
Efficient Support Vector Regression with Reduced

Training Data

Ling Cen

EBTIC, Khalifa University, UAE

cen.ling@kustar.ac.ae

Quang Hieu Vu

Zalora, Singapore

quanghieu.vu@zalora.com

Dymitr Ruta

EBTIC, Khalifa University, UAE

dymitr.ruta@kustar.ac.ae

Abstract—Support Vector Regression (SVR) as a supervised
machine learning algorithm have gained popularity in various
fields. However, the quadratic complexity of the SVR in the
number of training examples prevents it from many practical
applications with large training datasets. This paper aims to
explore efficient ways that maximize prediction accuracy of the
SVR at the minimum number of training examples. For this
purpose, a clustered greedy strategy and a Genetic Algorithm
(GA) based approach are proposed for optimal subset selection.
The performance of the developed methods has been illustrated
in the context of Clash Royale Challenge 2019, concerned with
decks’ win rate prediction. The training dataset with 100,000
examples were reduced to hundreds, which were fed to SVR
training to maximize model prediction performance measured in
validation R

2 score. Our approach achieved the second highest
score among over hundred participating teams in this challenge.

Index Terms—Support Vector Regression (SVR), K-means
clustering, greedy search, R-squared metric, Clash Royale

I. INTRODUCTION

Support Vector Regression (SVR) shares the same set of

properties as Support Vector Machine (SVM) does for classifi-

cation. Examples include tolerating some errors, characterizing

hyper-plane that maximizes the margin, etc. Because of these

good properties, during the past decades, SVR as well as

SVM have attracted increasing interest and successfully solved

supervised machine learning problems in various fields [1],

[2], [3]. Its quadratic complexity in the number of training

examples, however, eliminates the SVR from training on large

datasets, especially if frequent retraining is required [4], [5].

High computational cost associated with the large number of

support vectors is a critical drawbacks in comparison with

other supervised machine learning algorithms [6], [7], [8].

To improve model efficiency, some approaches for model

simplification have been proposed in the literature, e.g. elimi-

nating support vectors linearly dependent on the other support

vectors [9], selectively removing examples from training data

using probabilistic estimates related to editing algorithms

[10], reducing the number of support vectors using smoothed

separable case approximation [8] or k-mean clustering [5], etc.

One efficient way for fast SVR training is to maximize

its prediction accuracy at the minimum number of training

examples. To address this challenge, a multi-step clustered

greedy strategy is proposed for selecting a small data subset

fed to SVR training fitted with automated robust hyper-

parameter selection. Its performance has been illustrated in the

context of Clash Royale Challenge 2019 with an aim to build

an efficient win-rate prediction model on a relatively small

subset of decks. The 100,000 labelled data examples in the

training dataset were reduced to hundreds, over which a SVR

model can be trained with near-maximal validation R2 score.

Our method achieved the second highest score among over

hundred participating teams. In addition, a Genetic Algorithm

(GA) based approach is also proposed for subset selection to

explore global search in training data reduction.

The remainder of the paper is organized as follows. The

Clash Royale Challenge 2019 is described in Section II. The

clustered greedy selection strategy is elaborated in Section III,

followed with the GA based selection approach in Section IV.

The experiment results are discussed in Section V. Finally,

concluding remarks are given in Section VI.

II. COMPETITION DESCRIPTION

Clash Royale is a popular video game, where players build

decks consisting of 8 cards representing playable troops,

buildings, and spells to attack opponent’s towers and defend

against their cards. Building good decks is, therefore, critical

to win the game. The intention of the challenge is to find out

whether it is possible to build an efficient win-rate prediction

model on a relatively small subset of decks, whose win rates

were estimated in the past.

The competition training dataset includes 100,000 decks

comprising 8 cards out of the total of 90 unique possible

cards, which were most commonly used by players during

3 consecutive league seasons in 1v1 ladder games, with

accompanied win-rates computed over 160m games. The val-

idation set contains 6000 randomly selected decks with their

corresponding win-rates, which was extracted from the 3 next

game seasons after the training data period. The testing data

extracted from the same period as the validation set, which

were unrevealed to participants, were used to evaluate the

solutions submitted to the competition,

The task of the competition was to select 10 subsets from

the 100,000 training decks, on which 10 efficient SVR models

can be trained with best performance of win-rate prediction.

Besides the 10 subsets, the hyper-parameter values of the

SVR models with radial kernels, including ǫ, C, and γ, were

required together.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 15–18

DOI: 10.15439/2019F362

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 15



The Performance of a SVR model is assessed by the R2

metric of the model, which is defined as

R2 = 1−

∑
i
(yi − pi)

2

∑
i
(yi −

1

N

∑
i
yi)2

, (1)

where yi and pi are the true and predicted values of the win-

rate of the ith data point, respectively, and N is the size of

the testing dataset. The score of a solution is the average of

the R2 scores of the 10 SVR models.

