
Creating See-Around Scenes using Panorama

Stitching

Saja Alferidah

King Faisal University

Saudi Arabia, Alahsa

Email:saja.alferidah@gmail.com

Nora A. Alkhaldi

King Faisal University

Saudi Arabia, Alahsa

Email: nalkhaldi@kfu.edu.sa

Abstract—Image stitching refers to the process of combining
multiple images of the same scene to produce a single high-
resolution image, known as panorama stitching. The aim of this
paper is to produce a high-quality stitched panorama image
with less computation time. This is achieved by proposing four
combinations of algorithms. First combination includes FAST
corner detector, Brute Force K-Nearest Neighbor (KNN) and
Random Sample Consensus (RANSAC). Second combination
includes FAST, Brute Force (KNN) and Progressive Sample
Consensus (PROSAC). Third combination includes ORB, Brute
Force (KNN) and RANSAC. Fourth combination contains ORB,
Brute Force (KNN) and PROSAC. Next, each combination
involves a calculation of Transformation Matrix. The results
demonstrated that the fourth combination produced a panoramic
image with the highest performance and better quality compared
to other combinations. The processing time is reduced by 67%
for the third combination and by 68% for the fourth combination
compared to stat-of-the-art.

I. INTRODUCTION

T
HE STUDY of panoramic imaging is one of the advanced

research topics in the field of computer vision, graph-

ics and image processing [1]. Panorama Stitching is defined

when two or more images of the same scene are taken by

rotating a camera about its axis. As a result of this process a

wider panorama image is created by overlapping the common

contents of each component image [2]. In 1997, Szelinski

and Shum defined creating a larger panorama image as the

integration and overlapping the common contents of two or

more images of the same scene by rotating the camera about

its axis. In 2017, Wand et al. defined panorama stitching as

taking multiple images with an overlapping area and stitching

them together into a single wide image [3][4]. In 2015, Hee-

kyeong Jeon et al. classified the panorama stitching process

as the three core steps of detecting features, matching them,

and stitching [2]. Early panorama images were created by

sliding a slit-shaped aperture across a photographic film. The

digital approach of today extracts thin, vertical strips of pixels

from the frames of a sequence captured by a translating video

camera. The resulting image is considered as multi-viewpoint

(or multi-perspective), because different strips of the image

are captured from multiple viewpoints [4]. Strip panoramas

are created from a translating camera with many variants, such

as "pushbroom panoramas" [5], "adaptive manifolds" [6], and

"x-slit" images [7]. Contrary to the hardware-based approach,

many researchers have explored the multi-perspective render-

ings of 3D models [8][9]. Yu and McMillan presented a model

that describes a multi-perspective camera [10]. Panoramic

image stitching is used in a variety of environment, including

gaming, virtual reality, virtual museums, and map applications

[11]. Microsoft Research, for example, is spending on research

projects featuring panorama stitching techniques, and many

algorithms are designed to efficiently facilitating the creation

of panoramic images through stitching [12][13].

II. BACKGROUND

Most researchers classify panorama stitching as either a

direct technique or a feature-based technique [11][14]. The

direct technique compares pixel to pixel between images and

the feature-based technique compares all features within each

image [14]. This paper applies the feature-based technique as

it is more advanced, faster, and flexible when compared to the

direct technique. Producing a panorama stitching for two or

more images of the same object is divided into three steps.

First, the process discovers the points of interest between sev-

eral images (the keypoints) and extract vector features around

each of these points of interest (the descriptors). Second,

identifies the matching lines between several images using

the extracted features after that match the correct features

and remove incorrect features. Third, find the transformation

matrix that satisfies matching with the other keypoints, and use

this transformation to align the two images before merging.

Panorama stitching is considered through two perspectives.

The first is camera rotation, where images are acquired with

the camera positioned at the same point while being rotated

to provide multiple views of the same object. The second

perspective is camera translation, where the camera is not fixed

at the same position but is moved through a linear translation

to capture the second image. This paper focuses on the second

prospective where two images are taken for the same scene

and with a slight linear displacement.

