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Abstract—The focus of malware research is often directed on
behaviour and features of malicious samples that stand out the
most. However, our previous research led us to see that some
features typical for malware may occur in harmless software as
well. That finding guided us to direct more attention towards
harmless samples and more detailed comparisons of malware
and harmless software properties. To eliminate variables that
may influence the results, we narrowed down our research study
to specific software domain - system maintenance and utility
tools. We analysed 100 malicious and 100 harmless samples from
this domain and statistically evaluated how they differ regarding
packing, program sections and their entropies, amount of code
outside common sections and we also looked at differences in
behaviour from the high-level view.

I. INTRODUCTION

W
HEN studying research papers in the field of malware
research, one may get the impression that harmless

software is somehow neglected in research studies. The idea
we have specifically in mind is that presence or absence of
specific features or differences in their qualities in malware
with comparison to harmless software is seldom examined.
However, such studies would be of great help.

Many research works use harmless software only as a
resource for demonstrating detection rate of new presented
detection method. However, selection of harmless samples
may considerably influence detection results and thus detection
rates. When programs that are part of the default system
installation are used as a control group in published research
works, they secure lower false-positive ratios, but they do not
form complete representative set of harmless software, since
many different software products are available and some of
them may even resemble malware in some of their features.
This idea initiated our first experiments targeted at packing
and related properties of programs [1][2]. We discovered
that harmless software shares occurrence of packing with
malware, together with other related properties. This led us to
deeply examine malicious and harmless samples and search
for hidden relations.

Our experiment presented in this paper is unique by means
of samples selection focused on specific software domain –
system utilities and maintenance tools. By this rather narrow
selection we aim to eliminate the influence of usage domain of
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software which may play important role in exhibited behaviour
and properties. In this way we can better compare malicious
and harmless samples and look for features that may help in
distinguishing them.

II. BACKGROUND OF THE EXPERIMENT

Detecting that a program is packed is the first step towards
its in-depth analysis [3]. Execution of packed program is often
inevitable for recovering original program’s code and unveiling
its behaviour. Dynamic inspection of malware poses a risk that
it may escape from analytic environment and spread on more
systems, therefore strict security precautions need to be taken
when executing malware.

A. Packing as Analysis and Detection Prevention

Packers employ compression for reduction of program’s size
and encryption to obstruct program’s reverse-engineering [4].
The resulting file comprises an unpacking routine and packed
data blocks. When packed program is executed, the unpacking
routine recovers the original program code into memory and
directs the execution flow to execute it. Program code can
be retrieved by virtual machine monitors or emulators [5]
but researchers also look for static techniques to distinguish
packed malware from goodware [6][3]. Packers are popular
for hindering signature-based detection and static analysis.

A general belief is that packing, together with obfusca-
tion, is a common trait in malicious programs and this idea
is repeated among malware analysts and researchers [7][8].
Despite that, it is not easy to find current and accurate rates
of packer detections. According to Cisco Blog, they estimate
around 70-80% of malware is packed and only around 5%
of harmless software is modified by packers 1. Considering
the year the article was published (2010) the rates are now
outdated, however, a more recent blog article on Malwarebytes
from October 31, 2017 states that "over the last quarter, we’ve

seen an increase in malware using packers, crypters, and

protectors" and "the growing number of malware authors using

these protective packers has triggered an interest in alternative

methods for malware analysis"[9]. As it seems, packers are not
on the decline yet, so investigating their occurrence in harmless
software may lead to interesting insights.

1https://blogs.cisco.com/security/malware_validation_techniques
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B. Introducing Research Hypotheses

Packing is deemed typical for malicious software but results
that would confirm and explain reliability of this assumption
are not present. We will try to shed some light on this
problem and see if assumptions regarding packing match the
reality. Our research is evaluated with statistical tests of null
hypothesis and two alternative hypotheses for each of analysed
features: amount of detected packers, amount of program’s
sections, entropy of section .text, entropy of section .rest, and
percentage of program’s code in section .rest.

The null hypothesis reflects the assumption that values
detected – low or high – are not related to malicious or
harmless origin of samples, so no significant difference in
values will be observed in data sets:

Hypothesis 0 (H0): The difference of values measured for
analysed feature in harmless software and malicious software
is small and insignificant.

Alternative hypotheses reflect the expectation of higher or
lower values in malicious samples:

Hypothesis 1 (H1): Analysed feature has higher values in
malicious software when comparing to harmless software.

Hypothesis 2 (H2): Analysed feature has lower values in
malicious software when comparing to harmless software.

