
Abstract— We deal here, in the context of a H2020 project,

with  the  design  of  evacuation  plans  in  face  of  natural

disasters:  wildfire,  flooding…  People  and  goods  have  to

been transferred from endangered places to safe places. So

we   schedule  evacuee  moves  along  pre-computed  paths

while respecting arc capacities and deadlines. We model this

scheduling  problem  as  a  kind  of  multi-mode  Resource

Constrained  Project  Scheduling problem  (RCPSP)  and

handle it through network flow techniques.

I. INTRODUCTION

HIS work has been carried on in the context of the

H2020  GEOSAFE  European  project  [4],  whose

overall  objective  is  to  develop  methods  and  tools

enabling to set up an integrated decision support system

to  assist  authorities  in  optimizing  the  resources  during

the response phase to a natural disaster, mainly a wildfire

or a flooding.  In such a circumstance, decisions which

have  to  be  taken  are  about  fighting  the  cause  of  the

disaster,  adapting  standard  logistics  (food,  drinkable

water,  health…)  to  the  current  state  of  infrastructures,

and  evacuating  endangered  areas  (see  [2]).  We  focus

here  on  the  late  evacuation  problem,  that  means  the

evacuation of people and eventually critical goods which

have been staying at their place as long as possible.  

T

While evaluation planning remains mostly designed by

experts,  2-step  optimization  approaches  have  been

addressed  [2]:  the  first  step  (pre-process)  involves  the

identification  of  the  routes  that  evacuees  are  going  to

follow;  the second step,  which has  to be performed in

real time, aims at scheduling the evacuation of estimated

late evacuees along those routes. As a matter of fact, this

last  step  involves  2  distinct  work  pieces,  one  about

forecasting, difficult in the case of wildfire,  because of

their dependence to topography and meteorology [4], and

the second one about priority rules and evacuation rates

imposed to evacuees [3]. The model which we study here

is closed to the one proposed in [1] and called the  non

preemptive  evacuation  planning  problem (NEPP).

According to it, remaining evacuees have been clustered

into  groups  with  same  original  location  and  pre-

computed route, and once a group starts moving, then it

must keep on at the same rate until reaching his target

safe  area  (Non  Preemption hypothesis,  which  matches

practical  concerns  of  the  people  who  supervise  the

evacuation process).  While authors  in [1]  address  their

model while discretizing both the time space and the rate

domains and applying constraint propagation techniques,

we  consider  it  as  an  extension  of  the  Resource

Constrained  Project  Scheduling  Problem (RCPSP:

[5,6]),  with  continuous  variables  which  identify

evacuation  rates  and  with  an  objective  function  which

reflects the safety provided to every evacuee. We use this

RCPSP  reformulation  in  order  to  design  a  heuristic

algorithm  which  deals  with  our  problem  according  to

network  flow  like  techniques,  well-fitted  to  real-time

emergency contexts. 

The paper is structured as follows: Section 2 provides the

NEPP  model.  Section  3  describes  our  RCPSP

reformulation.  Sections  4,  5  are  about  algorithms  and

numerical tests. 

II. NON PREEMPTIVE EVACUATION PLANNING (NPEP)

We consider here a transit network  H = (N,  A):  N is its

node set and  A its arc set; Every arc  e  A is provided

with  the  time  TIME(e)  required  for  some  evacuee  to

move through e and with the maximum  number CAP(e)

of evacuees who may engage themselves e per time unit.

We distinguish:  

- The Evacuation node subset N+, whose nodes are la-

belled i = 1..n and related to some population P(i).

- The  Safe node subset  N-and the  Relay node subset

N=. 

Evacuees of the population  P(i)  located at  i  N+  move

along a pre-determined path (i), that means a sequence

of arcs ei
1,.., e

i
k(i) connecting i to some safe node S(i). We

set  L_TIME(i) =   k =  1..k(i) TIME(e  i
k),  and, for any  k =
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1..k(i): L(i, k) =  k ≤ j TIME(e
i
k) and L*(i, k) =  k ≥ j 

TIME(e
i
k). 