Consider a car moving towards an intersection with a large

building on the corner obstructing its view. If an image is taken

from a point ahead of its current position and stitched with

another image at its current position, such that the integrated

image shows the two overlapped as a semi-transparent view,

then this image can enable drivers to have a partial view of the

scene behind the building. This work helps to create a vision

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 293–301

DOI: 10.15439/2019F282

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 293

effect around the image, Figure 1, graphically explains this

scenario. The first camera (Camera 1) captures one image of

Fig. 1: The panorama stitching problem illustrated

building 1, which is shown as a red square. The blue square

is the image captured from the second camera (Camera 2)

that captures part of building 1 and part of building 2. The

green rectangle represents the overlapping area between the

two images and the blue area behind the green rectangle is the

portion obscured by the building. This paper employs seven

techniques, which are combined into four hybrid models, as

shown in Figure 2, to create panoramic images. The four

Fig. 2: The selected solution for four hybrid approaches

combinations include: (1) FAST , Brute Force (KNN) and

RANSAC; (2) FAST , Brute Force (KNN) and PROSAC;

(3) ORB, Brute Force (KNN) and RANSAC; (4) ORB,

Brute Force (KNN) and PROSAC. Then each combination

is followed by the calculation of a Transformation Matrix.

The results of these models are compared to the model

proposed in [2]. Basically, the model in [2] utilized ORB,

Hamming distance, PROSAC and the Transformation Matrix

to produce a stitched image. This model will be referred to

as the fifth combination here. Next sections will discuss the

seven implemented techniques.

A. FAST

The FAST technique is a high-speed corner detector

method [15] defined by having a pixel A surrounded by a

sufficient quantity of neighborhood pixels with a different

grayscale value. In this scenario, the pixel A is recognized as

Fig. 3: FAST Feature Point Detection [15]

a FAST corner and applies to grayscale images. The FAST

neighborhood must contain enough pixels with values greater

than, less than or similar to that of pixel A. We choose an

arbitrary pixel as the center to establish a circular area, to be

considered as the pixel point’s neighborhood [16]. As shown

in Figure 3, a discrete circle of radius 3 with pixel p as the

central pixel has neighborhood pixels labeled 1 to 16. If pixel

16 has sequential n pixels that satisfy the equation [16]

|Ix − Ip| > t, (1)

then, we consider p as a candidate feature point, t is a

given threshold value, Ix is the gray value of the sequential

n pixel, and Ip is the gray value of pixel p, [17]. For

features extraction and descriptors computation in the first and

second hybrid combinations based on using FAST , the Binary

Robust Invariant Scalable Keypoints (BRISK) algorithm is

incorporated, [23], because FAST can only detect corner

features but dose not compute the descriptors. Therefore, this

paper uses BRISK descriptor with FAST keypoints.

B. BRISK

BRISK is a binary descriptor that calculate the weighted

Gaussian average over selected points near the keypoint [23].
For specific pairs of Gaussian windows BRISK compare

values that could be either a 1 or a 0 depending on which

window in pair was greater [23]. BRISK descriptor applies

the sampling pattern around the keypoints [23]. The sampling

pattern rotated α angle around the keypoint k. The α is

calculated by [23]:

α = arctan 2(gy, gx), (2)

where gx and gy are the gradients sum. The bit vector

descriptor dk is collected by execute for all point pairs the

short distance intensity comparisons [23].

(p∝i , σi) ∈ S, (3)

such as every bit b corresponds to:

b =

{

1, I(p∝j , σj) > I(p∝i , σi)

0, otherwise
, (4)

∀(p∝i , p
∝
j) ∈ S, (5)

where I(p∝i , σi) is gray intensity after rotated α angle around

the keypoint k and S is gray intensity for the short distance

294 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

pairs set. At the end, BRISK uses a deterministic sampling

pattern introduce a uniform sampling-point density [23].

