date. In this paper, we report results for low-
area purely-hardware implementation of Round5 targeting low-
cost FPGAs.

I. INTRODUCTION

P
OST-Quantum Cryptography (PQC) is an answer to

a threat coming from a full-scale quantum computer

able to execute Shor’s algorithm [1]. With this algorithm

executed on a quantum computer, currently used public key

schemes, such as RSA [2] and elliptic curve cryptosystems,

are no longer secure. The U.S. NIST made a step toward

mitigating the risk of quantum attacks, by announcing the PQC

standardization process [3]. In March 2019, NIST published

a list of candidates qualified to the second round of the

PQC process [4]. To date, hardware performance of Round

1 candidates was reported for only a small percentage of all

submissions.

In this paper, we present the hardware design for low-area

implementation of the PQC Round 2 candidate, called Round5.

Our design is able to provide both the Key Encapsulation

Mechanism (KEM) and Public-Key Encryption (PKE) func-

tionalities. We provide results for all parameter sets of the

ring-versions of the respective schemes. Our main goal was

to develop the first full-hardware implementation of this PQC

submission, able to operate on low-cost FPGAs.

A. Previous work

Due to complexity of designs, there are only several reports

for implementations of PQC candidates in FPGAs. From

among lattice-based candidates, Howe et al. [5] reported re-

sults for FrodoKEM. Kuo et al. [6] and Oder and Güneysu [7]

independently reported hardware results for NewHope. Afore-

mentioned papers targeted Xilinx Artix-7 FPGA.

In [8], Farahmand et al. proposed a new approach for eval-

uating PQC candidates by using software/hardware (SW/HW)

codesign. They proposed to implement only the most time-

consuming functions in the FPGA fabric, while the remaining

parts of the algorithms are implemented in software and run

on ARM. Using this SW/HW approach, they reported results

for four Round 1 NTRU-based proposals.

For other, non lattice-based candidates, Koziel et al. im-

plemented the isogeny-based SIKE [3], [9]. For multivariate

schemes, Ferozpuri and Gaj reported results for Rainbow [10],

implemented using Xilinx Virtex-7 and Kintex-7 FPGAs.

From among code-based candidates, Wang et al. reported

results for Classic McEliece (a.k.a. classical Niederreiter cryp-

tosystem with binary Goppa codes), implemented using Stratix

V FPGAs [11], [12].

B. Contribution

In this paper, we present a novel hardware design for the

ring version of the Round5 submission to the NIST PQC

standarization process. Our design is oriented to be a low-

area implementation, able to run on low-end FPGAs. The

area-performance trade-off is obtained by our customizable

architecture for polynomial multiplication.

II. ROUND5 DESCRIPTION

In the NIST PQC Round 2, there are 26 proposals, with 12

of them belonging to the family of lattice-based schemes. The

lattice-based cryptography is a promising option for secure

post-quantum KEMs and PKE schemes. It also offers addi-

tional novel functionalities, such as homomorphic encryption

[13] and identity-based encryption [14].

Round5 [15] comes from merging two other Round 1 can-

didates: Round2 [16] and HILA5 [17]. The main underlying

problem in Round5 is Generalized Learning With Rounding

(GLWR). In GLWR, the problem randomness comes from

rounding, and this feature allows avoiding the necessity of

implementing a random bit sampler with any specific distri-

bution, which is a requirement in several other proposals. The

submission package contains proposals for indistinguishable

under chosen plaintext attack (IND-CPA) KEM and indis-

tinguishable under chosen cipertext attack (IND-CCA) PKE.

Both proposed variants come from the Fujisaki-Okamoto (F-

O) transformation [18], by using the main building block of

Round5 — r5_cpa_pke, the IND-CPA PKE module. Other

required modules to perform F-O transformation are a hash

function and authenticated encryption with associated data

(AEAD). Round5 comes also in versions with error correcting

codes, but our design does not support this functionality.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 213–219

DOI: 10.15439/2019F230

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 213

The package submitted to NIST contains 21 parameters

sets, supporting three NIST security levels: 1, 3 and 5. The

parameters sets considered in this paper are presented in

Table I We provide results only for the ring version of

the schemes, without error correcting codes. The parameter

n describes the polynomial degree, p, q, and t refer to moduli

used in the design for modular reduction and rounding. All

moduli are powers of two and must satisfy the requirement

t < p < q.

