
Participating in an Industry Based Social Service
Program: a Report of Student Perception of What

They Learn and What They Need
Miguel Ehécatl Morales-Trujillo

University of Canterbury,
Computer Science and Software Engineering Department

Christchurch, New Zealand
miguel.morales@canterbury.ac.nz

Gabriel Alberto García-Mireles
Universidad de Sonora

Departamento de Matemáticas
Hermosillo, Mexico

mireles@mat.uson.mx

Abstract—Skills demanded by the IT industry from graduates
should be aligned with the curricula of Computer Science under-
graduate programs. It is well-known that theoretical knowledge
undergraduate students acquire during their studies needs to be
complemented with practical experience; therefore, participating
in university supported real life projects is a viable option for
the students to get prepared for the industry. This paper reports
findings from a survey applied to students who had been involved
in an industry-based program meant to fulfill their graduation
requirements, including the opportunity to develop a capstone
project. We gathered their perceptions regarding what they
learned during their studies, what they acquired in the industry-
based program and what they consider useful for their current
jobs. The results show that most topics are aligned between the
Bachelor’s degree program and the industry needs, but there
is a strong separation in the cognitive levels students achieve
at each stage. The paper provides insight into the needs of
Computer Science students and contributes to finding ways of
increasing undergraduate student satisfaction with skills acquired
at university and their application in real contexts.

I. INTRODUCTION

A
N accelerated evolution of IT technologies demands
software developers ready to get incorporated to IT

workforce. The Bureau of Labor statistics of the United States
of America estimates a 24% increase in demand for software
developers in the period from 2016 to 2026, which a much
faster than average growth [26]. Similarly, in other countries
around the world the demand for software developers is
growing in similar proportions. To obtain a desirable employ-
ment, a competent software developer is required to possess a
wide variety of skills, such as managerial, engineering, team
working and communication [1].

In undergraduate computer science (CS) and software en-
gineering (SE) programs, educators provide experiences to
support an adequate development of knowledge and skills in
students. However, a crucial question remains open: how to
educate software engineers to do their jobs efficiently and
properly [25]. Current curriculum guidelines recommend that
educational programs provide effective learning of SE skills
and concepts by incorporating real-world elements, which

could be done through capstone projects and student work
experience among others [1].

In capstone projects, students focus their effort on complet-
ing a significant real project while they practice learned knowl-
edge and skills [1]. Capstone projects represent an important
learning activity in SE, given that most of the SE concepts
are abstract in nature. In consequence, they are difficult to
understand by undergraduate students without adequate hands-
on experience [17].

However, providing a real-life experience in undergraduate
programs is a difficult task [9]. Another factor to be considered
is the gap between skills acquired by IT graduates and skills
demanded by the industry [25]. Although it is necessary to
prepare students for incorporating into the software industry,
this is still a very complex endeavor that many universities
are struggling with [38]. Other than theoretical knowledge,
future employers are always more interested in students who
are equipped with hands-on experience [41].

Despite a considerable interest to find ways of helping
students to quickly become efficient software developers and
blend into the IT work place, there are few empirical reports
of problems that students face in capstone projects as well
as of learning outcomes students perceive to have achieved
after completing a capstone project [37]. Thus, this paper
aims to present an experience report of how a joint effort
between industry and university can increase undergraduate
student satisfaction with skills learned at university and their
application in a real project.

In addition, this report provides a comparison between
knowledge and skills learned at university against those
learned in the industry. Moreover, the results of this experience
have other effects over educational aspects, such as an increase
in awareness for alignment of academic courses with industrial
experience by CS and SE educators.

The paper is structured as follows. Section II presents an
overview of capstone projects and agile methodologies used in
them. Section III describes the context of CS Bachelor’s degree
of a Mexican university and the nature of the industry-based
student program. Section IV reports the data collection process

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 861–870

DOI: 10.15439/2019F279
ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 861



and data analysis. The results are discussed in Section V and
the conclusions and future work are presented in Section VI.

II. BACKGROUND

A. Capstone projects in CS

Capstone is defined as “the high point: crowning achieve-
ment” [24]. In a capstone project, “students solve real-life
problems in the context of a large, realistic project” [37].
Working on a project helps students to develop SE skills and
apply them in a realistic environment, providing them with
an excellent opportunity to understand and experience various
technological waves that would be present in their careers [16].
In order to improve learning outcomes, project courses can
involve industry partners who provide real-world problems for
students to solve, to develop both technical and soft skills, and
to gain contacts to potential mentors in the industry [40].

Several papers address the use of capstone projects to
enhance knowledge and skills of both CS and SE students.
Vanhanen et al. [37] conducted a survey to understand the
problems that arise during development of capstone projects,
to gain insight into improvement in learning outcomes as
perceived by students, and into customer satisfaction. They
found that learning outcomes varied a lot among teams and
team members since roles undertaken by students affected
their level of learning. Considering common problems reported
in capstone projects, the most common ones were related to
testing, task management, effort estimation and technology
skills [37].

In [21] students identified algorithms, programming, net-
works and databases, and contemporary technologies for de-
veloping software as essential technical skills in order to
succeed in a capstone project. They can be seen as potential
discipline knowledge gaps and become areas to better address
in capstone project activities. The authors surveyed students’
feedback where the majority of students reported a general
skill improvement or learning new technical or project man-
agement skills during their capstone project [21].

Projects often require students to use technologies (pro-
gramming languages, web frameworks etc.) that they have
not been taught in their previous courses [37]. Based on
observing differential learning outcomes achieved by students,
Karunasekera and Bedse [17] proposed a skill based learning
framework to provide objective guidance to ensure that team
based projects offer a balance of management, engineering and
personal skills. In case of capstone project courses, Majanoja
and Vasankari [21] suggest to organize them focusing on team
work, communication and problem solving skills.