The facility to score derived model solutions on a part of

the testing set was provided via the web-based KnowledgePit

platform. Although the submission had to be evaluated for the

whole testing set, the feedback in a form of the R2 score was

received based on a small subset of the testing examples, fixed

for the competitors in the preliminary stage

III. CLUSTERED GREEDY SELECTION STRATEGY

The clustered greedy strategy has been developed for se-

lecting optimal training subsets, which consists of 4 steps,

i.e. k-means clustering, forward greedy search, sequence opti-

mization, and fine-tuning process. The implementation details

of the method will be elaborated in this section.

A. Data preparation

Estimation of future average win-rates for every deck are

enforced to be done with the SVR model trained on the bag-of-

cards represented decks and their historically computed win-

rates. Given 90 unique cards the training dataset is transformed

to a binary matrix with a dimension of 100k×90 representing

100k (examples) by 90 (card presence indicators), while the

output vector with a dimension of 100k × 1 contains corre-

sponding win-rates. Similarly, the validation set (6000 × 90)

and its corresponding outputs (6000 × 1) are prepared in the

same way.

There is a big gap between the validation R2 values of our

submission-ready solutions and the leaderboard scores, e.g. the

former is in the range of 0.4-0.5 while the latter is in 0.2-0.25.

To avoid over-fitting and achieve robust models, the validation

dataset are extended by combining the original validation set

and training data in 4 ways, denoted as E1, E2, E3, and E4,

which are:

• E1: 6000 data examples in the original validation dataset;

• E2: 6000 data examples in the original validation dataset

and 6000 examples having the largest number of games

in the training dataset;

• E3: all data examples in the training dataset, and 16

copies of the original validation dataset for balanced

involvement of training and evaluation dataset;

• E4: removing the training points having the same decks

as those in the validation set from E3 due to the big

discrepancies between the two sets.

The performance of SVR models obtained during search will

be evaluated on one of the 4 validation sets.

B. Hyper-parameters of SVR

The hyper-parameters of the SVR models with radial basis

function (RBF) kernel, including ǫ, C, and γ, are achieved in

below ways:

• C, the constraint to the alpha coefficients, is set as C =
iqr(Y )/1.349, where iqr(Y ) is the inter-quartile range

of the response variable, Y .

• ǫ is set to be an estimate of 0.1 of Y ’s standard deviation,

i.e. ǫ = iqr(Y )/13.49.

• γ is selected using the heuristic procedure internally

implemented in MATLAB.

C. k-means clustering

The idea here is to constitute a subset with the data points

distributed in the full space of training data. To achieve this,

the data are firstly divided into k groups by k-means clustering.

A subset is composed by selecting data points equally from

each of the k clusters. Smaller k leads to high computational

cost and possibly over-fitting caused by concentrated distribu-

tion of the selected data, while bigger k may overlook unique

distribution of the training data. We have made a comparison

on different values of k, e.g. 20, 50, and 100, from which it

can be seen that k = 50 gives the best results.

D. Forward greedy search (FGS)

After dividing the training data into k clusters, a forward

greedy algorithm is applied to select the best subset, which

follows a simple strategy of adding the best possible data point

from one cluster at each time. After a round is completed, in

which k points have been added respectively from k clusters,

a new round is started if the subset is not fully filled. The

flowchart of the search process are shown in Fig. 1.

This search ensures near-optimal performance at the high

computational cost of testing the addition of all remaining data

points before selecting the best at each search. The advantage

of our method is exhaustive evaluation is only performed on

data points within a cluster, which, compared to testing all

points in the full training dataset, reduces computational cost

to 1/k. In addition, such search is deterministic hence it can

be implemented in parallel.

Below list compares the regression performance of the

SVR models trained over the subsets selected with different

values of k and using different validation sets for performance

evaluation of any model yielded in search:

• R2 = 0.2158, k = 100, validation set: E1,

• R2 = 0.2277, k = 50, validation set: E1,

• R2 = 0.2566, k = 20, validation set: E2,

• R2 = 0.2593, k = 50, validation set: E2,

where R2 is the leaderboard score received in the preliminary

stage.