TABLE I
PROPOSED PARAMETER SETS FOR THE RING-BASED VERSION OF THE

ROUND5 PQC CANDIDATE

R5ND Version n log2(q) log2(p) log2(t)

1KEM_0d 618 11 8 4
3KEM_0d 786 13 9 4
5KEM_0d 1018 14 9 4
1PKE_0d 586 13 9 4
3PKE_0d 852 12 9 5
5PKE_0d 1170 13 9 5

A. Key generation

In the key generation function, a random seed is expanded

by cSHAKE [19]. The use of seed for cSHAKE allows

decreasing the size of keys at the expense of an additional

cost of expanding the key at the beginning of encryption and

decryption. To be compliant with the proposed Hardware API

for Post-Quantum Public Key Cryptosystems [20], the key

generation function is not a part of the reported design. All

long-term keys must be provided to the hardware module from

outside, before the main functionality starts.

B. Encryption and decryption

Algorithm 1 contains pseudocode for the IND-CPA PKE.

The encryption routine starts with expanding a part of the

public key and a random input using the cSHAKE function.

In the next step, two polynomial multiplications are performed.

For polynomial multiplication, one of the polynomials must be

lifted to the other’s polynomial ring. After the computations,

the result is unlifted back. Next, the result is rounded, which

is the source of randomness in the GLWR problem.

Algorithm 1 Round5 Encryption

Require: public key pk, message msg, seed rho
Ensure: ciphertext (U, v)

1: A← Create_A(pk.sigma)
2: R← Create_R(rho)
3: U ← Unlift(Lift(A) ∗R)
4: U ← Round(U)
5: X ← Unlift(Lift(pk.B) ∗R)
6: X ← Round(X)
7: v ← msg +X
8: return (U, v)

In Algorithm 2, the pseudocode for decryption is shown. In

the first step, the secret key is expanded by using cSHAKE.

Next, only one polynomial multiplication is executed with

lifting and unlifting. After the polynomial multiplication,

a subtraction from a part of the ciphertext is performed. The

last operation is rounding.

Algorithm 2 Round5 Decryption

Require: ciphertext (U, v), private key sk
Ensure: message m

1: S ← Create_S(sk)
2: X ← Unlift(Lift(U) ∗ S)
3: m← v −X
4: m← Round(m)
5: return m

C. Supporting functions

Round5 uses three supporting functions during encryption

and decryption. First, to obtain an NTRU-like polynomial

in the polynomial ring Zq[x]/(Nn+1(x)) from the key and

the random data, the lift function must be applied before

multiplication. The lift function is presented in Algorithm 3.

Algorithm 3 Lift function

Require: a polynomial A of length n
Ensure: an NTRU-like polynomial C of length n+ 1

1: C0 ← −A0 (mod n)
2: for 1 ≤ i ≤ n− 1 do

3: Ci ← Ai−1 −Ai (mod n)
4: end for

5: Cn ← An−1;

The second function required for proper polynomial mul-

tiplication is unlifting, presented in Algoritm 4. Unlifting is

applied after polynomial multiplication, and performs polyno-

mial division, taking back the polynomial to Zq[x]/(Φn+1(x)).

Algorithm 4 Unlift function

Require: a NTRU-like polynomial A of length n+ 1
Ensure: a polynomial C of length n

1: C0 ← −A0 (mod n)
2: for 1 ≤ i ≤ n− 1 do

3: Ci ← Ci−1 −Ai (mod n)
4: end for

The last supporting function is rounding, applied to every

polynomial coefficient. It is shown in Algorithm 5. It is

responsible for rounding elements to smaller values using the

exact approach presented in the submission. This function is

a source of randomness in the GLWR problem. It is called

twice during encryption and once at the end of decryption.