C. ORB

The ORB technique is based on improved FAST and

the Binary Robust Independent Elementary Features BRIEF

feature detector techniques to extract points of interest by

using a binary string [18]. Since FAST and BRIEF process

quickly, the ORB will also be fast [15]. While the FAST

technique is not sensitive to noise and is highly reliable for

identifying feature points, it does not provide an orientation.

However, ORB incorporates orientation into FAST with the

oFAST algorithm. The BRIEF approach finds descriptors

around each feature point by using a binary coding method

[19], which is simple and requires less memory compared to

SIFT and SURF [19]. Consider p is a smoothed image patch

defined on the size of S∗S (Where S contains the coordinates

of pixels) round feature points and a binary random selected

test defined as τ ,

τ(p;x; y) =

{

1, p(x)<p(y)

0, otherwise
, (6)

where P (x) is the pixel intensity at the x = (u, v)T point

[3][20][16]. After filtering is performed, a set of points can

uniquely identify one binary detection τ [16]. Therefore, the

features defined as a vector of n binary strings is the same as,

fn(p) =
∑

1≤i≤n

2i−1τ(p;x; y), (7)

[3][20][16]. Since BRIEF is not scale invariant, ORB solves

this issue by adding a direction into BRIEF by defining patch

moments as [3][20][16]

mpq =
∑

x,y

xpyqI(x, y), (8)

where p and q ∈ {0, 1} is binary selector for x and y direction

and (x, y) is the position of the FAST feature point. The

circular neighborhood radians are r, x, y ∈ [−r, r] [21][22],
and the moment is reordered (centroid) as C [3][20][22], such

that

C =
(

m10

m00

, m01

m00

)

. (9)

When assuming a center vector O to the centroid ~oc, then the

offset is defined as

Θ = arctan[
m01

m10

] = arctan[

∑

x,y yI(x, y)
∑

x,y xI(x, y)
], (10)

[3][20][16]. Therefore, ORB extracts the BRIEF descriptor

based on the direction performed by Equation 6. The random

ORB uses a greedy algorithm to find the random pixel

block with low correlation and vector length equal to a 256-

bit feature descriptor named BRIEF , [16], for which some

previous research used a different type of test, such as the

Gaussian distribution [3].

D. K-Nearest Neighbor

One image matching algorithm is KNN that take a set

of query points Q and set of references point R [24]. Then,

check for each query point q ∈ Q, compute distance between

q and all r ∈ R, sort the computed distance in list [24].
Finally, select K nearest reference points corresponding to k

smallest distance [24]. A threshold ratio value is then checked

to determine if it is a good matching point, which requires

the process to loop until at least four matches are found to

compute the Homography [25]. This paper uses the Brute

Force matcher, a simple version of the KNN , to match the

descriptors of the images.

E. RANSAC

RANSAC is a robust technique used to estimate the

Homography and remove outlier points randomly from im-

ages to provide good matches [11] and increase quality [2].
RANSAC randomly select a set of data required to calculate

a mathematical model of data parameters [26][16]. Then, with

an effective random sample [16], RANSAC uses a small

number of points to estimate the model and check if it agrees

with the remaining points by calculating their distance to the

fitted model. RANSAC can be performed N times until a

subset of the image is found with a good matching relationship

[11].

F. PROSAC

The PROSAC technique is used to remove outliers points

progressively from images to obtain good matching results

[26]. This algorithm performs the same steps as RANSAC

gradually and not randomly, which reduces the required op-

eration time and the number of repetition when the sufficient

process of verification is completed [2]. Two problems need to

be addressed in PROSAC, first is the growth function [26],

n = g(t), (11)

which is defined as the set Un of n (where U is set of features)

arranged progressively and sampled after trials t are selected

[19]. Second, PROSAC like RANSAC provides guarantees

about the stopping criterion for the optimal solution, which

must be found [26].