According to hypothesis H2, packing and related features
considered typical for malicious software may be detected in
harmless software with higher values. Proving the hypothesis
for these features may unveil hidden complications in detection
mechanisms based on typical malware features.

For statistical analysis, we used two-sample Wilcoxon rank
sum test (U test) for comparing the data sets with confidence
level 95% (α = 0.05).

III. RESEARCH DATA AND METHODS

A. Experimental Sets

The set of experimental samples consisted of utility software
distributed on the internet for free. Parsons and Oja explain
that utility software is a kind of software purposed to assist
with monitoring and configuring a computer system and its
software [10]. Utility software covers various maintenance
tasks, e.g. deleting temporary files, broken links removal,
searching for duplicate files, tasks management, memory opti-
mization or personal files encryption. We targeted this specific
group of software because of operations that these programs
are designated to perform.

We assume that software which legitimately accesses reg-
istry entries, processes, file system, etc., may be a promising
target for malware writers which create malicious imitations of
the original harmless software. With this in mind we aimed at
comparing harmless system maintenance tools and their fake
malicious counterparts.

We assembled two experimental sets: One containing le-
gitimate applications in a form of executable files (.exe)
downloaded from the internet and another containing 100
samples verified as malicious, collected from malware ana-
lytic services. We could not obtain all malware .exe files to

analyse them on our own, therefore to unify our resources we
used reports from analysis of samples, which were available
for both sets. Also, we could not obtain exact malicious
counterparts of all harmless programs, but nevertheless we
preserved the domain of malicious samples in utility software.
We obtained malware in the domain of utility software by
looking at application name, e.g. "win defrag", which hints on
the intended purpose of the sample. We also focused on high
amount of detections by anti-virus (AV) engines and manually
selected samples which met our criteria. Data fields and their
extraction are described in Section III-C.

B. Analytic Tools

We performed our experiments with various kinds of tools:
PEiD is a tool that allows to identify packers which have

been used on programs’ code 2. Packing and encrypting
libraries are often used by malware for concealment of sus-
picious parts of a program and evasion of detection based
on malware signatures. PEiD performs the search based on
signature-like definition of several hundreds of known packers.
While it is reliable to detect commonly used packers, it
may fail on custom-made packers whose signatures are yet
unknown. The original web page of the tool is discontinued
and according to reports it may have been taken over by
malicious actors. We obtained our copy of the tool with
REMnux 3 distribution for malware analysis.

UPX is a packing tool for executable files 4 which is used
in the experiment to check whether tested file is packed or not,
and to unpack files that are packed. As Davis et al. state [11] in
their book, numerous computer viruses use specifically UPX
packer. A recent case of its malicious usage is presented in
blog article by Nick Biasini et al. in which cryptocurrency-
mining malware Dark Test uses UPX as one of its hiding
techniques [12]. The packing problem is discussed also in the
work of Guo, Ferrie and Chiueh [7]. Therefore, detection of
UPX packer being used on analysed sample arises suspicion.

VirusTotal is online malware analysis service. We used it
to obtain properties and behaviour of malicious and harmless
set of samples 5. In case of harmless samples it was used for
safe and reliable analysis of samples that we collected. In case
of malware, since we did not possess original malicious files,
we used the service to search for reports from analysis by
hash codes of samples that we collected beforehand. Reports
generated from analysis contain various information, regarding
our experiment e.g. scan results form over 50 anti-virus (AV)
solutions, detection of packers by analytic tools F-PROT
and PEiD, information from PE header, PE sections with
their names and properties, and behavioural information with
executed system calls.

Tools for static analysis – PEiD, UPX – run as terminal
applications which accept arguments that modify settings and
set input and output of analysis. This allowed us to create a

2PEiD tool: https://www.aldeid.com/wiki/PEiD
3REMnux: https://remnux.org/
4UPX: http://upx.sourceforge.net/
5VirusTotal: https://www.virustotal.com
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helper program which utilised these features for automation
of analysis.

C. Experimental Procedure

The experiment was performed in two stages: First we
analysed harmless set of programs and evaluated results. In the
second stage we proceeded with examining malicious samples.
The procedure differed for harmless and malicious samples,
mainly because original malicious samples were not available,
therefore, the second stage leaned on data provided by analytic
reports produced by VirusTotal.

In the first stage we employed our helper program which
was developed prior to the experiment for automating the
usage of analytic tools. Each harmless sample was analysed
by PEiD and UPX to check whether it is packed, and if yes, to
identify used packers. Results were collected and summarised
in a table. Analysis by VirusTotal followed. We collected
produced reports and extracted information of interest.