Input arguments of rounding are specified in the proposal’s

documentation.

III. HARDWARE DESIGN OF ROUND5

We present a low-area architecture of Round5. The im-

plementation follows the proposed hardware API for Post-

Quantum Public Key Cryptosystems [20]. The top-level view,

214 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

Algorithm 5 Rounding function

Require: an element x to round, a proper set of

{rounding_constant , shift_value, mask}

Ensure: a rounded element x
1: x← x+ rounding_constant
2: x← x « shift_value
3: x← x & mask
4: return x

compatible with the aforementioned API, is presented in

Fig. 1. The API treats various inputs as public, secret, or

random. Thus, three different sets of input ports are used. Each

port can handle commands and headers required by the API

to control the design.

Fig. 1. The PQC Hardware API used in this paper

Going one level down, the architecture of Round5 is pre-

sented in Fig. 2. With the given design, all functionalities of

Round5 are implemented. Each implemented module support

all three NIST security levels – 1, 3, and 5. Security level

is chosen during compilation and cannot be changed at run-

time. The functional modules take input from and write outputs

to a shared data bus. The privilege of writing to data bus is

granted by the controller’s module.

The main controller is responsible for managing the state

of the design and enforcing the proper data flow between

modules, depending on a selected operation. It also receives

and responds to commands from outside.

The SHAKE256 module implements the extendable output

hash function cSHAKE. It is used for generating pseudo-

random polynomials from a given seed. It is also required

for the F-O transformation.

The next major component used in our design is the

AES-GCM module for authenticated encryption. It is used

only in the IND-CCA PKE, as a required part of the F-O

transformation. For the IND-CPA KEM, this module can be

omitted from the design. The occurrence of AES-GCM is the

main difference in the design between the IND-CPA KEM

and the IND-CCA PKE versions. In agreement with the F-

O transformation, the IND-CCA PKE is build on KEM with

additional authenticated encryption.

The most important component is r5_cpa_enc, providing all

arithmetic operations for IND-CPA PKE, the main building

block of all Round5 proposals.

Fig. 2. The proposed top-level architecture of low-area full hardware
implementation of Round5

In Fig.3 an arithmetic module responsible for public key

encryption and decryption is presented. The important part of

this module is the controller, located on the left side of the

figure. This controller is responsible for receiving commands

from outside, managing the state of the module, and providing

proper signals for internal sub-modules. Polynomials required

for the operation are stored in separate memory banks. Polyno-

mial multiplication is executed twice during encryption. Thus,

two memory banks are able to feed the data to the polynomial

multiplier for the first argument. There is some additional

memory for the ternary polynomial and for the ciphertext.

The ternary polynomial is the same for both multiplications

executed during encryption. The message is stored in a register

and processed at the end of encryption.

Before polynomial multiplication is executed, one of the

polynomials must be lifted to the so called NTRU-ring [21].

This is performed by the LIFT_ELEMENT module, which

performs Algorithm 3. Due to the low-area optimization goal,

the proposed module lifts elements sequentially, one element

at a time. Lifted elements are written back to memory.

The next step is the polynomial multiplication performed by

the POLY_MUL module. It requires new data from memory

in each cycle. One of the arguments is a coefficient from

the lifted polynomial. The second argument is a set of 16

coefficients from the ternary coefficient memory. The module

computes results in a sequential fashion, sending further only

one coefficient at a time. The first output is ready after n clock

cycles, where n is a degree of the polynomials. Every next

coefficient is ready after ⌈n/16⌉ clock cycles.