We must comply with capacity restrictions: During one 

time unit, no more than Deb(i) evacuees may start moving 

from i  N
+ 

and no more than CAP(e) evacuees may 

simultaneously engage themselves on a given arc e.  Also, 

forecast about the way the natural disaster will evolve 

imposes that for any arc e of the transit network, nobody 

may start moving along e after deadline Dead(e), while 

the whole evacuation process should be over at global 

deadline T-Max. Thus all evacuees coming from i  N
+ 

should reach related safe node S(i), before (i) = Inf (T-

Max, Inf k = 1..k(i) (Dead(e
i
k) + L*(i, k)). 

Besides, authorities impose Non Preemption : once 

evacuees related to evacuation node i have started 

moving, they must keep on at the same speed and rate 

along path (i), until they all reach safe node S(i). We 

denote by vi the related evacuation rate (number of 

evacuees per time unit which enter on (i) at until i 

becomes empty. We derive an upper bound v-max(i) for 

vi by setting:  v-max(i) = Inf (Inf j CAP(e
i
k)), Deb(i)). We 

also see that if we are provided with the start-date Ti of i 

evacuation process and with its evacuation rate vi then we 

deduce its end-date T*i = Ti + L_TIME(i) + P(i)/vi. We 

deduce from deadline (i) a minimal evacuation rate v-

min(i) = P(i)/((i) – L_TIME(i)). 

Then, the Non Preemptive Evacuation Planning Problem 

(NEPP) is about the computation of an evacuation 

schedule, which means of start-times Ti and evacuation 

rates vi, i  N+.  The quality of such a schedule = (T,v) 

is going to be the weighted safety margin  i P(i).((i) - 

T*i). 

 

III. A RCPSP ORIENTED REFORMULATION OF NPEP.    

  

We identify evacuation nodes i of network H and related 

evacuation jobs. So the key idea here is to consider the 

arcs e of the network H as resources, likely to be 

exchanged by evacuation jobs i, j whose paths (i) and 

(j) share arc e. In order to formalize it, we introduce 

Conditional Time Lags:    

- If (i) = {e
i
1,.., e

i
k(i)} and (j) = {f

j
1,.., f

j
k(j)} share arc e 

= e
i
k= f

j
l, and if evacuees from j come on e after 

evacuees from i, then delay Tj – Ti will be no smaller 

than TL-Elem(i, j, e) = L(i, k-1) – L(j, l-1) + P(i)/vi. 

-  Set Arc(i,j) = {e (i)  (j)} and TL(i,j, vi) = Sup e 

 Arc(i,j) (L(i, k-1) – L(j, l-1)  + P(i)/vi) = Conditional 

Time Lag between i and j. If Arc(i,j) ≠ Nil and 
evacuees of j enter after evacuees of i on the arcs of 

Arc(i,j),  then we must have Tj ≥ Ti + TL(i,j, vi). We 

notice TL(i,j, vi) depends in a convex way on the 

evacuation rate vi of i.  

This notion is illustrated by following Figure 1: 

 
  P(x) = 50, vy = 10; P(y) = 40, vy = 15  => 

  L(x,2) = 7; L(y, 2) = 5; TL(x,y vx) =   7 + 4 – 5 = 6. 

Figure 1: Conditional Time Lags.  

 

We derive a RCPSP (Resource Constrained Scheduling: 

[5,6]) reformulation of NEPP, which relies on the fact 

that we consider every evacuation job i  N
+
 as a job, 

whose execution requires resources which are arcs e  

(i), constrained by their capacities CAP(e) and whose 

start-dates are constrained by conditional time lags:  

 

NPEP-RCPSP Model : 

{Preliminary : We add to the set N
+
 two fictitious jobs 

s (source) and p (sink), in order to express the way 

resources are exchanged between jobs as a flow 

vector. Then we set, for any i  N
+
: TL(s,i, CAP(e)) = 

0 and TL(i,p, vi) = L_TIME(i) + P(i)/vi. 