The second stage regarded malicious samples and employed
data extracted from reports of analysis obtained by VirusTotal.

Data obtained from analytic reports comprise the following:

• Detection results of malware scanners. In case of positive
detection, we obtained name of detection signature, for
each scanner separately. We summarised the data as
quantity of detections per sample.

• Detection of packers applied to pack analysed sample.

We acquired names of detected packers and summarised
the data as quantity of detected packers per sample.

• Names of program’s sections. We counted the amount of
sections and also stored their names for further manual
research. Too few or too many sections comprising the
executable file suggest that it was packed, encrypted or
otherwise modified in order to disguise original code
structure 6.

• Entropy of program’s sections .text and .rest. A section
usually named as .text or .code contains program’s in-
structions. In some occasions parts of code may occur out
of usual sections, in so-called .rest. Presence of this quasi-
section is characteristic for programs modified with some
packer. Entropy of these sections may show whether they
were modified by packing or encryption, which typically
cause entropy to be very high. Values are measured in the
interval < 0, 8 >. Bytes of program’s code have some
non-random distribution and therefore low entropy. The
higher the value, the more random distribution of bytes,
suggesting uncommon modifications.

• The amount of program’s code in section .rest. We
calculated percentage amount of bytes in this section.
Large portions of code in this section are typical for
packed programs.

To objectively evaluate differences between data of ma-
licious and harmless samples we used statistical analysis,

6More information regarding PE file sections: https://docs.microsoft.com/
en-us/windows/desktop/Debug/pe-format

CI code injection HG HTTP GET request
DLL runtime DLL HP HTTP POST request
DNS DNS request MC mutex created
FC file created MO mutex opened
FD file deleted PC process created
FM file moved REG registry entry
FO file opened SS service started
FR file read SW searched window
FW file written TCP TCP data flow
HOOK hooking activiy UDP UDP data flow

TABLE I
BEHAVIOURAL CATEGORIES AND THEIR ABBREVIATIONS.

No AV: 68 %

1-5 AV: 30 %

11-15 AV: 2 %

Fig. 1. Pie chart with amount of harmless samples that were positively
detected by given amount of AV scanners.

specifically two-sample Wilcoxon rank sum test (U-test) with
confidence level 95% (α = 0.05).

From reports provided by VirusTotal we were able to obtain
high-level information about behaviour of analysed samples as
a list of executed system calls. We used the data in summative
way as quantities of operations in behavioural categories listed
in Table I. Each sample was then described by 20 numerical
values representing occurrences of 20 types of behaviours.

IV. RESULTS AND OBSERVATIONS OF THE EXPERIMENT

The following sections present results regarding analysed
features and statistical analysis (end of this section, Table II).

A. Detection Results of Malware Scanners

During our experiment VirusTotal employed usually 56 AV
scanners but in some cases, for unknown reasons, few of them
were unavailable in the report.

Pie charts in Fig. 1 and 2 show amounts of AV scanners
(height of a slice) that positively detected analysed samples
(their amount as width of a slice), grouped into ranges for
improved visual clarity. Among harmless samples no detection
(Fig. 1) prevails, but some were detected as threat nevertheless.
Among malware samples (Fig. 2) only one had no detection
and the rest of them was detected by multitude of AV scanners.

B. Detection of Packer Usage

Pie charts in Fig. 3 and 4 show the amounts of detected
packers. Height of a slice represents the amount of packers
detected in single sample and width shows the amount of
samples detected to be packed with given amount of packers.

Only 20% of harmless samples were detected as not packed,
the rest was modified by packers ranging from 1 to 7.
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No AV: 1 %

1-5 AV: 2 %

6-10 AV: 2 %

11-15 AV: 5 %

16-20 AV: 11 %

21-25 AV: 8 %

26-30 AV: 9 %

31-35 AV: 13 %

36-40 AV: 17 %

41-45 AV: 17 %

46-50 AV: 10 %

51-55 AV: 4 %

56 AV: 1 %

Fig. 2. Pie chart with amount of malicious samples that were positively
detected by given amount of AV scanners.

No packer: 20 %

1 packer: 26 %
2 packers: 36 %

3 packers: 4 %

4 packers: 5 %

5 packers: 7 %

6 packers: 1 %

7 packers: 1 %

Fig. 3. Pie chart with amount of detected packers in harmless samples.

Data from malware samples present more surprises. One
malware sample was packed 46 times – that is extreme.
However, majority of samples was detected as not packed at all
– another surprise, since usual expectations are that malware
will be packed massively, not the opposite.