G. Transformation Matrix

The transformation matrix defines x in an image B with x′

as the final panorama image for calculating a new position of

pixels [27][3],

x′ ∼ Hx, (12)

where x is a new position of pixels in image B, x′ is a position

of pixels in the final panorama,∼ finds the similarity up to

scale, and H is a 3 × 3 matrix that can be calculated using

the Direct Linear Transform algorithm [27]

H =





h1 h2 h3

h4 h5 h6

h7 h8 h9



 , (13)

SAJA ALFERIDAH, NORA ALKHALDI: CREATING SEE-AROUND SCENES USING PANORAMA STITCHING 295

where points x and x′ are defined as [27]

xi =





xi

yi
wi



 , x′
i =





x′
i

y′i
w′

i



 , (14)

where xi , yi is the keypoint position and wi is set to 1. The

final equation after subsequent transformation [27] becomes:




0T −w′
ix

T
i y′ix

T
i

w′
ix

T
i 0T −x′

ix
T
i

−y′ix
T
i x′

ix
T
i 0T









h1

h2

h3



 = 0. (15)

Two linearly independent equations. In addition, this can be

written as [27]:

A





h1

h2

h3



 = 0. (16)

We add two question on matrix A for each pair of points.

III. EXPERIMENTAL RESULTS

The machine used in this work is Windows 10 with 64-

bit operating system. The application uses two cameras with

1373 × 2382 image resolution to capture sets of images for

testing the panorama stitching algorithms. The experiments are

performed using 15 different scenes, each with two captured

images. Contrast Differences is used to evaluate the quality

of the four hybrid combinations to determine if the stitched

images are seamless as the seam is considered poor when it

is visible.

A. Contrast Differences

Contrast differences are the variances in luminance between

neighboring pixels that make them distinguishable [28]. In

this paper, the differences in the contrast value between the

stitched images and the original image check the quality of

the four stitched images. Equation 17 shows the image contrast

calculation I ′k , where Ik is the image in the vertical direction,

is determined by:

I ′k(i, j) = Ik(i+ 1, j)− Ik(i, j), (17)

for 1 ≤ i < H and 1 ≤ j ≤ L . To evaluate the quality

between the original and the four stitched images, the area

of the original image and the four stitched images is divided

[28] as illustrated in Figure 4 with the stitched image Ik,k+1

and the two halves of the overlapping area from the original

images A and B and tv is the horizontal translation.

The left half of the overlapping area is mainly contributed

by the left half of the stitched image from A′. The right half of

overlapping area is mainly contributed by the right half of the

stitched image from B′. So, the contrast values of A and B

are subtracted from contrast values of A′ and B′ to calculate

the contrast difference values. The performance measures dA
and dB for the A and B regions are then calculated as [28].

dA =

H
∑

i=1

tv
∑

j=1

|I ′k(i, Lk−tv+j)−I ′k,k+1(i, Lk−tv+j)| (18)

Fig. 4: Regions for comparison [28]

dB =
H
∑

i=1

tv

2
∑

j=1

|I ′k+1(i,
tv

2
+ j)− I ′k,k+1(i, Lk−

tv

2
+ j)| (19)

where the L and H are the width and height of the images,

respectively [28]. Beside using Contrast Differences, this paper

use Peak Signal-to-Noise Ratio (PSNR) and Root Mean

Square Error (RMSE) to evaluate quality by calculating the

error rate.

1) Mean Squared Error (MSE).

MSE(x, y) =
1

N

N
∑

i=1

(xi − yi)
2, (20)

where N is number of pixels, x and y are signals, the

error signal ei = xi − yi is differences between two

signal [29].
2) Peak Signal-to-Noise Ratio (PSNR).

PSNR = 10 · log10(
L2

MSE
), (21)

where L = 28 − 1 = 255 for an 8-bit per pixel image

[29]. High value of PSNR means better quality and less

noise.

3) Root Mean Square Error (RMSE).

RMSE(I, J) =
√

MSE(I, J)

=

√

∑m

j=1

∑n

i=1
(Iij − Jij)2

m× n
,

(22)

Where I,J are two image matrices [29].