Output Vectors : For any i in N
+
  {s,p} compute 

start-date Ti and evacuation rate vi; In order to do it 

we involve, for any pair (i,j) and any arc e in Arc(i,j) 

the part wi,j,e of access rate to e which is given by i to j 

 

Constraints :  

o For any i  p, Ti + L_TIME(i) + P(i)/ vi ≤ (i) ;

 (*Deadline Constraints*)       (E1) 

o for any pair (i,j) and any e in Arc(i,j),  wi,j,e ≠ 0 ->  

Tj ≥ Ti + TL(i,j, vi); (*Conditional Time Lag 

Constraints*)            (E2) 

o Ts = 0 ;               (E3) 

o For any i in N
+
, N

+
 and any arc e in (i), (*Flow 

Constraints*):   j such that  e   Arc(x,y)  wi,j,e = vi  

 =  j such that  e   Arc(j,i)  wj,i,e;        (E4) 

o For any arc e of the transit network H : (*Flow 

Constraints*):CAP(e) =  i such that e   (i) ws,i,e  

  =   i such that e   (i) wi,p,e;       (E5) 

o For any i dans N
+
, v-Min(i) ≤ vi ≤ v-Max(i). (E6) 

Maximize:  i P(i).((i) – Ti – L_TIME(i) - P(i)/vi) 

  

Explanation: (E1) tells that every evacuation job i must 

be achieved before deadline (i). (E2) means that if job i 

provides j with some access to arc e, then the conditional 

time lag inequality holds. (E4, E5) express Flow Kirshoff 

laws: arcs e are resources that evacuation jobs exchange 

between them; so job i receives vi resource  (evacuation 

rate) for any e  (i) and no more than CAP(e) such 

resource may be simultaneously distributed between 

evacuation jobs  . 
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IV. ALGORITHMS 

 

 NMEP model contains both NP-Hard RCPSP and TSP 

problems. We have to choose between assigning high 

rates vi to jobs i or let them monopolize the access to 

transit arcs, or conversely restricting vi in order to make i 

share its arcs. In order to do it, we implement a two-step 

approach: MNEP-First-Step searches a feasible schedule 

satisfying (E1,..,E6), while MNEP-Second-Step increases 

rates vi in order to improve the weighted safety margin.  

 

A. The Greedy-NPEP Process. 

 

Greedy-NPEP starts from some linear ordering  defined 

on  N
+
  {s,p}, and considers at any time some job i0 

such that for any j prior to i0 according to , vj, Tj and 

values (j,e) = access level to arc e that job j can transmit 

to i0 are available.Then it applies a 3 stage function 

Assign(i0) which computes (see Fig. 1) vi0, Ti0 and flow 

values wj,i0,e, j s.t j  i0, and e  Arc(j,i0), or, in case of 

failure,  a job j-fail  i0 considered as cause of the failure.   

 

- (1) : Assign scans path (i0), and for any e in (i0), 

provides i0 with access rate to e in such a way 

resulting end-date T*i0 ≤ (i0).  (see Fig. 2): 

 

Assign1 

For e in (i0) do 

Let L-Job = {j s.t (j  i0) AND (e  Arc(j, i0) AND 

((j, e)  0), ordered according to increasing Tj + 

TL(j, i0, vj) values};  v <- 0 ; Not Stop ; 

While L-Job ≠ Nil AND Not Stop do  

If Tj+ TL(j, i0, vj) + L_TIME(x0) + 

P(i0)/(v+(j, e)) ≤ (i0)  then 

Compute w such that Tj + TL(j, i0, v(j)) + 

L_TIME(x0) + P(i0)/(v+w) = (i0);  

Stop ; v <- v + w ;  wj,i0,e <- w ; 

Else v <- (j,e) + v; wj,i0,e <- (x,e) ; 

If Not Stop then Fail : Choose j-Fail in L-Job   

Else v-aux(e) <- v ;  

 If Not Fail then Vi0 <- Sup e v-aux(e); e0 <- Arg Sup. 