It can be observed that few quantitative empirical studies
report problems encountered by capstone project teams [37].
The reported problems are related to poor communication
among the team members, poor leadership, failure to compro-
mise, procrastination problems, integration testing problems,
and lack of cooperation, among others [37]. Besides, such
problems as lack of skills for using tools, lack of organization,
lack of technology expertise, and having to combine work and

study during the project are reported in [2]. Other risks are ar-
chitecture complexity, quality trade-offs, personnel shortfalls,
budget and schedule constraints, COTS and other indepen-
dently evolving systems, customer-developer-user team cohe-
sion, requirements volatility, user interface mismatch, process
quality assurance, requirements mismatches, acquisition and
contracting process mismatches [18].

Learning outcomes of capstone projects [37] include im-
provement in such students skills as familiarity with agile
approach, programming, project planning and management,
effort estimation, acquiring “a big picture” of a software
development process, team work, customer interaction, and
communication [20]. Improvement in learning is reported
in skills related to requirements engineering, system design,
modeling, programming, version control, release management,
and usability engineering, among others [6]. Besides, Bro-
man et al. report students’ learning technical knowledge of
a specific SE role, time management, usefulness of agile
methods, and team communication and collaboration [5]. As
for guidelines to discuss student experience of participation in
industrial capstone projects, SWEBoK offers a set of topics,
understandable to students and widely used by researchers
[32].

A realistic setting of a capstone project developed for a
real customer also introduces challenges for the participants.
The beginning of a project course is particularly difficult,
as students have to familiarize themselves with development
processes and tools, get to know the project’s problem domain,
understand requirements, and deal with communication issues
[9]. Besides, there are several organizational aspects to be
considered when providing real-life experiences [38], [6], [4].
Despite the effort to provide students with real-world experi-
ences, instructors should be aware that the level of exposure to
these formative actions will be limited [1]. Instructors can only
facilitate the initial stage of the process for students develop a
mature understanding of the real world across their careers [1].

B. Agile methodologies in capstone projects and courses

Providing students with an iterative work by means of
agile and lean methods can both fulfill the industry needs
and support the design of SE courses [23]. Considering agile
methodologies, Scrum is one of the most adopted and/or
adapted in a capstone course design [23], [27]. Indeed, in
courses based on project-based learning, Scrum is very com-
mon. It can provide control over project progress and it is able
to ensure a steady pace of development [12].

Fitsilis and Lekatos [13] conducted a survey study to un-
derstand the importance of agile practices and their relevance
in the industrial context while relying on the Scrum method
taught in a capstone course. As a result, the majority of the
participants reported a general positive experience from the
capstone course; in addition, they perceived such frequently
used in the industry practices as unit testing, coding standards,
test-driven development (TDD) and continuous deployment as
the most useful. Other researchers studied how particular esti-
mation techniques can be introduced in a software engineering

862 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



capstone course [28]. Another research line is focused on the
assessment of particular practices of continuous integration,
TDD, and work tracking, among others [12].

Both, supporting tools and adaptation of agile techniques,
have been explored in capstone courses and projects. Ro-
driguez et al. [29] propose a virtual Scrum tool that simulates
a Scrum-based team room by means of the 3D virtual world
metaphor. The tool can support specific configuration and
progress of each student team [29]. On the other hand, Krusche
et al. [19] proposed Rugby, an agile model for supporting
continuous delivery of software. The authors report that the
Rugby method improves coordination across multiple teams
and enhances communication between developers and cus-
tomers [19].

Lean approaches, such as Kanban, have also been studied in
the context of Scrum-based university courses by introducing
Kanban at the end of instruction period [23]. Paasivaara et
al. [27], on the other hand, report an effective outcome of a
Scrum based capstone course with real clients. They found that
students positively change their attitudes about the importance
of collaboration and communication within the teams while
experiencing less than expected difficulty in learning new
technologies [27].

Moreover, agility in capstone courses have been explored in
relation to other topics. Fagerholm and Vihavainen [11] have
studied peer assessment to provide a full view of student per-
formance in a project. In particular, self-assessment and peer
review should provide insights with regard to learning goals.
In software maintenance, Weissberger et al. [39] reported an
experience of using agile principles in a maintenance project
developed in a capstone project.

Academic software factory is another approach used in
universities to enhance the quality of education by means of
capstone projects. University laboratories emulate a real work-
ing setting where teams of students implement a project for
real customers and real deadlines [33]. Similarly, Fagerholm
et al. [10] report another experience of developing the soft-
ware factory approach. They provide a collection of patterns
and anti-patterns to support the design, implementation and
operation of project-based startups [10].

III. CONTEXT OF THE EXPERIENCE

A. Computer Science Bachelor’s degree

The National Autonomous University of Mexico (UNAM)
is the biggest university in the country with 356,530 enrolled
students in 2019 [35] and sits the #2 in Latin America (#113
university in the world) according to QS World University
rankings [7]. The UNAM consists of 15 colleges that offer
127 Bachelor’s degrees; CS Bachelor’s degree is one of them
and is taught at the College of Science.

CS Bachelor’s degree is designed to be finished in four
years obtaining 376 credits; it consists of 28 compulsory and
6 elective courses based on seven knowledge areas: Mathemat-
ical foundations, Discrete structures, Programming, Software
engineering, Theoretical computing, Theory and practice in-
tegration, and Systems architecture. In order to graduate, CS

students are required to complete 376 credits, 480 hours of
social service and to develop a capstone project.