Regarding distribution of amount of packers detected, we
can see in Fig. 5 that for malware the value of median matches
the lower (first) quartile (value 0), and in case of harmless

software median matches the upper (third) quartile (value 2).
From this we can deduce that harmless samples are more prone
to being packed, at least with packers that are detectable by
available tools. Outliers (extreme values) are not shown in
order to prevent plot deformation.

Regarding the hypothesis H1 saying that values of analysed
feature – occurrence of packers – is higher in malicious
software than in harmless software (Table II, row Packers

amount, alternative Higher), the U-test resulted with p-value
> 0.99 which by far exceeds the significance level. As a result,
we fail to reject the null hypothesis for this case.

For alternative hypothesis H2 suggesting that occurrence
of packers is lower in malicious software, thus prevails in
harmless software (Table II, row Packers amount, alternative
Lower), the U-test resulted with p-value 7.3124×10−12 which
is far below the significance level. As a result, we reject the
null hypothesis and accept the alternative hypothesis H2.

No packer: 64 %
1 packer: 21 %

2 packers: 12 %

3 packers: 1 %

5 packers: 1 %

46 packers: 1 %

Fig. 4. Pie chart with amount of detected packers in malicious samples.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Amount of packers detected

Harmless

Malicious

Fig. 5. Boxplots for amounts of packers detected in harmless and malicious

samples. Outliers are not shown in the figure.

C. Amount of Program’s Sections

Pie charts in Fig. 6 and 7 show the amounts of detected
sections in analysed programs. Height of a slice represents
the amount of sections detected in single sample and width
shows the amount of samples with given amount of sections.
The amount of sections in majority of harmless samples is
quite high – 8 – but the amount in malware is lower.

For harmless samples, the interquartile range is higher (Fig.
8) – the box is much wider, in comparison to malware samples.
Both sets of samples match on the first quartile with value 4.
There are 6 harmless samples with no section detected. This
may be caused by different actual file format than PE so the
section table could not be retrieved. While several outliers
among malware samples may make the impression that the
amount of sections is high in malware, values of median
clearly show that harmless samples tend to have higher amount
of sections.

For alternative hypothesis H1 saying that amount of sections
is higher in malware than in goodware (Table II, row Sections

amount, alternative Higher), the U-test resulted with p-value
> 0.99 which by far exceeds the significance level. As a result,
we fail to reject the null hypothesis for this case.

For alternative hypothesis H2 saying that amount of sections
is lower in malware, so prevails in harmless software (Table II,
row Sections amount, alternative Lower), the U-test resulted
with p-value 1.9375×10−6 which is far below the significance
level. As a result, we reject the null hypothesis and accept the
alternative hypothesis H2 – sections prevailing in goodware.
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No section: 6 %

1 section: 4 %

2 sections: 2 %

3 sections: 3 %

4 sections: 11 %

5 sections: 7 %

6 sections: 3 %
8 sections: 63 %

9 sections: 1 %

Fig. 6. Pie chart with the amount of detected sections in harmless samples.

1 section: 1 %

3 sections: 23 %

4 sections: 19 %5 sections: 32 %

6 sections: 5 %

7 sections: 3 %

8 sections: 14 %

9 sections: 1 %

13 section: 1 %

16 section: 1 %

Fig. 7. Pie chart with the amount of detected sections in malware samples.

D. Entropy of section .text

Section .text (or .code) contains executable instructions,
therefore its entropy should not be normally very high.

Pie charts in Fig. 9 and 10 show measured entropies. Height
of a slice represents range of values of entropy and width
shows the amount of samples with given entropy value. We
can see that both malicious and harmless group have majority
of samples with entropy in range < 6, 7). In harmless samples,
other ranges of entropy occur seldom – only in 6 samples – and
the rest comprises samples in which the section could not be
precisely identified. Malware shows wider variety of entropy,
both on the lower and higher spectrum of value ranges.

Boxplot (Fig. 11) shows that inter-quartile range is wider
in malware and extremes are much more apart. Medians,

0 2 4 6 8

Amount of program sections

Harmless

Malicious

Fig. 8. Boxplots for amount of program’s sections in harmless and malicious

samples. Outliers are not shown in the figure.

Unavailable: 10 %

Entropy in <5,6): 1 %

Entropy in <6,7): 84 %

Entropy in <7,8): 2 %

Entropy = 8: 3 %

Fig. 9. Pie chart with entropy of section .text in harmless samples.