 

= s,…, x1, …, x2, ….x3, …., x0,…. 
(x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25; 

(x0); P(x0) = 50; L_TIME(x0 ) = 10; Arc(x2, x0) = 

{e1}; Arc(x1, x0) = {e1, e2}; Arc(x3, x0) = {e2}; TL(s, 

x0) = 0; TL(x1, x0) = 6; TL(x2, x0) = 3; TL(x3, x0) = 4; 

             

 

=> 

Assign-1 -> ws,x0,e1 = 2; ws,x0,e2 = 3; wx1,x0,e1 = 8; vx0 

= 10; Success; Assign- 2 -> wx2,x0,e2 = 7; Success;  

Assign-3 -> wx1,x0,e1 = 0; wx2,x0,e1 = 8; Tx0 = 21. 

 

Figure 2: Assign Process.  

 

- (2) : Assign1 computes vi0 and, for any e ≠ e0 in (i0) 

a value v-aux(e) which may be less than vi0; So 

Assign2 increases the wj,i0,e for e  e0 in order to 

make job i0 run at the same rate for all arcs e of 

(i0). This part of the Assign process may induce a 

failure which Assign2 assign to some job j-Fail.   

- (3): Assign3 makes decrease the number of arcs 

provided with non null wj,i0,e values by shifting 

values wj,i0,e which involve, for a given j, only one 

arc e,  to another job j’ such that e  Arc(j’, i0),  

wj’,i0,e ≠ 0 and (j’, e) ≥ wj,i0,e + wj’,i0,e. 

 

Then Greedy-NPEP comes as follows: 

 

Greedy-RCPSP-TL() :  

Ts <- 0 ; For any arc e do (s, e) <- CAP(e); Not Stop; 

While (Not Stop) and  no fully scanned do 

Apply Assign to current i0 and partial schedule;   

If Success(Assign) then  

For e in (i0) and j s.t (j  i0)  (e  Arc(j,i0)) 

do (i0, e) <- vi0; (j,e) <- (j,e) - wj,i0,e;  

Else Stop ; Return the pair (j-Fail, i0). 

  

B. NPEP-First-Step 

 

 Greedy-NPEP may fail even in the case when a solution 

(T, v, w) exists. It raises the question of the way we deal 

with linear ordering . 

 Initialization of : For any i, we set SME(i) = (i) – 

L_TIME(i) – 2.P(i)/(v-max(i) + v-min(i)), and 

compute  by randomly sorting N
+
 in such a way that 

if P(i) < P(j) and SME(i) < SME(j), then i  j. 

 Makingevolve. In case of failure, Greedy-NPEP 

returns a pair (j-Fail, i0), and this pair is inserted into 

a Tabu like set FORBID whose meaning is:  If (j, i) is 

FORBID, then we should have (i  j).    

 So, global process NPEP-First-Step comes as follows:    

 

Procedure NPEP-First-Step(Max-Iter: Threshold) 

Initialize  as described above ;  FORBID <- Nil ; 

Iter <- 0 ; Not Stop ; Success <- 0 ;  

While (Iter ≤ Iter-Max) AND (Not Success) do  

Generate  consistent with FORBID and Apply 

Greedy-NPEP; If Failure then Search a failure 

responsible (j-Fail, i0) pair and put into FORBID.   
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C. NPEP-Second-Step 

 

In case NPEP-First-Step yields a feasible solution (T, v, 

w)  NPEP-Second-Step improves it, by acting on rates vi 

in such a way time lags L_TIME(i) + P(i)/vi decrease in 

an ad hoc way. Let us denote by U-Active, the set of pairs 

(i,j) which are allowed to support non null  wi,j,e flow 

values. We notice that if U-Active is fixed, then resulting 

restriction of NPEP is a convex optimization problem 

defined on the (v,w) polyhedron defined by (E4, E5, E6). 