The computed coefficient follows directly the remaining

data path. At first, the coefficient is unlifted to the primary

polynomial ring, as shown in Algorithm 4. The next step

depends on the operation type. During decryption, subtraction

is applied before rounding. During encryption, rounding is

MICHAL ANDRZEJCZAK: THE LOW-AREA FPGA DESIGN FOR THE POST-QUANTUM CRYPTOGRAPHY PROPOSAL ROUND5 215

MEM_A

MEM_B

MEM_TAddr_1

Addr_2

s3

s2

s1

s0

s0

s1

s2

Addr_3

s
e
l

s
e
l

sel

s
e
l

32

q

q

q

q

qq

c
o
n
c

data_in

data_out

write

read

full

empty

c0-c4

c0

c1

c2

c3

32

LIFT_ELEMENT

POLY_MUL

UNLIFT_ELEMENT

ROUND_ELEMENT

p

32

p

p

32

MEM_S SUB

ADD_MSG

C
O
N
T
R
O
L
L
E
R

32

q

q

q

q

Fig. 3. The arithmetic module for Round5 data encryption and decryption

applied right after unlifting. After rounding, data is stored

in the result register directly or with added message bits,

depending on the operation type and the state of the encryption

process.

Polynomial multiplication has the biggest computational

complexity in the Round5 design. The result is computed by

the following formula

ck =
∑

i+j=k mod n

ai ∗ bj (1)

Due to the form of the polynomial ring and Equation 1,

the multiplication can be easily parallelized to speed-up the

computations. This is a classical problem of area-performance

trade-off, where better performance is achieved by imple-

menting more parallel multipliers, increasing logic usage.

Using only one multiplier results in a very large clock cycle

latency and slows execution time. On the opposite side of the

spectrum, with as many as possible multipliers, the design size

is too large to fit in many FPGAs.

We propose a small, in terms of logic utilization, polynomial

multiplication module, offering results comparable to those

reported for other PQC submissions. Our module executes the

standard schoolbook multiplication with parallel operations.

Polynomial multiplication in Round5 always requires a ternary

polynomial and a polynomial with coefficients reduced modulo

q, where q is a power of 2. Each coefficient in ternary polyno-

mial is from the set {−1, 0, 1}, so only two bits are required

to store each coefficient value. All required polynomials are

stored separately in internal memory. For polynomials from the

ring Zq[x], each coefficient is accessible directly under differ-

ent address. Ternary polynomial is stored differently, where

one memory cell stores 16 concatenated ternary coefficients.

This allow to reduce memory requirements by avoiding only

two bits per memory cell utilization. The last memory cell is

padded with zeros, if needed.

A new set of coefficients to multiply is loaded from the

memory in every clock cycle. The memory address pointers

start from the opposite sides, and move in the opposite direc-

tions. The ternary polynomial is loaded from the beginning

to the end, but the second polynomial is loaded from the last

to the first coefficient. The memory pointer for the ternary

coefficients is increased by one after each load operation.

The second pointer is decreased by the number of parallel

multipliers, then the address number is reduced modulo the

216 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

polynomial degree. In this scenario, one specific multiplier is

computing the same result during one loop over memory. The

implemented polynomial multiplication is constant-time.

The proposed polynomial multiplier uses 16 parallel mul-

tipliers and is shown in Fig. 4. The number of multipliers

is directly linked to the number of coefficients stored in one

memory cell. On every memory load, each ternary coefficient

is send to a different multiplier. The second argument is

the same for every multiplication unit. The proposed design

utilizes the special form of input arguments. The multiplication

is done only by addition or subtraction. The value of the

accumulator is moved after specific number of multiplications

to the next multiplicand. First 15 results are stored in a shift

register. This operation is required for computing a proper

value. These results are pushed back to multipliers at the

end of the computations, to be updated with the remaining

multiplication values.

IV. RESULTS

We report results for the low-cost DE1-SOC board, man-

ufactured by Terasic. This board is equipped with Intel Cy-

clone V 5CSEMA5F31C6N FPGA. The chip contains 32,070

adaptive logic modules (ALMs), 128,300 registers, 87 DSP

blocks and 3,970 Kb of memory. It contains also the dual-core

ARM Cortex-A9 processor. However, in this paper, we focus

only on an FPGA part. The post-place and route results were

obtained from Intel Quartus Prime v18.1. There is no license

requirement for the selected device to perform compilation and

deployment.