Unavailable: 9 %

Entropy in <0,1): 1 %

Entropy in <3,4): 1 %

Entropy in <4,5): 3 %

Entropy in <5,6): 12 %

Entropy in <6,7): 56 %

Entropy in <7,8): 13 %

Entropy = 8: 5 %

Fig. 10. Pie chart with entropy of section .text in malware samples.

however, are close to 6.5 in both malicious and harmless
samples. This suggests that the difference in values may not
be significant regarding .text section entropy.

For alternative hypothesis H1 that values of .text section
entropy are higher in malware than in goodware (Table II,
row .text entropy, alternative Higher), the U-test resulted with
p-value 0.6556 which by far exceeds the significance level.
We fail to reject the null hypothesis for this case.

For alternative hypothesis H2 that values of .text section
entropy are lower in malware (Table II, row .text entropy,
alternative Lower), the U-test resulted with p-value 0.3453
which also exceeds the significance level. We fail to reject
the null hypothesis and conclude that differences in values of
entropy of section .text are not statistically significant.

5.0 5.5 6.0 6.5 7.0 7.5

Entropy of section .text

Harmless

Malicious

Fig. 11. Boxplots for entropy of section .text in harmless and malicious

samples. Outliers are not shown in the figure.
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Unavailable: 13 %

Entropy in <6,7): 1 %

Entropy in <7,8): 8 %

Entropy = 8: 78 %

Fig. 12. Pie chart with entropy of section .rest in harmless samples.

Unavailable: 62 %

Entropy in <0,1): 1 %

Entropy in <1,2): 1 %

Entropy in <2,3): 1 %Entropy in <4,5): 1 %

Entropy in <5,6): 1 %

Entropy in <7,8): 17 %

Entropy = 8: 16 %

Fig. 13. Pie chart with entropy of section .rest in malware samples.

E. Entropy of section .rest

Since .rest is not a program section per se, it may not be
detected in many programs. On the other hand, its presence
suggests that special measures have been made to conceal (at
least from plain sight) some incriminating portions of code.
It comes naturally to assume presence of .rest in majority of
malware samples, but looking at our previous experiments,
assumptions about malware can be quite misleading.

Pie charts in Fig. 12 and 13 show measured entropy of
section .rest. Height of a slice represents range of values of
entropy and width shows the amount of samples with given
entropy value. In case of harmless samples, 13 programs had
no detectable code out of common sections but the rest of them
had, with measured entropy from 6 to 8 – which is a maximum.
Contrary to that, malware samples showed no section .rest in
majority of cases (62 samples), and in case of its presence,
entropy reached value from 6 to 8 only in 33 samples.

Lower quartile, upper quartile and median for harmless

samples meet at value 8 (Fig. 14) and contrast with values
of malware – it has median at zero, mostly due to absence of
the section.

For alternative hypothesis H1 that values of .rest section
entropy are higher in malware than in harmless software (Table
II, row .rest entropy, alternative Higher), the U-test resulted
with p-value > 0.99 which by far exceeds the significance
level, so we fail to reject the null hypothesis.

For alternative hypothesis H2 that values of .rest section
entropy are lower in malware (Table II, row .rest entropy, alter-
native Lower), the U-test resulted with p-value 2.7074×10−18

which is far below the significance level. We reject the null

hypothesis and accept the alternative hypothesis H2 that .rest

section entropy is lower in malware than in goodware.

F. Percentage of code in section .rest

Percentages that were found among analysed harmless

samples are shown in Fig. 15 in ascending order.
Surprisingly, large programs’ size present in section .rest

prevails in harmless software. We suppose that it may be
inflicted by some commonly used packers and application
building tools, such as INNO. However, further research needs
to be made to confirm this opinion.

Examination of malware showed that .rest manifested in
much fewer samples than in the harmless set. This result
corresponds with findings from analysis of entropy of section
.rest (Sec. IV-E). The percentage of .rest section in file’s size
(Fig. 16) was calculated with data obtained from VirusTotal
analytic reports.

62 malware samples contained no data outside sections
listed in PE file header and so section .rest was confirmed
to be absent in them. The case of 90% or more of program’s
bytes was present only in 11 samples. Again, this strongly
contrasts with results from harmless samples.

Figure 17 shows that for harmless samples the first and
the third quartile have high values and samples with less than
80 % percent of code in .rest are basically outliers. Quartiles
of malware data contrast to that as low – the first quartile
and median match at value 0. The boxplot suggests notable
differences in values of malicious and harmless samples.