So we fix U-Active according to the end of NPEP-First-

Step, and deal with induced convex program:    

- We derive from current v, w, values T*i, related 

critical paths, and values  = i), i  N
+
 ≥ 0, such 

that  i P(i). T*i =  i (i)/vi + Constant: Vector Grad 

= (Gradi =  - (i)/v
2

i, i  N
+
)  is a sub-gradient vector;  

- Then we modify v and w according to (I1): v <- v + 

V ; w <- w + W, with V and W s.t V.Grad < 0 and v + 

V and w + W comply with (E4, E5, E6) and computed 

by solving Project-Grad following linear program: 

  
Project-Grad(U-Active, v, w, , Grad) LP :  

{Compute V= (Vi, i  N
+
), and W = (Wi,j,e, (i, j)  

U-Active, e Arc(i,j)) such that;  

o  (i,j, e), wi,j,e + Wi,j,e ≥ 0 ; 

o  i  s,p, e  (i),  j Wi,j,e =  j Wj,I,e = Vi ; 

o  e,  j Ws, j, e =  j Wj,p, e = 0 ; 

o i ≠ s,p, v-Min(i) ≤ vi + Vi ≤ v-Max(i) ; 

o 2. ≥  i ≠ s,p Vi.Grad(i) ≥ }  

 

Then NPEP-Second-Step comes as follows:     

 

Procedure NPEP-Second-Step: 

Let (T, v, w) be the feasible solution computed by 

NPEP-First-Step and T* related end-date vector;  

Derive U-Active; Not Stop ; Val <-  i P(i). T*i; 

While Not Stop do 

Compute and coefficients (i), i  N
 
; 

Solve Project-Grad(U-Active, v, w, , Grad); 

If no solution then Stop Else 

Apply (I1), update Ti, T*i and related 

critical paths; If Val-Aux =   i P(i).Ti; If 

Val-Aux ≥ Val then Stop. 

 

V. NUMERICAL EXPERIMENTS. 

 

Purpose: Algorithms were implemented on AMD 

Opteron 2.1GHz. Our goal was to evaluate the ability of 

NPEP-First-Step to deal with tight deadlines and the 

ability of NPEP-Second-Step to improve this solution.  

 

Instances/outputs: An instance is a path collection {(i), 

i  N
+
}, given together with values P(i), (i) and 

TIME(e
i
k). It is summarized by a 3-uple: (n, m, ), where 

n = Car(N
+)

, m = number of arc e, and  is as above. We 

both created our own instances and used an instance 

generator of [1].In order to get benchmarks, we generated 

ad hoc schedules (T, v) and derived deadlines (i) which 

made us be provided with almost optimal solutions.   

 

Outputs: For every 10 instance package, we compute:  

- The number Trial of iterations on necessary to get 

a feasible solution through NPEP-First-Step; 

- The improvement margin (%) IMPROVE induced 

by NPEP-Second-Step;  

- The gap between NPEP .and optimal value VAL 

 

Table below provides results for   [1,2].  

 

Inst. 1: n = 

20, m = 10 

Trial IMPROVE 

(%) 

GAP 

(%) 

CPU-

NPEP 

 = 1.2 22.30 13.8 4.7 40.4 

 = 1.5 2.50 29.5 13.0 12.3 

 = 1.7 1.39 40.8 17.7 8.1 

 = 2.0 1.08 61.7 19.3 5.2 

Inst. 1: n = 

30, m = 15 

    

 = 1.2 40.6 14.6 5.6 70.5 

 = 1.5 6.60 30.2 14.5 19.5 

 = 1.7 2.05 42.3 19.1 12.0 

 = 2.0 1.19 65.5 22.5 7.9 

 

Comment: Tighting deadlines (i) improve solutions.  

 

VI. CONCLUSION 

 

We described here a two-step RCPSP oriented algorithm 

for the NPEP Problem. Remains now to deal with the 

design of an exact method for small instances and with an 

integrated computation of routes (i).   
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