E. Sequence optimization (SO)

The greedy search that chooses what appears to be the

optimal immediate choice at each time cannot ensure global

optimal performance since the current best point may not lead

to global best path. To improvement this, after 1500 training

16 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Figure 1. Flowchart of forward greedy search, where i and r denote the
indices of a search and a around, respectively, i.e. the i

th search is to find the
best point from all available remaining data in the i

th cluster, and a round is
to find k points in k clusters respectively.

data points are selected, the sequence of the selected data

points are re-arranged by starting a new round of forward

greedy search within the 1500 points. Searching within a

compressed set, model evaluation can be performed on E3

or E4 validation set at a much lower computational cost than

exhaustive evaluation of all available points in a full clustered

set. The prediction performance in the steps of FGS and SO

are compared below (k = 50):

• R2 = 0.2277 in FGS with a validation set of E1 –>

R2 = 0.2445 in SO with a validation set of E3;

• R2 = 0.2593 in FGS with a validation set of E2 –>

R2 = 0.2655 in SO with a validation set of E3;

• R2 = 0.2593 in FGS with a validation set of E2 –>

R2 = 0.2702 in SO with a validation set of E4.

After sequence optimization, the first n data points in the

selected subset are the best n points of the set. From this set

choosing the best 600,700,..,1500 is readily given by taking

the incrementally growing chunk of the data.

F. Fine-tuning process

The final step of our selection approach is a fine-tuning

process, which constitutes a new subset by combining the

support vectors of the SVR model from the previous step with

the training examples outside ǫ-intensive band with smaller

deviation between ground truth and corresponding prediction.

The improvement, however, is not always quite obvious.

The solution with R2 = 0.2702 can only be improved to

R2 = 0.2703, while some solutions achieved in previous

steps can be improved a little more, e.g. the solution with

R2 = 0.2593 can be improved to R2 = 0.2606.

IV. GA BASED SELECTION APPROACH

In addition to the main method that was presented in the

previous section, we also implemented another approach using

Genetic Algorithm (GA). In this section, we will present our

GA based approach to select training decks.

A. Population, individual (chromosome), and gene

In GA, at any point of time, there is a population consisting

of individuals each of which is a possible solution that includes

ten different sets of training decks together with the three

required parameters to train an SVM: ǫ, C, and γ. In other

words, an individual in our GA population is a possible

solution or submission to the competition.

Given the above definition for an individual in GA, we can

see that there are a couple of ways to define a gene in the

individual (as an individual is a chromosome that contains a

set of genes).

• A possible definition is to consider each training set of

deck indices together with the parameters ǫ, C, and γ as

a gene. In this way, we have exactly 10 genes from 10

training sets of decks in each individual. This definition,

however, has an issue as the gene is too big to efficiently

and effectively perform different variation operations.

• Instead of applying the above definition, the smallest unit

of the individual is considered as a gene in which a gene

could be a specific ǫ, C, and γ to train a model with a set

of training decks, or even a training deck in this training

set. While this definition gives us a finer granulation for

the gene, it requires some tricks to support crossover and

mutation that we will discuss later to make generation

evolve.

B. First generation

As in a typical approach, the first generation of GA should

be generated randomly.

• A random ǫ in the range: 0.0 to 1.0

• A random C in the range: 0.0 to 1000.0

• A random γ in the range: 0.0 to 10.0

• A random set of indices in the range: 1.0 to 100000.0

However, in order to help the GA involve faster, in addition

to randomly generated individuals, we also employ few simple

approaches to get some seed (good) individuals for the first

generation. Note that these approaches are only used to select

(possible) better training decks (indices). For ǫ, C, and γ, we

use default values (specifically, ǫ = 0.1, C = 1.0, and γ =
1.0/90). Training deck indices were generated for the seed

individuals in the following approaches

• Using indices from decks having the highest number of

games in the training data.

• Using indices from decks having the highest number of

players in the training data.

• Using k-means algorithm to cluster training data into

different groups (e.g. 60 -> 150) and again selecting

the top-10 indices from each group having the highest

number of games or the highest number of players.

LING CEN ET AL.: EFFICIENT SUPPORT VECTOR REGRESSION WITH REDUCED TRAINING DATA 17



C. Fitness measurement

As each individual in our GA is a possible solution or

submission, the straightforward fitness score is the prediction

score of the validation data using model trained by parameters

and indexed data specified in the individual. In addition to this

fitness measurement, another way is to evaluate the model

using both training and validation data sets (using different

way to give higher weights to the validation data then the

training data – as ultimately, we still need to mainly rely on the

validation data set). While this validation seems to be better

to avoid over-fitting, the trade-off, however, is that it takes

significantly more time for the evaluation as the model needs

to be evaluated for a much bigger set of data.

D. Mutation

Given an individual, we first randomly select a set of

training decks for the mutation. Then, we will choose to

change one of the following components:

• Changing ǫ to a random number between 0.0 and 1.0,

changing C to a random number between 0.0 and 1000.0,

and changing γ to a random number between 0.0 and 10.0

all with a grid of 10−6.