In Mexico, undergraduate students must meet the require-
ment of completing a social service to be able to graduate
[8]. The goal of the social service program is to contribute to
both academic and professional training of students. Student
who have achieve 70% of undergraduate credits are eligible
for social service program as they are supposed to apply their
acquired knowledge and skills in an organization which is
looking for social, cultural and economic development. The
social service practice amounts to 480 hours that students
complete in a time period of 6 to 24 months [34].

Mexican program of social service “promotes professional
and human development of the student, developing an active
and supportive social commitment applied to the solution
of problems or needs of the country” [34]. It is similar to
work experience placements required by universities around
the world, however it differs from them due to its civic and
social orientation. Nevertheless, there is no other alternative
that would provide students with work experience previous to
their graduation.

As for the capstone project, CS students are offered 10 op-
tions: writing a dissertation (thesis), participating in a research-
based project, taking a research seminar, participating in a
science popularization project, reaching the national stage of
the ACM Programming Contest, being in the first quartile of
the Graduate Record Examination for CS, obtaining an over
95 GPA (out of 100), carrying out tertiary teaching support
activities (such as teaching assistant), obtaining industry ex-
perience and extending the social service.

The majority of these options are research- or teaching-
based with the exception of the last two: industry experience
and extended social service. In the case of the extended
social service, most of the programs are research and teaching
oriented. According to the information published in [36], 97
out of 272 available programs for CS students are IT related.
From those, 80 are carried out within the UNAM schools
and dependencies, 16 in government offices and only one is
industry-based.

In addition, both options require a university professor
who can supervise capstone projects based on an industry
experience or an extended social service, however, there is
not enough cooperation between university supervisors and
industry available projects.

We identified a lack of opportunities for students to gain
more industry-oriented experience both through social service
or developing a capstone project. In order to improve this
situation, we proposed to push for industry-based capstone
projects and social service programs.

On the one hand, it would allow students to complete a
social and civic service requirement as well as to obtain work
experience in the current industry. On the other hand, it can
lead to an increase in numbers of graduated students in CS as
industry-based experience offers reasonable opportunities for
developing a successful capstone project.

MIGUEL EHÉCATL MORALES TRUJILLO, GABRIEL ALBERTO GARCÍA MIRELES: PARTICIPATING IN AN INDUSTRY BASED SOCIAL SERVICE 863



The current numbers of graduated students are extremely
low: the terminal efficiency of CS Bachelor’s degree since
1995 is 18.1%. In absolute numbers we find that 285 students
graduated, 621 completed their credits but did not graduate
and 672 neither graduated nor completed their credits. Only
one of each five students is able to complete their credits, get
through their social service and develop a capstone project.
Looking at only eight last generations of students, the terminal
efficiency is slightly higher: 19.7%. while only 155 out of 785
CS students graduated.

One of the reasons for the low numbers of IT-related
graduates is their high level of employability, and CS students
are no exception. Nowadays, there is an important demand to
fill in constantly growing job offers in the IT sector. Deficit
of employees with a IT profile is critical in many countries
around the world; according to [25] it is growing at an
exponential rate. Students are leaving the university because
they are getting job offers even if they are not graduated yet.

In this context, undertaking this initiative was powered by
a strong motivation to improve the exposure of CS students to
relevant work experience in real projects aligning it with their
graduation requirements, namely, social service and capstone
project.

B. Industry based program

The industry based student program described in this paper
was divided in two stages. During the first stage students
worked to complete 480 hours of social service. During the
second stage students could opt for continuing working but
with a condition of developing a capstone project based on
the work done in the first stage.

This project was carried out in a joint effort by the College
of Science and a Mexican software development organization.
The expected outcome of the project was an information
system for public administration. The first step to link the
organization and the university was to define a social service
program in which the student activities would be aligned with
their civic responsibilities.

Once the program was created and approved by the Univer-
sity, any interested student could join the program. Actually,
students joined the program voluntarily at different stages
of the project during the year. There were no additional
restrictions to join the program out of those already imposed
by the University, so all students who applied for the program
were accepted.

Each student was coordinated by a professor from the
College and looked for the goals of the social service to be
achieved. Students were required to work in the organization
during a minimum of 6 months covering the 480 hours of their
social service. They also received a monthly grant during the
time they participated in the project.

The organization had a full development process in place; in
consequence,the students were able to carry out a wide variety
of tasks in different software engineering activities. During
their first month of work, they were trained and introduced
into the organization, the team and the project. Tasks assigned

during the initial period were related to requirements spec-
ification and testing with the intention to get them familiar
with the project and system under development. Activities
related to Software Configuration Management (SCM), such
as version control systems and continuous integration, were
specially relevant at this stage.

The organizational development process was a hybrid pro-
cess based on [22] mixing agile practices with ISO/IEC
29110-5-1-2. Project management activities were assigned
using boards (Kanban style) and the progress was reported
through stand-ups (Scrum). Software requirements specifi-
cation (SRS) was carried out first through wireframes and
customer workshops and then specified as use cases. Program-
ming tasks consisted in fixing bugs and pair programming
sessions arranged on demand while continuous integration and
deployment practices were in place. User acceptance tests
were carried out mostly by using a Think Aloud! protocol,
bughunt sessions to test the system were implemented, and a
bug tracker system was used to report defects.

During the following months students rotated between dif-
ferent teams and carried out roles of analysts, programmers,
testers and database developers. Table I enlists the tasks carried
out by the students, where agile practices used for each task
are provided in brackets. For standardizing purposes generic
ISO/IEC 29110-5-1-2 [14] tasks definitions are used.

A student’s timeline in the program was usually the follow-
ing:

• Day 1: an introduction to the organization, team and
project.

• Day 2: a walk-through the development process of the
organization.

• Day 3: joining SRS and Testing teams.
• Month 2: joining Construction team.
• Month 3: joining Databases team.
• Months 4 and 5: joining the team of their preference.
• Last two weeks: writing a social service report required

by the College of Science.