Figures 5 and 6 show two images for one building from

different angle, referred to as Data 0. Figures 7 and 8 show

two images captured for same scene, referred to as Data 1.

Figures 9, 10, 11 and 12 show the stitched images for the first,

second, third and Fourth combinations of Data 1, respectively.

Figures 13, 14, 15 and 16 show the stitched images for the first,

second, third and Fourth combinations of Data 1, respectively.

Figure 17 Provides analysis of the processing time in seconds

as shown in (a), the PSNR as shown in (b) and RMSE

as shown in (c), for the five combinations using 10 different

296 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

Fig. 5: First Image of Data 0 Fig. 6: Second Image of Data 0

Fig. 7: First Image of Data 1 Fig. 8: Second Image of Data 1

Two images of the same building were taken from two different angles as shown in Data 0 and Data 1.

scenes. The fifth combination refers to the method proposed

in [2], as mentioned earlier. In Figure 17 (a), it is clear that the

processing time of third and fourth combination take minimum

time to process stitched panorama images. From Figure 17 (b)

and Figure 17 (c) it is apparent that the fourth combination

produce better result on most PSNR and RMSE. Table I

shows the number of keypoints and matching points from

testing Data 0. Table II shows the number of keypoints and

matching points from testing Data 1. Table III show the

first and second hybrid combinations results for 10 data (i.e.

scenes) that contains two set of images with image resolution

of 1373 × 2382. Table IV show the third and fourth hybrid

combination results for 10 data. Table V show the fifth hybrid

combination results for 10 data.

IV. DISCUSSION

This paper provided four different combinations that used

for panorama stitching and compared their output images

based on processing time and quality. The third model reduced

the processing time by 67% for the ORB, Brute Force (KNN),

RANSAC, and Transformation Matrix compared to the fifth

model, [2], that used ORB, Hamming distance, PROSAC,

and the Transformation Matrix. The proposed fourth model

reduced the processing time by 68% for the ORB, Brute Force

(KNN), PROSAC, and Transformation Matrix compared

to the fifth model, [2]. The fourth model that used ORB,

Brute Force (KNN), PROSAC, and Transformation Matrix

is shown better performance and quality results compared to

other combinations. In particular, using ORB, Brute Force

(KNN), PROSAC, and Transformation Matrix in the fourth

model is shown better results of PSNR and RMSE com-

pared to other combinations, as illustrated in Tables III, IV

and V. Table I and Table II are showing the results for two

different scenes that are referred to as Data 0 and Data 1.

The four hybrid combinations are compared with regard to

detector/descriptor type, where the FAST technique is used

SAJA ALFERIDAH, NORA ALKHALDI: CREATING SEE-AROUND SCENES USING PANORAMA STITCHING 297

Fig. 9: First Hybrid Combination

Fig. 10: Second Hybrid Combination

Fig. 11: Third Hybrid Combination Fig. 12: Fourth Hybrid Combination

Fig. 13: First Hybrid Combination Fig. 14: Second Hybrid Combination

Fig. 15: Third Hybrid Combination Fig. 16: Fourth Hybrid Combination

Figures 9, 10, 11 and 12 show the resulted four stitched images using Data 0, while Figures 13, 14, 15 and 16 show the

resulted four stitched images using Data 1

298 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

(a) Processing Time (b) PSNR (c) RMSE

Fig. 17: Comparison of the five combinations in terms of: (a) Processing Time, (b) PSNR and (c) RMSE for 10 different

data.