In Table II, we report results for all security levels and

all proposed parameter sets of the IND-CPA KEM and the

IND-CCA PKE. We report logic usage for the full design

and also for r5_cpa_enc module separately. This allows us

to distinguish the cost of the post-quantum arithmetic module

from the remaining costs of the hash-based function and

the AEAD module required for the F-O transformation. For

presented architecture, the lattice-based arithmetic takes only

a small portion of the entire design, several times less than

the standard cryptographic elements, such as a hash function

or a block cipher. Thus, the implementation goal is achieved.

Our design also does not use DSP modules for multiplication,

so it can be deployed also with older FPGAs.

The main difference for the logic usage between the IND-

CPA KEM and the IND-CCA PKE comes from the additional

implementation cost of the AEAD module, not used in the

IND-CPA KEM. The logic usage across all security levels is

almost the same, as a result of using exactly the same design.

The number of multipliers and other arithmetic modules

remains always the same.

The memory requirements vary the most among different

security levels, due to the necessity of storing significantly

larger polynomials. Memory is also used as an input and output

buffer to modules in the FIFO queues and in the SHAKE256

implementation. Thus, the overall memory requirements are

larger than the sum of all Round5 elements, such as keys,

ciphertext, plaintext, and random data.

All implemented versions of Round5 run with a similar

clock frequency. The reported design is able to perform

encapsulation and decapsulation for the highest security level

under 1 ms. The encryption and decryption is significantly

longer as a result of additional computations required by the

F-O transformation and can be performed in around 2 ms also

for the highest security level. Only for the lowest security

level, the IND-CCA encryption is performed faster than the

IND-CPA encapsulation for the parameter set proposed by

the submission’s authors. These operations are very similar,

but for the selected parameter set, the IND-CCA version has

smaller polynomial degree. The polynomial degree has the

biggest impact on the computational complexity. Thus, faster

execution is obtained for the IND-CCA encryption than for

the IND-CPA encapsulation.

TABLE II
OBTAINED RESULTS FOR THE ROUND5 IND-CPA KEM AND THE

ROUND5 IND-CCA PKE. ∗ – RESULTS IN BYTES; ∗∗ – RESULTS IN

CLOCK CYCLES.

Parameter IND-CPA KEM IND-CCA PKE Ratio

Security level: 1

Parameter set R5ND_1KEM_0d R5ND_1PKE_0d —
PK size∗ 634 676 1.066
SK size∗ 16 708 44.25
CT size∗ 682 754 1.106
Enc latency∗∗ 49,714 44,808 0.90
Dec latency∗∗ 25,556 67,504 2.64

Total ALMs 4,084 6,305 1.54
Arithm ALMs 448 487 1.08
Memory∗ 8,445 9,134 1.08
Max freq. 142 MHz 136 MHz 0.95
Enc time 0.35 ms 0.33 ms 0.94
Dec time 0.18 ms 0.50 ms 2.75

Security level: 3

Parameter set R5ND_3KEM_0d R5ND_3PKE_0d —
PK size∗ 909 983 1.081
SK size∗ 24 1,031 42.958
CT size∗ 981 1,119 1.140
Enc latency∗∗ 80,565 94,083 1.17
Dec latency∗∗ 41,162 141,546 3.44

Total ALMs 4,098 6,312 1.54
Arithm ALMs 494 467 0.95
Memory∗ 9,466 10,112 1.06
Max freq. 135 MHz 132 MHz 0.98
Enc time 0.60 ms 0.71 ms 1.19
Dec time 0.30 ms 1.07 ms 3.52

Security level: 5

Parameter set R5ND_5KEM_0d R5ND_5PKE_0d —
PK size∗ 1,176 1,349 1.145
SK size∗ 32 1,413 44.156
CT size∗ 1,274 1,525 1.197
Enc latency∗∗ 132,877 175,965 1.32
Dec latency∗∗ 67,556 264,534 3.92