Students received training from the team leaders and par-
ticipated in workshops obtaining knowledge in topics like:

• Version control systems with Git and continuous integra-
tion.

• Development frameworks with Grails.
• Web deployment using WebLogic Server.
• Stored procedures and packages in Oracle 12c.
• Test automation with JMeter.
• Mobile development.
• Basic accounting to deal with employment and workers’

rights.

The students had regular control meetings with the project
manager of the organization following a daily Scrum approach.
In addition, they had regular contact with their respective team
leaders and teammates.

From the College of Science side, two professors were
in charge of ensuring that the purpose of the social service
program was being fulfilled and the students received guidance

864 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



TABLE I
TASKS CARRIED OUT BY STUDENTS

Software Requirements

Document or update requirements specification (User stories and Wireframes)

Identify and consult information sources in order to get new requirements.

Verify and obtain approval of the requirements specification.

Validate that requirements specification satisfies needs and agreed upon expectations, including the user interface usability (Think Aloud!).

Participate in revision meetings with the customer.

Software Architectural and Detailed Design

Describe in detail the appearance and the behaviour of the UI (Wireframes and Think Aloud!).

Generate an architectural design, its arrangement in subsystems and components defining internal and external interfaces.

Software Construction

Construct or update software components (CI and CD).

Correct the defects found until successful unit test is achieved (Pair programming).

Perform backup according to the version control strategy.

Software Integration and Tests

Verify consistency among requirements specification, software design and test cases (Think Aloud!).

Design or update unit test cases.

Perform software tests and document results in the test report (Bughunt).

Correct defects found and perform regression tests (Pair programming).

Verify consistency of the software documentation with the software.

Product Delivery

Verify consistency of maintenance documentation with software configuration.

from the organization members. A non-conformity process
was in place to inform any improvement opportunity or
disagreement regarding the students’ interaction and perfor-
mance. This process was a two way communication channel
that served to inform the College if students did not perform
as expected or if they were absent without notifying.

Once the six months concluded and students completed the
required 480 hours of their social service, they were invited
to continue in the organization but developing their capstone
project. The capstone project had to be related to their work in
the last six months and was supervised by a professor from the
College with a possibility to be co-supervised by a member
of the organization. The only constraint imposed on students
was to finish the capstone project in no more than six months.

This paper reports the participation of a cohort formed by
13 students. The time they spent in the program varied from
5 to 12 months. First results of the program are described in
the following sections.

IV. MAPPING ACQUIRED AND REQUIRED SKILLS

As mentioned before, there is a need for aligning higher
education practices to industry needs by exposing students
to industrial processes [30]. It is often observed that a large
gap separates software projects in industry from what can
be experienced in the classroom [15]; therefore, students
are unconvinced by the relevance of the material delivered
in lectures. The challenge, in consequence, is to develop
environments within universities that are sufficiently real to
be convincing to students [31].

Our interest was to gain an insight into students’ perceptions
regarding the knowledge and skills they acquired during their

studies, during their participation in the program, and finally in
their current job. To gather data, we designed a survey based
on SWEBoK areas and topics; we were interested to know to
what extent the students have been exposed to them, how the
students perceived the preparation they received and what they
considered necessary once they joined the industry.

The results were expected to allow for evaluation of the
usefulness of the social service program as well as for an
appreciation of an (non)-existing alignment between what CS
students perceive that have learned and what they need once
they graduated.

SWEBoK establishes a baseline for the body of knowledge
in the field of SE [32]. It strongly influences the manner in
which curricula are defined and how academic programs are
accredited. In this study, SWEBoK was chosen due to its
wide acceptance as a well-known SE body of knowledge that
connects industry recommended practices and the knowledge
expected from a software engineering professional.

The survey consisted of two sections, the first section was
an online survey and the second section was answered in a
spreadsheet. The time taken to answer the whole survey ranged
from one day to one week; an incentive was given for each
fully completed survey.

The first section contained questions about personal in-
volvement in the program, and their current academic and
professional situation:

1) How many months were you involved in the program?
2) What activities did you carry out during your participa-

tion in the program?
3) What skills do you think you developed the most?

MIGUEL EHÉCATL MORALES TRUJILLO, GABRIEL ALBERTO GARCÍA MIRELES: PARTICIPATING IN AN INDUSTRY BASED SOCIAL SERVICE 865



4) Did you develop a capstone project derived from your
participation in the program?

5) Did you complete the social service program?
6) Did this program contribute or is contributing to your

graduation?
7) Did this program contribute or is contributing to you

getting a job?
8) Do you currently work in the IT-related industry?
9) What do you consider to be the most beneficial in your

participation in the program?
10) What improvements do you consider the program needs?

In the second part, the students were presented with a table
which enlisted each of the SWEBoK topics grouped by area of
knowledge, and had three columns representing stages (while
studying my bachelor’s, while participating in the program,
in my job), during which the knowledge was acquired and/or
applied.

Each SWEBoK topic (rows) was presented with an example
in the form of tooltips. Figure 1 shows a fragment of the survey
with answers retrieved from one student. The fragment was
translated from Spanish into English.

Once the collected data were analyzed through general
descriptive statistics of median, mode and mean, they were
used to answer the following research question:

How did participating in a real project transform the

students’ knowledge?

It was decided to follow an adapted Bloom’s taxonomy pre-
sented in [3], particularly three lower levels of the taxonomy
(Remember, Understand and Apply) were used.

In the first column, respondents selected one of the follow-
ing options for each SWEBoK topic to complete the claim
“While studying my bachelor’s . . . ”:

1) I did not get familiar with this topic.
2) I got familiar with this topic but I did not apply it in

practice (Remember and Understand).
3) I got familiar with this topic and had a chance to apply

it in practice (Apply).