TABLE I: The Four Hybrid Combination Techniques Results of Data 0

Data 0

Detector/
Descriptor Matching

Remove
Outliers
points Alignment

Number
of

keypoints

from
first

image

Number
of

keypoints

from
second
image

Number
of

matched
keypoints Result

Method 1
FAST \
BRISK KNN RANSAC

Perspective

Transform 7624 7731 31 Successful

Method 2
FAST \
BRISK KNN PROSAC

Perspective

Transform 7624 7731 31 Successful

Method 3
ORB \
ORB KNN RANSAC

Perspective

Transform 500 500 31 Successful

Method 4
ORB \
ORB KNN PROSAC

Perspective

Transform 500 500 31 Successful

TABLE II: The Four Hybrid Combination Techniques Results of Data 1

Data 1

Detector/
Descriptor Matching

Remove
Outliers
points Alignment

Number
of

keypoints

from
first

image

Number
of

keypoints

from
second
image

Number
of

matched
keypoints Result

Method 1
FAST \
BRISK KNN RANSAC

Perspective

Transform 2482 1901 31 Successful

Method 2
FAST \
BRISK KNN RANSAC

Perspective

Transform 2482 1901 31 Successful

Method 3
ORB \
ORB KNN RANSAC

Perspective

Transform 500 500 31 Successful

Method 4
ORB \
ORB KNN PROSAC

Perspective

Transform 500 500 31 Successful

SAJA ALFERIDAH, NORA ALKHALDI: CREATING SEE-AROUND SCENES USING PANORAMA STITCHING 299

TABLE III: Comparison of the Four Hybrid Combination Techniques for 10 Data (1)

Combination 1 Combination 2
Processing

Time
(s)

Contrast
Differences

PSNR
(dB) RMSE

Processing

Time
(s)

Contrast
Differences

PSNR
(dB) RMSE

dA dB dA dB

Data 0 2.50309 365268 267576 14.631 47.312 2.46984 73218 112068 17.609 33.581

Data 1 0.85385 13023558 8068338 10.872 68.077 0.73972 13064142 8038308 10.872 68.077

Data 2 0.62836 85230 101964 19.053 28.437 0.63583 83136 91626 19.088 28.322

Data 3 7.14782 75186 87852 15.699 41.018 7.11124 1185936 1181022 10.875 71.48

Data 4 1.09822 1451064 1209600 10.332 77.618 1.11622 104508 115926 9.652 83.936

Data 5 1.59695 75132 72858 14.766 46.584 1.60874 99432 71598 14.766 46.586

Data 6 0.57794 85758 85872 21.194 22.224 0.56634 109380 102126 19.0 28.611

Data 7 0.93311 78144 93948 18.096 31.749 0.93277 80076 71814 18.096 31.749

Data 8 1.80077 122898 103104 14.439 48.371 1.67754 158718 122154 14.3 49.151

Data 9 1.02130 84066 84612 23.493 17.057 1.04310 84066 84516 23.492 17.058

TABLE IV: Comparison of the Four Hybrid Combination Techniques for 10 Data (2)

Combination 3 Combination 4
Processing

Time
(s)

Contrast
Differences

PSNR
(dB) RMSE

Processing

Time
(s)

Contrast
Differences

PSNR
(dB)) RMSE

dA dB dA dB

Data 0 0.30996 80148 103404 16.368 38.739 0.32800 100956 100536 19.051 28.444

Data 1 0.24092 12035304 6983988 11.034 66.818 0.23476 12722154 8241258 10.788 68.739

Data 2 0.23189 124308 134700 17.702 33.222 0.22431 87174 92172 21.261 22.055

Data 3 0.26943 597486 576864 13.243 54.423 0.26545 105282 73854 20.623 23.27

Data 4 0.26986 104718 105714 16.961 36.182 0.23573 88644 98586 16.698 37.292

Data 5 0.27146 75126 85512 17.24 35.037 0.24401 77568 87516 17.243 35.028

Data 6 0.22970 1006734 801954 13.283 55.256 0.22012 83136 88596 21.759 20.825

Data 7 0.23260 65022 53256 21.752 20.843 0.22489 80082 69036 19.768 26.189

Data 8 0.23804 125682 110166 21.871 20.559 0.24186 108966 93636 22.808 18.456

Data 9 0.23218 315816 672126 8.934 91.165 0.23196 87876 89844 27.054 11.32

TABLE V: Comparison of the Four Hybrid Combination Techniques for 10 Data (3)

Combination 5
Processing

Time
(s)