For alternative hypothesis H1 that percentages of code in
.rest section are higher in malware than in goodware (Table II,
row .rest percentage, alternative Higher), the U-test resulted
with p-value > 0.99 which by far exceeds the significance
level. As a result, we fail to reject the null hypothesis.

For alternative hypothesis H2 that percentages of code
in .rest section are lower in malware (Table II, row .rest

percentage, alternative Lower), the U-test resulted with p-value
3.2413×10−17 which is far below the significance level. As a
result, we reject the null hypothesis and accept the alternative
hypothesis H2 about percentage of code in section .rest being
lower in malware than in harmless software.

0 1 2 3 4 5 6 7 8

Entropy of section .rest

Harmless

Malicious

Fig. 14. Boxplots for entropy of section .rest in harmless and malicious

samples. Outliers are not shown in the figure.
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Fig. 15. Measured percentages of .rest section from total size of code in
harmless samples, and number of samples with that percentage of code in
.rest section.
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Fig. 16. Measured percentages of .rest section from total size of code in
malicious samples, and number of samples with that percentage of code in
.rest section. The y-axis with amounts of samples is scaled logarithmically
due to great differences among values.

G. Relationships Between Analysed Features

We explored also relationships between analysed features by
calculating Pearson’s correlation coefficients for each pair of
features that were discussed in statistical analysis in previous
section. The measure of correlation is described by values from
interval 〈−1, 1〉, with the following interpretation:

• value −1 represents perfect negative correlation, i.e. when
values of one feature are high, second feature’s values are
low, and vice versa,

• value 0 represents no measurable linear correlation,
• value 1 represents perfect positive correlation, i.e. when

value of one feature is high, so is value from the second
feature, and vice versa.

Visual representation of correlation matrix as a "heatmap"
(Fig. 18, 19) can aid in understanding notable linear rela-
tionships between features. We can see that in heatmaps of
both malicious and harmless samples only positive correlations
were present. For harmless samples the most notable correla-
tion is between amount of detected sections and entropy of
section .rest. It seems that when packers are used for hiding
program’s code the amount of sections is decreased and large
portions of code are then in section .rest. We explored the
issue further and discovered that it occurred mainly when a
sample was packed by packer UPX. If it was the only packer
used, it placed all the code into section named .upx.

0 20 40 60 80 100

Percentage of code in .rest section

Harmless

Malicious

Fig. 17. Boxplots for percentage of program’s code in section .rest in harmless

samples and malicious samples. Outliers are not shown in the figure.

Data sets

Malicious Harmless Alternative Result

Packers amount Lower 7.3124× 10
−12

Packers amount Higher ≈ 1

Sections amount Lower 1.9375× 10
−6

Sections amount Higher ≈ 1

.text entropy Lower 0.3453

.text entropy Higher 0.6556

.rest entropy Lower 2.7074× 10
−18

.rest entropy Higher ≈ 1

.rest percentage Lower 3.2413× 10
−17

.rest percentage Higher ≈ 1

TABLE II
SUMMARY OF RESULTS FROM STATISTICAL ANALYSIS MADE WITH

Wilcoxon rank sum test (U-test) WITH CONFIDENCE LEVEL 95%
(α = 0.05). THE ALTERNATIVE DESCRIBES RELATION BETWEEN VALUES

OF MALICIOUS AND HARMLESS SET OF SAMPLES.

Another notable correlations in harmless samples were be-
tween amounts of sections and detected packers, and between
percentage of code in section .rest and entropy of this section,
but values for these correlations are not that high.

Regarding malicious samples, only one correlation is no-
table and it was measured between values of percentage of
code in section .rest and entropy of this section. This relates
to finding that numerous malware samples do not have this
section so presence of this section with some entropy will
cause this correlation to be high.

H. High-Level Behaviours

Beside features related to packing we recorded and mea-
sured also quantity of executed system calls which belong to
behavioural categories listed in Table I. After observing the
values we realised that much more possibilities of analysis are
opening ahead of us and thus will require further work. How-
ever, to supplement findings from previous sections with at
least several interesting insights about behaviour, we analysed
correlations between pairs of behaviours and created heatmaps
for malicious (Fig. 20) and harmless samples (Fig. 21).

First notable thing is that harmless samples had no occur-
rence in behavioural categories CI - code injection and FC -

file created, therefore lines for these features are blank in Fig.
21.