In the second column, the options to select were similar to
the one in the previous question, but the claim was “While

participating in the program . . . ”:

1) I did not require this topic.
2) I was already familiar with the topic, but I applied it in

practice (Apply).
3) I was already familiar with the topic, but I did not apply

it in practice (Remember and Understand).
4) I got familiar with the topic and I had the chance to apply

it in practice (Remember, Understand and Apply).

The second question of interest was:
What software engineering topics/areas are regarded as

most useful in the industry by the students?

In this case, a 5-point Likert scale was used. In the third
column, respondents selected one of the following options
to complete claims corresponding to “In my job, <SWEBoK

topic> is . . . ”:

1) Not useful.

2) Slightly useful.
3) Useful.
4) Very useful.
5) Essential.
Besides it was of interest to know what positions they held

in the industry once they finished their participation in the
project. This information was collected via email.

V. RESULTS AND DISCUSSION

A. First section of the survey: Industry-based program

A total of 13 students participated in the program and 12
completed it successfully; Table II shows a summary of the
students who participated in the program. The only student
who did not complete the program accepted a job offer in the
IT industry and left the program. This is one of main reasons
of why students do not graduate and there is very little the
universities can do to minimize its impact.

The first part of the survey was responded by 10 students.
Eight out of 10 students reported that their participation in
the program contributed to their graduation and nine out of
10 reported that it contributed to getting a job after the pro-
gram. The following statements are examples of the students’
opinions regarding their experience in the program:

“Having a real-world experience that goes beyond a social

service gave me a better position.”

“The experience I have got was well valued by the re-

cruiter.”

“I met people with a lot experience in software development,

I learned a lot from them.”

“I interacted with real customers and teams, the experience

I have got was real-life.”

Six students provided information regarding the position
they occupied after the project:

• Database Developer
• SOA Java Developer
• Software Test Engineer
• Data Scientist Jr.
• Software Engineer
• SECaaS and DBaaS Engineer
Two of them worked in an organization that followed Scrum

as its main methodology, allowing one of them to become a
Scrum Master.

Last but not the least, four students concluded their capstone
projects as based on their work during the program. Given
the proportion of students who completed their social service
(92.3%) and those who graduated (30.8%) we consider this an
improvement for the historical data of graduated CS bachelors
in the UNAM.

B. Second section of the survey: SWEBoK areas and topics

Nine students completed the SWEBoK mapping. The first
question to answer is:

How did participating in a real project transform the

students’ knowledge?

On a more general level, Table III displays an associ-
ation perceived by students between each SWEBoK area

866 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Fig. 1. A survey fragment

TABLE II
PARTICIPANTS’ DETAILS

ID # Months Roles carried out Completed the program? Developed a capstone project? Got employed?

S1 5 Analyst and DB developer No No Yes

S2 12 Analyst, Programmer and Tester Yes Yes Yes

S3 8 Analyst and Programmer Yes Yes Yes

S4 6 Analyst and Tester Yes No Yes

S5 6 Analyst, Tester and DB developer Yes No Yes

S6 7 Analyst and Tester Yes No Yes

S7 6 Analyst and Tester Yes No Yes

S8 7 Analyst and DB developer Yes No Yes

S9 9 Analyst, Programmer and Tester Yes No Yes

S10 11 Analyst, Programmer and Tester Yes Yes Yes

S11 10 Analyst, Programmer and Tester Yes Yes Yes

S12 9 Analyst and Tester Yes No Yes

S13 6 Analyst and Tester Yes No Yes

and cognitive levels. It is observed that, except for Software
Maintenance, all the areas required in the program had been
taught at the BSc (students got familiar with them) and most of
them reached the next cognitive level (students applied them
in practice).

It can be noted that Software Maintenance was perceived
as an area not familiar to students during the BSc; however,
by the end of the program, students perceived a shift from not
knowing it to applying it in practice. Software Engineering
Economics is another area perceived as unknown by students,
and this area of knowledge was not required during the
program either.

Students reported that after participating in the program,
cognitive levels improved in nine areas and remained at the
same level in three. These results allow to conclude that, in
this particular case, real experience in a controlled environment
offered an important advantage for the student development.

Going down on a more detailed level, we found an increase
in cognitive levels associated to SWEBoK topics as 45 topics
were perceived as improved and for 25 their cognitive levels
remained the same. Only topics required during the project
were analyzed (70 out of 102 SWEBoK topics).

In particular, three topics changed their states from Un-
known to Apply, as well as from Unknown to Remember

and Understand. Their breakdown is shown in Table IV. An
important message is the lack of Software Maintenance and
Software Configuration Management in the curricula. The gap
between students’ knowledge acquired during their studies is
large as compared to the importance of this area for their
job in the industry. This could be caused by the lack of
opportunities to work in long projects and over an existent
software product, where it is possible to show the effects of
good/bad maintenance practices or SCM strategies.

The second question to answer was:
What software engineering topics/areas are regarded as

most useful in the industry by the students?

The data showed that Software Engineering Professional
Practice is the only area with a median of 5 (essential),
while eight other areas obtained a 4 (very useful). It is worth
mentioning that the least useful, according to the student
perception, turned out to be Engineering Foundations. The
analysis consisted in calculating the median of topics per each
area; see Table V for the results.

A more granular analysis performed on the topic level
showed that nine topics got a median of five (see Table VI).