Contrast
Differences

PSNR
(dB)) RMSE

dA dB

Data 0 0.91932 1203294 892212 12.906 57.705

Data 1 1.19511 49792386 35975232 9.475 43.431

Data 2 0.64943 944424 577704 18.934 28.829

Data 3 0.72190 1975944 1109010 15.203 43.431

Data 4 0.67391 552252 876252 19.258 27.774

Data 5 0.69564 1512900 1189476 12.681 59.225

Data 6 0.68438 1557420 729276 10.43 76.742

Data 7 0.73849 958362 1074060 16.943 36.258

Data 8 0.71170 2065578 1281894 15.384 43.385

Data 9 0.67448 2359956 832956 18.706 29.597

300 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

in first and second combination and the ORB technique is

used in the third and fourth combinations. It can be seen that

the FAST technique extracted more keypoints compared to

the ORB technique. As minimum number of keypoints will

reduce the processing time.

V. CONCLUSION AND FUTURE WORKS

Researchers have worked to improve panorama stitching

techniques and minimize the computational requirements. This

paper focused on a new application of panorama stitching for

a 2D scenario. The proposed methods can generate a semi-

transparent view as a solution for the project enabling drivers

to effectively see around corners. This paper also compared

the quality and processing time of the produced 2D views

within the scope of state-of-the-art methods. For future work,

the presented models can be extended to include 3D scenes.

Another future work can provides a real-time processing for

similar applications to assist drivers and pedestrians. Finally,

additional novel techniques could be implemented to enhance

the methods discussed in this work.

ACKNOWLEDGMENT

We would like to express our special thanks to King Faisal

University and to Dr. Syed Afaq Husain, Dr. Muhammad Bilal

Ahmad and Dr. Asrar Ul Haque for their feedback which

helped to improve the project.

REFERENCES

[1] Haque, M.J., “Improved Automatic Panoramic Image Stitching,” Lap

Lambert Academic Publishing GmbH KG, 2012
[2] H. Jeon and J. Jeong and K. Lee, “An implementation of the real-time

panoramic image stitching using ORB and PROSAC,” International

SoC Design Conference (ISOCC), 2015, pp. 91–92.
[3] M. Wang and S. Niu and X. Yang, “A novel panoramic image stitching

algorithm based on ORB,” International Conference on Applied System

Innovation (ICASI), 2017, pp. 818–821.
[4] A. Agarwala1 and M. Agrawala and M. Cohen and D. Salesin1 and R.

Szeliski, “Photographing long scenes with multi-viewpoint panoramas,”
ACM TRANSACtions on Graphics, 2006, vol. 25, pp. 853–861.

[5] R. Gupta and R. I. Hartley, “Linear pushbroom cameras,” IEEE

TRANSACtions on Pattern Analysis and Machine Intelligence, 1997,
vol. 19, pp. 963–975.

[6] S. Peleg and B. Rousso and A. Rav-Acha and A. Zomet, “Mosaicing on
adaptive manifolds,” IEEE TRANSACtions on Pattern Analysis and

Machine Intelligence, 2000, vol. 22, pp. 1144–1154.
[7] A. Zomet and D. Feldman and S. Peleg and D. Weinshall, “Mosaicing

new views: the Crossed-Slits projection,” IEEE TRANSACtions on

Pattern Analysis and Machine Intelligence, 2003, vol. 25, pp. 741–754.
[8] M. Agrawala and D. Zorin and T. Munzner, “Artistic Multiprojection

Rendering,” Proceedings of the Eurographics Workshop on Rendering

Techniques, 2000, pp. 125–136.
[9] J. Yu and L. Mcmillan, “A Framework for Multiperspective Render-

ing,” Proceedings of the 15th Eurographics Conference on Rendering

Techniques, 2004, pp. 61–68.

[10] J. Yu and L. Mcmillan, “General Linear Cameras,” Proceedings of the

8th European Conference on Computer Vision, 2004, pp. 14–27.
[11] M. Z. Bonny and M. S. Uddin, “Feature-based image stitching algo-

rithms,” International Workshop on Computational Intelligence (IWCI),
2016, pp. 198–203.