We can see that heatmap of harmless samples contains more
high correlations than heatmap of malware samples. Some of
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Fig. 18. Correlation matrix heatmap for properties related to packing in
harmless samples.
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Fig. 19. Correlation matrix heatmap for properties related to packing in
malicious samples.

them match but for harmless samples, these high correlations
between pairs of features are unique:

• FM - file moved and FD - file deleted,
• FO - file opened and FM - file moved,
• FO - file opened and FD - file deleted,
• FW - file written and FM - file moved,
• FW - file written and FD - file deleted,
• HG - HTTP GET request and DNS - DNS request,
• MO - mutex opened and MC - mutex created,
• SW - searched window and MC - mutex created,
• TCP - TCP data flow and DNS - DNS request.
It seems that for harmless samples operations related to files

are often performed and quantitatively relate to each other.
For malicious samples, interesting correlations are between

following features:
• MC - mutex created and FD - file deleted,
• MO - mutex opened and DLL - runtime DLL,
• REG - registry entry and FO - file opened,
• REG - registry entry and FR - file read,
• SS - service started and FD - file deleted,
• UDP - UDP data flow and HG - HTTP GET request.
Malware samples seem to be focused more on mutex, reg-

istry and service operations and they are performed similarly
often as various operations with files, mainly opening, reading
and deleting.

I. Summary

Entropy of section .text was notably high in many malicious
and harmless samples, so it seems that concealment is targeted
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Fig. 20. Correlation matrix heatmap for high-level behaviours of malicious

samples.
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Fig. 21. Correlation matrix heatmap for high-level behaviours of harmless

samples.

at program’s section with executable instructions. Difference
between sets resulted as insignificant, but lower amount of
detected packers in malware suggests that custom packers
are used, which are undetectable by common analytic tools.
Section .rest was not detected in majority of malware samples.
This suggests that malware writers use custom code concealing
techniques that do not create this quasi-section.

Regarding the assumptions about malware being packed,
they are probably true, however, common tools seem now in-
sufficient for malware packers detection. Information pointing
at programs being packed need to be collected from deeper
levels of analysis: Amounts and names of packers provided
by analytic tools may be incomplete, but dissecting a program
into sections and observing their entropy shows the missing
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pieces of information.
Correlations between high-level behaviours hint some in-

teresting relationships between types of operations performed
during execution of programs and it would be interesting to
analyse specific cases of behaviours that are executed together.
Also, it would be beneficial to look at behaviours of malware
and harmless software from another software domain and
examine if there are some repeating patterns present in values.

Insights obtained from experiments that we performed are
significant regarding research and implementation of novel
detection systems based on machine learning and neural
networks, since they utilise quantitatively measurable features
of software samples. Our results present options for feature
engineering to obtain high-quality training data: Neglecting
features that are insignificant or combining closely related
features to one for reducing dimensionality of data. Mindful
selection of training data will allow to direct more attention
and time to selection and experimentation with detection
algorithms.

Based on our work new research questions arise. Be-
havioural and non-behavioural properties of programs vary
greatly and as we "zoom in" to specific software domain of
malicious and harmless samples, we see that usual assumptions
cease to be applicable. For example, results of signature-
based detection of packers do not agree with expectations
towards malware and goodware (Sec. IV-B) and are therefore
unsuitable for machine learning purposes. Clearly, malware
writers made it harder to detect packers, so deeper analysis
of samples is required to obtain desired data. This opens up
a question whether now-so-popular utilisation of massive data
is not in fact a limitation in improving malware detection,
and we ought to pursue more specific and narrow features for
differentiating malware from goodware instead.

V. DISCUSSION

Beside reports from analysis obtained from VirusTotal we
used tools of static analysis in this experiment for the follow-
ing reasons:

1) Although dynamic analysis compared with static anal-
ysis indicates smaller issues with malware obfuscation,
static analysis allows to detect malicious features which
seem to occur randomly during a program execution or
in a specific execution environment.

2) We could automate the analytic process for large amount
of experimental samples in our custom created utilities.

3) Automated process of static analysis is less time con-
suming compared with dynamic analysis, which requires
execution of each analysed sample.

Concerning point 1, every program can comprise numerous
execution paths, also called execution traces. The disadvantage
of dynamic analysis is that only one execution trace can
be observed at a time. Concerning several traces, also static
analysis with reverse engineering is problematic. However,
Beaucamps et al. addressed this problem in their work [13]
and proposed a method for static analysis of execution traces

acquired from control-flow graphs. Macedo and Touili also
discuss the issue in their work [14].