Students reported to know all of those topics from their
university background, however, only when participating in
the project they had an opportunity to apply three of them in

MIGUEL EHÉCATL MORALES TRUJILLO, GABRIEL ALBERTO GARCÍA MIRELES: PARTICIPATING IN AN INDUSTRY BASED SOCIAL SERVICE 867



TABLE III
COGNITIVE LEVELS OF SWEBOK AREAS ACCORDING TO STUDENT PERCEPTIONS

SWEBoK area Cognitive level at the end of BSc Cognitive level at the end the program

1: Software Requirements 1. Remember and 2. Understand 3. Apply

2: Software Design 1. Remember and 2. Understand 3. Apply

3: Software Construction 3. Apply 3. Apply

4: Software Testing 1. Remember and 2. Understand 3. Apply

5: Software Maintenance 0. Unknown 3. Apply

6: Software Configuration Management 1. Remember and 2. Understand 3. Apply

7: Software Engineering Management 1. Remember and 2. Understand 3. Apply

8: Software Engineering Process 1. Remember and 2. Understand 3. Apply

9: Software Engineering Models and Methods 3. Apply 3. Apply

10: Software Quality 1. Remember and 2. Understand 3. Apply

11: Software Engineering Professional Practice 1. Remember and 2. Understand 3. Apply

12: Software Engineering Economics 0. Unknown 0. Not required

13: Computing Foundations 3. Apply 3. Apply

14: Mathematical Foundations 3. Apply 0. Not required

15: Engineering Foundations 1. Remember and 2. Understand 0. Not required

TABLE IV
SWEBOK TOPICS WITH IMPROVED COGNITIVE LEVELS

SWEBoK topics

Unknown 7−→ Remember and Understand

10.4. Software Quality Tools

Unknown 7−→ Apply

5.5. Software Maintenance Tools

6.1. Management of the SCM Process

6.5. Software Configuration Auditing

TABLE V
SWEBOK AREAS SORTED BY USEFULNESS IN THE INDUSTRY

SWEBoK area Median

11: Software Engineering Professional Practice 5

1: Software Requirements 4

2: Software Design 4

3: Software Construction 4

4: Software Testing 4

6: Software Configuration Management 4

7: Software Engineering Management 4

8: Software Engineering Process 4

13: Computing Foundations 4

5: Software Maintenance 3

9: Software Engineering Models and Methods 3

10: Software Quality 3

14: Mathematical Foundations 3

12: Software Engineering Economics 2

15: Engineering Foundations 1

TABLE VI
SWEBOK TOPICS CONSIDERED TO BE ESSENTIAL IN THE WORK PLACE

SWEBoK topics

3.3. Practical Considerations

3.4. Construction Technologies

6.6. Software Release Management and Delivery

11.2 Group Dynamics and Psychology

11.3. Communication Skills

13.3. Programming Fundamentals

13.4. Programming Language Basics

13.12. Database Basics and Data Management

14.2. Basic Logic

TABLE VII
SWEBOK TOPICS THAT STUDENTS KNEW BUT HAD NEVER APPLIED

BEFORE THE PROGRAM

SWEBoK topics

6.6 Software Release Management and Delivery

11.2 Group Dynamics and Psychology

11.3 Communication Skills

practice (see Table VII).

In the context of software development, Software Release
Management and Delivery constitutes a fundamental area
of knowledge for every practitioner. On the other hand,
Group Dynamics and Psychology together with Communi-
cation Skills are abilities strongly required for teamwork. It
was a favorable outcome that students were presented with an
opportunity to applied these topics during the project.

The most developed during the project areas are shown in
Table VIII while the least developed ones are presented in
Table IX.

868 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



TABLE VIII
SWEBOK AREAS THAT STUDENTS DEVELOPED THE MOST

SWEBoK topics

1: Software Requirements

2: Software Design

3: Software Construction

4: Software Testing

5: Software Maintenance

6: Software Configuration Management

7: Software Engineering Management

8: Software Engineering Process

9: Software Engineering Models and Methods

10: Software Quality

11: Software Engineering Professional Practice

13: Computing Foundations

TABLE IX
SWEBOK AREAS THAT STUDENTS DEVELOPED THE LEAST

SWEBoK topics

12: Software engineering economics

14: Mathematical foundations

15: Engineering foundations

C. Limitations and Threats to Validity

Construct validity: the data collection, particularly the sur-
vey on SWEBoK areas and topics, included examples of each
topic presented to students for clarification. Also, in order to
properly define the cognitive level of each SWEBoK topic,
an adaptation of the Bloom’s taxonomy was used. Although
the insights of this experience are based on a limited number
of sources, the data were obtained directly from the main
stakeholders, namely the CS students. However, the results, in
order to be generalized, require more generations of students
to join similar programs.

External validity: it is worth to mention that the social
service is specific for the Mexican context, however, it is rep-
resentative of the country. Besides, we consider this program
to be an initial step towards demonstrating the usefulness of
running industry-based programs within university contexts.

Internal validity: the students joined the program voluntarily,
and the information about the program was disseminated in the
same way as the rest of the programs. A distinctive feature of
this program was the grant offered to the students, which is not
common to the majority of the programs; therefore, it could
be a factor for the students to choose the program.

The findings are based on the perception of students and
could be improved by applying specific assessments at certain
phases of the program. Nevertheless, an important advantage
of this study relies on the fact that we traced student data
from studying a bachelor’s degree till joining the IT workforce,
which provides a deeper insight into the problem.

VI. CONCLUSIONS

In Mexico, university graduation requirements consist of
developing a capstone project in the form of a thesis and its
oral defense, completing credits of the BSc and 480 hours of
social service.

As an alternative for providing students with relevant work-
ing experience, the UNAM College of Science put in place
a social service program run in conjunction with a software
development organization. In this program students had the
opportunity to cover their graduation requirements while being
immerse in a real project. In this first experience, 13 students
participated representing around 11% of the CS students of a
generation (114 students).