[12] R. Szeliski and H. Shum, “Creating Full View Panoramic Image Mosaics
and Environment Maps,” Proceedings of the 24th Annual Conference

on Computer Graphics and Interactive Techniques [ACM Press], 1997,
pp. 251–258.

[13] A. Wójcicka and Z. Wróbel, “The Panoramic Visualization of Metallic
Materials in Macro- and Microstructure of Surface Analysis Using
Microsoft Image Composite Editor (ICE),” Proceedings of the Third

International Conference on Information Technologies in Biomedicine,
2012, pp. 358–368.

[14] P. Azad and T. Asfour and R. Dillmann, “Combining Harris interest
points and the SIFT descriptor for fast scale-invariant object recogni-
tion,” International Conference on Intelligent Robots and Systems, 2009,
pp. 4275–4280.

[15] J. Jiao and B. Zhao and S. Wu, “A speed-up and robust image registration
algorithm based on FAST,” IEEE International Conference on Computer

Science and Automation Engineering, 2011, vol. 4, pp. 160–164.
[16] L. Yu and Z. Yu and Y. Gong, “An Improved ORB Algorithm of

Extracting and Matching Features,” International Journal of Signal

Processing and Pattern Recognition, 2015, vol. 8, pp. 117–126.
[17] E. Rosten and and T. Drummond, “Machine Learning for High-speed

Corner Detection,” Proceedings of the 9th European Conference on

Computer Vision - Volume Part I [Springer-Verlag], 2006, pp. 430–443.
[18] J.J. Anitha and S.M.Deepa, “Tracking and Recognition of Objects using

SURF Descriptor and Harris Corner Detection,” International Journal

of Current Engineering and Technology, 2014, vol. 4, pp. 775–778.
[19] K. Dohi and Y. Yorita and Y. Shibata and K. Oguri, “Pattern Compres-

sion of FAST Corner Detection for Efficient Hardware Implementation,”
21st International Conference on Field Programmable Logic and Appli-

cations, 2011, pp. 478–481.
[20] E. Rublee and V. Rabaud and K. Konolige and G. Bradski, “ORB:

An efficient alternative to SIFT or SURF,” International Conference on

Computer Vision, 2011, pp. 2564–2571.
[21] M. Brown and D.G. Lowe, “Automatic Panoramic Image Stitching using

Invariant Features,” International Journal of Computer Vision, 2007,
vol. 74, pp. 59–73.

[22] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,”
Proceedings of the 4th Alvey Vision Conference, 1988, pp. 147–151.

[23] S. Leutenegger and M. Chli and R. Y. Siegwart, “BRISK: Binary
Robust invariant scalable keypoints,” International Conference on Com-

puter Vision, 2011, pp. 2548–2555.
[24] A. S. Arefin and C. Riveros and R. Berretta and P. Moscato, “GPU-

FS-KNN : A Software Tool for Fast and Scalable KNN Computation
Using GPUs,” PloS one, 2012, vol. 7, pp. e44000.

[25] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recog-

nition, 1997, pp. 1000–1006.
[26] O. Chum and J. Matas, “Matching with PROSAC - progressive sample

consensus,” IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), 2005, vol. 1, pp. 220–226.
[27] P. Ostiak, “Implementation of HDR panorama stitching algorithm,”

10th Central European Seminar on Computer Graphics for Students

(CESCG), 2006.
[28] C.Y. Chen, “Image Stitching - Comparisons and New Techniques,”

CITR-TR-30, 1998.
[29] P. Ndajah and H. Kikuchi and M. Yukawa and H. Watanabe and

S. Muramatsu, “An investigation on the quality of denoised images,”
International Journal of Circuits, Systems and Signal Processing, 2011,
vol. 5, pp. 423–434.

SAJA ALFERIDAH, NORA ALKHALDI: CREATING SEE-AROUND SCENES USING PANORAMA STITCHING 301