UPX packer is commonly known as packing tool often
misused for covering malicious code. Marak states, however,
that obfuscating effects of the packer are not among its original
features and result from altering its original code [15]. A look
at licence of UPX packer reveals that modifications and usage
of the packer in such way is violating the rules of tool’s
legal usage 7. In fact, UPX packer should not be suspicious
by itself, like many blogs and papers state, but the illegal
modifications made to it are what causes trouble. This fact
should be given more attention and researchers should avoid
improper simplifications of the matter.

In some cases, PE sections names may reveal name of
a packer used for concealing program’s code, however, this
information is not fully reliable since section names can be
modified by various tools, e.g. by PE Explorer 8. In our
observations we also encountered section names being some
gibberish or blank—obviously someone removed the original
section name on purpose.

A. Related Work

Malware signatures have still very important role in malware
detection, although their effectiveness on malicious samples
concealed by techniques that alter syntactic form of a program
is questionable. What is more, with rapidly growing number
of new malware samples the extraction of signatures requires
a lot of precious time. Griffin et al. addressed this problem
and presented a system for automated generation of malware
signatures [16]. An interesting part of their work describes fea-
tures which they analysed in malicious programs. Concerning
syntactic form of a program authors mention patterns emerging
in operational code which may represent precursors of non-
standard or suspicious behaviour of the program:

• Constant values like IP addresses, email addresses,
• access to memory with unusual offset,
• local function calls, non-library function calls, context of

a function call and used parameters,
• suspicious mathematical operations which may indicate

obfuscation.

These patterns are used for refining potential malware signa-
tures through, as they call it, code interestingness check. In our
research they served as an inspiration for comparing features
of malicious and harmless programs and looking for patterns
which could be employed as indicators of malicious intentions.

B. Influences on the Study and its Outcomes

Results of our research showed that for special-purpose
software packing may be detected more often in harmless
samples than in malicious samples, which is in contrast with
common assumptions about malware. Nevertheless, several
factors could have affected the outcomes even when we made
en effort to mitigate them as best we could.

7UPX licence: https://upx.github.io/upx-license.html
8PEexplorer: http://www.heaventools.com/PE_Explorer_section_editor.htm
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• Selection of samples. Commercial paid software was
not included in the study but its properties may have
been different from what we found in harmless samples.
However, obtaining numerous samples of paid mainte-
nance software was not feasible in our research project.
Concerning malware samples, it is hard to trace their
origin since we worked just with reports from their
analysis, not with samples directly. This may have also
considerable effect.

• Collection of samples. Samples were found on the inter-
net by search engine with specific keywords. Different
keywords may have led to different outputs, even when
we tried to explore as many various results as we could.

• The usage domain. Samples that we experimented with
belong to system utility software. Samples from different
domains may have different properties regarding packing.

• Analytic tools. The tools that we used in our study to
gather data of interest do not guarantee 100% correctness
of data. There is a chance that detecting fewer packers
among malicious samples is caused by inability of tools
to unveil usage of hidden, sophisticated custom packer
developed by malware creators. This problem, however,
is not in our power to mitigate.

• Other errors. Several samples had no program sections
detected. This may have been caused by an unknown
error during analysis performed by tools we used or by
difference of actual file format from the format declared
by the sample.

VI. CONCLUSION

We presented a different, novel approach to malware re-
search that is based on narrow selection of experimental sam-
ples from specific software domain and statistical evaluation of
differences between malicious and harmless software. Several
ideas inspired us to perform this experiment:

1) Packing is often applied to malicious software with in-
tent to obstruct reverse-engineering, hinder static analy-
sis, and hide incriminating code from malware detectors.

2) Although packing is typical for malware, it may be
used also on harmless software for protection against
intellectual property theft.

3) In research circles, a discussion about distinguishing
malicious packing from harmless one regards syntactic
features of program’s operational code, e.g. bytes distri-
bution, entropy, data in so-called .rest section.

4) Harmless programs have not been given appropriate
attention, especially from the context of features relevant
for distinguishing between malicious and harmless case
of packing, and their reliability.

Although packers are massively used by malware creators,
they are also applied for protection of intellectual property in
harmless software, making it complicated to separate bad and
good intentions behind packer’s usage.

In the paper we showed that differences in values between
malicious and harmless programs are significant regarding
amount of detected packers, amount of program sections,

percentage of code in section .rest and its entropy. Entropy
of section .text together with amounts of packers detected
suggest that malware writers create custom packers that are
nearly undetectable by common analytic tools.

It is necessary to keep in mind that results presented here
concern samples from the domain of maintenance and utility
software and samples from other domains may yield different
results. In that case, however, it would be interesting to
research the influence of software domain selection on values
of analysed features, since it may be significant.
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