• Initially, we randomly selected a single training deck

to be replaced by another one outside the training set.

However, this approach makes the GA extremely slow in

progress. Thus, instead of selecting one training deck,

to make the GA evolve faster, we chose to randomly

select 5% of training decks from the existing indices for

replacement.

Note that in each generation, we randomly select 25% of the

population to apply mutation for generating new individuals.

E. Crossover

Given a pair of individuals, we first randomly select a set

of training decks for crossover. Then, we choose to perform

crossover in the following components:

• Choosing an ǫ, C, γ independently from a randomly

selected individual.

• We first randomly select a training set of indices having

the same size from both individual (e.g. training set

of 1000 indices from both sides). Then, from the two

training set of indices, we select half of them from each

individual. Note that there could be overlapping in the

selected indices from both individual, and hence generate

less than the number of required indices. In this case, we

have two ways to fill the missing indices: to continuously

select indices from two individuals to fill or randomly

select new indices from outside to fill. In our approach,

we randomly use one of the two methods.

Note that in each generation, we randomly select 50% of the

population to apply crossover for generating new individuals.

F. Selection

We follow the traditional approach to select individuals from

a generation to the next one. Basically, the probability of an

individual to be selected is proportional to the fitness score

it has. It means that the stronger (higher fitness score) of an

individual, the higher chance it is being selected to be in the

next generation. In our implementation, we choose to maintain

a population of 50 individuals in each generation.

V. EXPERIMENT RESULTS

By applying the proposed methods, the best solution was

achieved by clustered greedy selection with below settings:

• k = 50 in clustering,

• validation set: E2 in the step of FGS,

• validation set: E4 in the step of SO.

Its leaderboard R2 score is 0.2593 from forward greedy search

and improved to 0.2703 via sequence optimization and fine-

tuning. The SO contributes most to score improvement from

0.2593 to 0.2702. The final score evaluated on the full testing

dataset is 0.253017. Both the preliminary and final scores

of the solution are the 2nd highest among over hundred

participating teams, showing robustness of the method against

over-fitting.

VI. CONCLUSIONS

This paper explores the possibility of training a Support

Vector Regression (SVR) model using a minimal number of

training data samples. Two approaches, i.e. clustered greedy

strategy, and Genetic Algorithm (GA) based method, are

proposed for the selection of data subset fed to SVR training

to maximize validation performance. The details of the imple-

mentation are elaborated in the paper. The proposed methods

successfully selected hundreds of points from 100,000 labeled

data samples for efficient SVR training in decks’ win-rate pre-

diction and scored 2nd place among over hundred participating

teams in the Clash Royale Challenge 2019.

REFERENCES

[1] B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal mar-
gin classifiers," Proc. Fifth Annual Workshop of Computational Learning

Theory, vol. 5, pp. 144–152, Pittsburgh, 1992.
[2] V. Vapnik, "The Nature of Statistical Learning Theory," Springer, New

York, 1995.
[3] V. Vapnik, S. Golowich and A. Smola, “Support Vector Method for

Function Approximation, Regression Estimation, and Signal Processing,”
in M. Mozer, M. Jordan, and T. Petsche (eds.), Neural Information
Processing Systems, vol. 9, MIT Press, Cambridge, MA., 1997.

[4] A. Smola, and B. Schölkopf, "A Tutorial on Support Vector Regression,"
Statistics and computing, vol. 14, pp. 199-222, 2003.

[5] X. Xia,M. Lyu, T. Lok, G. Huang, "Methods of Decreasing the Number
of Support Vectors via k-Mean Clustering," Proc. Int. Conf. Intelligent

Computing, pp. 717-726, 2005.
[6] C. Burges, "Simplified support vector decision rules," Proc. 13th Int.

Conf. Mach. Learning, pp. 71-77, 1996.
[7] E. Osuna and F. Girosi, "Reducing the run-time complexity of support

vector machines," Int. Conf. Pattern Recognition, Australia, 1998.
[8] D. Geebelen, J. Suykens, J. Vandewalle, "Reducing the number of

support vectors of SVM classifiers using the smoothed separable case
approximation," IEEE Trans Neural Netw Learn Syst., vol. 23, no. 4,
pp. 682-688, 2012.

[9] T. Downs, K. Gates, and A. Masters, "Exact simplification of support
vector solutions," Journal of Machine Learning Reseaerch, vol. 1, pp. 293-
297, 2001.

[10] G. Bakir, J. Weston, and L. Bottou, "Breaking SVM complexity with
cross-training," Advances in Neural Information Processing Systems,
vol. 17, pp. 81-88, 2005.

18 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