A total of 12 students completed their social service, which
was the primary goal of the program, and 4 students finished
their capstone projects and graduated (30.8% of the students
who joined the program).

Despite differences across countries, there is definitely a
growing interest in establishing a university-industry collab-
oration in order to promote well-prepared graduates, where
these initiatives are welcomed by the students [30]. Teachers in
charge of capstone project courses could benefit from a better
understanding of what kind of problems students typically
encounter in capstone projects [37].

We hope that this type of experiences will help to increase
academic success, improve students’ skills, reducing numbers
of dropouts. It is worth to mention that all the students who
participated in the program were employed in the IT sector
after finishing the program.

Finding of the study showed that area 12: Software Engi-
neering Economics was neither required during the project
nor covered by the curricula according to the participants’
perception. On the other hand, two important areas are per-
ceived as not covered by the curricula but were required
during the program: 5: Software Maintenance and 6: Software
Configuration Management.

Finally, there is a clear cut division between cognitive
levels developed by the students: remember and understand

during their studies, apply when working. It was an expected
outcome; however, it reinforces the idea of looking for alter-
natives for providing students with opportunities to apply their
knowledge in practice in order to obtain an integral education.

As future work it is expected to run more programs in-
volving IT companies in order to demonstrate the usefulness
of aligning social service with relevant work experience,
thus helping students to achieve their academic goals and
to successfully join the industry. Besides, it is expected to
explore potentials of this approach in other universities in
the country. In parallel, an in-depth analysis of the current
curricula should be carried out with the aim of including
such missing topics as Software Maintenance and Software
Configuration Management.

ACKNOWLEDGMENT

The authors would like to thank Mauricio Morgado and
Ricardo Cruz for leading the project, the professors Guadalupe

MIGUEL EHÉCATL MORALES TRUJILLO, GABRIEL ALBERTO GARCÍA MIRELES: PARTICIPATING IN AN INDUSTRY BASED SOCIAL SERVICE 869



Ibargüengoitia and Hanna Oktaba for coordinating the cap-
stone projects. Also, thanks to the CS students that participated
in this initiative for their contribution: Gerardo González,
Adolfo Marín, Aarón Guerrero, Alan Gutiérrez, Jhovan Gal-
lardo, Julio Chávez, Rafael Robles, Diana Góngora, Marco
Estrada, Edson Servín, Edgar Tapia and Rodrigo Casiano.

REFERENCES

[1] ACM-IEEE. Software engineering curriculum guidelines, 2014.
[2] Tero Ahtee and Timo Poranen. Risks in students’ software projects.

In 22nd Conference on Software Engineering Education and Training,
154–157. IEEE, 2009.

[3] Lorin Anderson, David Krathwohl, Peter Airasian, Kathleen Cruikshank,
Richard Mayer, Paul Pintrich, James Raths, and Merlin Wittrock. A
taxonomy for learning, teaching, and assessing: A revision of Bloom’s
taxonomy of educational objectives, Abridged edition, Longman, 2001.

[4] Barry Boehm and Daniel Port. Educating software engineering students
to manage risk. In 23rd International Conference on Software Engi-

neering, 591–600, IEEE, 2001.
[5] David Broman, Kristian Sandahl, and Mohamed Abu Baker. The

company approach to software engineering project courses. IEEE

Transactions on Education, 55(4):445–452, 2012.
[6] Bernd Brügge, Stephan Krusche, and Lukas Alperowitz. Software

engineering project courses with industrial clients. TOCE, 15:17:1–
17:31, 2015.

[7] QS Crimson. QS World university rankings, 2019.
[8] Diario Oficial de la Federación (Official Journal of the Federation).

Reglamento para la prestación del servicio social de los estudiantes
de las instituciones de educación superior en la República Mexicana
(Regulation for the social service provision of the students of the tertiary
education institutions in Mexico), 1981.

[9] Dora Dzvonyar and Bernd Bruegge. Reaching steady state in software
engineering project courses. In Combined Workshops of the German

Software Engineering Conference (SE 2018), 8–11, 2018.
[10] Fabian Fagerholm, Arto Hellas, Matti Luukkainen, Kati Kyllönen,

Sezin Yaman, and Hanna Mäenpää. Designing and implementing an
environment for software start-up education: Patterns and anti-patterns.
Journal of Systems and Software, 146:1 – 13, 2018. https://doi.org/10.
1016/j.jss.2018.08.060

[11] Fabian Fagerholm and Arto Vihavainen. Peer assessment in expe-
riential learning assessing tacit and explicit skills in agile software
engineering capstone projects. In 2013 IEEE Frontiers in Education

Conference (FIE), 1723–1729. IEEE, 2013. https://doi.org/10.1109/FIE.
2013.6685132

[12] Vinícius Gomes Ferreira and Edna Dias Canedo. Design sprint in
classroom: exploring new active learning tools for project-based learning
approach. Journal of Ambient Intelligence and Humanized Computing,
1–22, 2019. https://doi.org/10.1007/s12652-019-01285-3

[13] Panos Fitsilis and Alex Lekatos. Teaching software project management
using agile paradigm. In 21st Pan-Hellenic Conference on Informatics,
47:1–47:6, ACM, 2017. http://doi.acm.org/10.1145/3139367.3139413

[14] ISO/IEC TR 29110-5-1-2:2011 software engineering – lifecycle profiles
for very small entities (VSEs) – part 5-1-2: Management and engineering
guide: Generic profile group: Basic profile, ISO, 2011.

[15] M.J.I.M. Genuchten, van and D.R. Vogel. Getting real in the classroom.
Computer, 40(10):106–108, 2007.