Total ALMs 4,116 6,337 1.54
Arithm ALMs 522 502 0.96
Memory∗ 10,753 11,765 1.09
Max freq. 133 MHz 130 MHz 0.98
Enc time 1.00 ms 1.35 ms 1.35
Dec time 0.50 ms 2.03 ms 4.01

MICHAL ANDRZEJCZAK: THE LOW-AREA FPGA DESIGN FOR THE POST-QUANTUM CRYPTOGRAPHY PROPOSAL ROUND5 217

+

acc

q

q

q

q

q

2

a

b

b1

b0
Parall. AND

b1

Parall. XOR

+

acc

q

q

q

q

q

2

b1

b0
Parall. AND

b1

Parall. XOR

+

acc

q

q

q

q

q

2

b1

b0
Parall. AND

b1

Parall. XOR

shift register
ctrl

2k

q

res
q

q

ctrlctrlctrl

1

1

1

1

1

1

1

1

1

q q q

Fig. 4. The parallel polynomial multiplier for Round5

A. Comparison to other results

A fair comparison to other results reported to date is hard

and complex due to multiple factors directly affecting the

obtained results. Moreover, there are no specific guidelines

from NIST about proper evaluation of candidates, regarding

an FPGA device, implementation goal, API, or compliance

criteria. In terms of API and the compliance criteria our design

follows the proposal by Ferozpuri et al. [20]. As for the FPGA

board, we selected one of the least expensive boards, with the

free license for the compiler. Any conclusions from comparing

logic usage for different FPGA vendors and for different PQC

submissions, we are leaving up to the reader.

Howe et al. [5] reported results for full hardware im-

plementation of another lattice-based candidate FrodoKEM.

They report results for Xilinx Atrix-7 FPGA, and their design

balances between area consumption and performance. Their

maximum frequency is 167 MHz and is higher than reported

in this paper for Round5. However, the time required to

perform decapsulation is at least an order of magnitude higher,

requiring around 20 ms for the execution. Logic requirements

are reported for separate modules, not for the entire design

able to perform all operations. These modules require around

2,000 slices each.

Most of the other papers reporting results for non-lattice-

based PQC candidates, also provide results for Xilinx FP-

GAs. However, Wang et al. reported results for the Classic

McEliece [11], [12] implementation on other high-end Intel

FPGA, Stratix V. Their time-optimized implementation uses

121,806 ALM and run at 250 MHz clock, being able to encrypt

and decrypt in less than 0.1 ms.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a complete low-area FPGA design for

ring version of Round5, a lattice-based submission to NIST

PQC Standarization process. We reported the post-place and

route results for main parameters sets covering all security

levels for KEMs and PKEs.

For future work, we consider exploring the area-

performance trade-off offered by the proposed polynomial

multiplier. A similar polynomial ring is also used by other

NTRU-based proposals. Thus, our multiplier can be used

for the performance evaluation of other candidates. As for

Round5, an extension with error correcting codes and the non-

ring versions of all schemes is the next big step to provide

coverage of all possible parameter sets and versions.

ACKNOWLEDGEMENTS

Special thanks to Kris Gaj for his help and valuable com-

ments.

REFERENCES

[1] “Algorithms for quantum computation: Discrete logarithms and factor-
ing.”

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” vol. 21, no. 2, pp.
120–126.

[3] Post-Quantum Cryptography: Call for Proposals. [Online].
Available: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization/Call-for-Proposals

[4] Post-Quantum Cryptography: Round 2 Submissions. [Online].
Available: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions

218 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

[5] “On Practical Discrete Gaussian Samplers for Lattice-Based Cryptogra-
phy,” vol. 67.

[6] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng,
and B.-Y. Yang, “High Performance Post-Quantum Key Exchange on
FPGAs,” p. 17. [Online]. Available: https://eprint.iacr.org/2017/690.pdf

[7] T. Oder and T. Guneysu, “Implementing the NewHope-Simple
Key Exchange on Low-Cost FPGAs,” in LATINCRYPT 2017.
[Online]. Available: https://www.ei.ruhr-uni-bochum.de/media/seceng/
veroeffentlichungen/2018/04/16/newhope_fpga.pdf

[8] F. Farahmand, V. Dang, D. T. Nguyen, and K. Gaj, “Evaluating the
Potential for Hardware Acceleration of Four NTRU-Based Key Encap-
sulation Mechanisms Using Software/Hardware Codesign.”