[16] Carlo Ghezzi and Dino Mandrioli. The challenges of software engineer-
ing education. In 27th International Conference on Software Engineer-

ing, 637–638, ACM, 2005. http://doi.acm.org/10.1145/1062455.1062578
[17] Shanika Karunasekera and Kunal Bedse. Preparing software engineering

graduates for an industry career. In 20th Conference on Software

Engineering Education and Training (CSEET’07), 97–106. IEEE, 2007.
[18] Supannika Koolmanojwong and Barry W. Boehm. A look at software

engineering risks in a team project course. 26th International Conference

on Software Engineering Education and Training (CSEET), 21–30, 2013.
[19] Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin O

Wagner. Rugby: an agile process model based on continuous delivery.
RCoSE, 14:42–50, 2014.

[20] Viljan Mahnic. A capstone course on agile software development using
scrum. IEEE Transactions on Education, 55:99–106, 2012.

[21] Anne-Maarit Majanoja and Timo Vasankari. Reflections on teaching
software engineering capstone course. In 10th International Conference

on Computer Supported Education, volume 2 of CSEDU 2018, 68–77,
2018.

[22] Erick Matla-Cruz, Miguel Morales-Trujillo, and David Velázquez-
Portilla. Disciplinando equipos pequeños con prácticas ágiles (agile
practices and small teams discipline). Difu100cia, 8(2):28–33, 2014.

[23] Christoph Matthies. Scrum2kanban: integrating kanban and scrum in a
university software engineering capstone course. In 2nd International

Workshop on Software Engineering Education for Millennials, 48–55,
ACM, 2018.

[24] Merriam-Webster.com. Capstone, 2019.
[25] Ana M Moreno, Maria-Isabel Sanchez-Segura, Fuensanta Medina-

Dominguez, and Laura Carvajal. Balancing software engineering educa-
tion and industrial needs. Journal of Systems and Software, 85(7):1607–
1620, 2012.

[26] Bureau of Labor Statistics. Occupational Outlook Handbook, 2019.
[27] Maria Paasivaara, Dragoş Vodă, Ville T Heikkilä, Jari Vanhanen, and

Casper Lassenius. How does participating in a capstone project with
industrial customers affect student attitudes? In 40th International

Conference on Software Engineering: Software Engineering Education

and Training, 49–57, ACM, 2018.
[28] Marko Poženel and Viljan Mahnič. Studying agile software estimation

techniques: the design of an empirical study with students. Global

Journal of Engineering Education, 18(2), 2016.
[29] Guillermo Rodriguez, Álvaro Soria, and Marcelo Campo. Virtual Scrum:

A teaching aid to introduce undergraduate software engineering students
to Scrum. Computer Applications in Engineering Education, 23(1):147–
156, 2015.

[30] Manuel Rodríguez, Mario Vázquez, Hariklia Tsalapatas, Carlos de Car-
valho, Triinu Jesmin, and Olivier Heidmann. Introducing lean and
agile methodologies into engineering higher education: The cases of
Greece, Portugal, Spain and Estonia. In IEEE Global Engineering Ed-

ucation Conference, 720–729, 2018. https://doi.org/10.1109/EDUCON.
2018.8363302

[31] Robbie Simpson and Tim Storer. Experimenting with realism in software
engineering team projects: an experience report. In 30th Conference on

Software Engineering Education and Training (CSEET), 87–96. IEEE,
2017.

[32] IEEE Computer Society, Pierre Bourque, and Richard E. Fairley. Guide

to the Software Engineering Body of Knowledge (SWEBOK(R)): Version

3.0. IEEE Computer Society Press, 3rd edition, 2014.
[33] Davide Taibi, Valentina Lenarduzzi, Muhammad Ahmad, Kari

Liukkunen, Maria Lunesu, Martina Matta, Fabian Fagerholm, Jürgen
Münch, Sami Pietinen, Markku Tukiainen, Carlos Fernández, Juan
Garbajosa, and Kari Systä. “Free” innovation environments: Lessons
learned from the software factory initiatives. In International Conference

on Software Engineering Advances IARIA, 2015.
[34] DGOSE UNAM. Dirección General de Orientación y Atención Ed-

ucativa (General Directorate of Educational Orientation and Attention),
2017.

[35] DGPL UNAM. Portal de estadística universitaria (Statistics web portal
of the University), 2019.

[36] SIASS UNAM. Sistema de Información Automatizada de Servicio
Social (Social Service Information System), 2019.

[37] Jari Vanhanen, Timo OA Lehtinen, and Casper Lassenius. Software
engineering problems and their relationship to perceived learning and
customer satisfaction on a software capstone project. Journal of Systems

and Software, 137:50–66, 2018.
[38] Elaine Venson, Rejane Figueiredo, Wander Silva, and Luiz Ribeiro.

Academy-industry collaboration and the effects of the involvement of
undergraduate students in real world activities. In Frontiers in Education

Conference (FIE), 1–8, IEEE, 2016.
[39] Ira Weissberger, Abrar Qureshi, Assad Chowhan, Ethan Collins, and

Dakota Gallimore. Incorporating software maintenance in a senior
capstone project. International Journal of Cyber Society and Education,
8(1):31–38, 2015. http://dx.doi.org/10.7903/ijcse.1238

[40] Claes Wohlin and Björn Regnell. Achieving industrial relevance in
software engineering education. In 12th Conference on Software

Engineering Education and Training (Cat. No. PR00131), 16–25, IEEE,
1999.

[41] Murat Yilmaz, Faris Serdar Tasel, Ulas Gulec, and Ugur Sopaoglu.
Towards a process management life-cycle model for graduation projects
in computer engineering. PLOS ONE, 13(11):1–17, 11 2018. https:
//doi.org/10.1371/journal.pone.0208012

870 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