[9] B. Koziel, R. Azarderakhsh, M. Mozaffari Kermani, and D. Jao,
“Post-Quantum Cryptography on FPGA Based on Isogenies on
Elliptic Curves,” vol. 64, no. 1, pp. 86–99. [Online]. Available:
http://ieeexplore.ieee.org/document/7725935/

[10] A. Ferozpuri and K. Gaj, “High-speed FPGA Implementation of the
NIST Round 1 Rainbow Signature Scheme,” in 2018 International

Conference on ReConFigurable Computing and FPGAs (ReConFig).
IEEE, pp. 1–8. [Online]. Available: https://doi.org/10.1109/reconfig.
2018.8641734

[11] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based Key
Generator for the Niederreiter Cryptosystem Using Binary Goppa
Codes,” in Cryptographic Hardware and Embedded Systems – CHES

2017, W. Fischer and N. Homma, Eds. Springer International
Publishing, vol. 10529, pp. 253–274. [Online]. Available: https:
//doi.org/10.1007/978-3-319-66787-4_13

[12] ——, “FPGA-Based Niederreiter Cryptosystem Using Binary Goppa
Codes,” in PQCrypto 2018, ser. LNCS, T. Lange and R. Steinwandt,
Eds., vol. 10786. Springer International Publishing, pp. 77–98.
[Online]. Available: https://doi.org/10.1007/978-3-319-79063-3_4

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st Annual ACM Symposium on Symposium on

Theory of Computing - STOC ’09. ACM Press, p. 169. [Online].
Available: https://doi.org/10.1145/1536414.1536440

[14] T. Guneysu and T. Oder, “Towards lightweight Identity-Based
Encryption for the post-quantum-secure Internet of Things,” in 2017

18th International Symposium on Quality Electronic Design (ISQED).
IEEE, pp. 319–324. [Online]. Available: https://doi.org/10.1109/ISQED.
2017.7918335

[15] I. T. L. Round5 Submission Team. Round 2 Submissions
-Round5 candidate submission package. [Online]. Available: https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-2/submissions/Round5-Round2.zip

[16] H. Baan, S. Bhattacharya, O. Garcia-Morchon, R. Rietman, L. Tolhuizen,
J.-L. Torre-Arce, and Z. Zhang, “Round2: KEM and PKE based on
GLWR,” p. 72.

[17] M.-J. O. Saarinen, “HILA5: On Reliability, Reconciliation, and
Error Correction for Ring-LWE Encryption,” pp. 192–212. [Online].
Available: https://doi.org/10.1007/978-3-319-72565-9_10

[18] E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric and
Symmetric Encryption Schemes,” vol. 26, no. 1, pp. 80–101. [Online].
Available: https://doi.org/10.1007/s00145-011-9114-1

[19] J. Kelsey, S.-j. Chang, and R. Perlner, “SHA-3 derived
functions: cSHAKE, KMAC, TupleHash and ParallelHash.” [Online].
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-185.pdf

[20] A. Ferozpuri, F. Farahmand, V. B. Dang, M. U. Sharif, J.-
P. Kaps, and K. Gaj, “Hardware API for Post-Quantum Public
Key Cryptosystems.” [Online]. Available: https://cryptography.gmu.edu/
athena/PQC/PQC_HW_API.pdf

[21] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” in Algorithmic Number Theory, J. P. Buhler,
Ed. Springer Berlin Heidelberg, vol. 1423, pp. 267–288. [Online].
Available: https://doi.org/10.1007/BFb0054868

MICHAL ANDRZEJCZAK: THE LOW-AREA FPGA DESIGN FOR THE POST-QUANTUM CRYPTOGRAPHY PROPOSAL ROUND5 219

