
Abstract— We deal here, in the context of a H2020 project,

with the design of evacuation plans in face of natural

disasters: wildfire, flooding… People and goods have to

been transferred from endangered places to safe places. So

we schedule evacuee moves along pre-computed paths

while respecting arc capacities and deadlines. We model this

scheduling problem as a kind of multi-mode Resource

Constrained Project Scheduling problem (RCPSP) and

handle it through network flow techniques.

I. INTRODUCTION

HIS work has been carried on in the context of the

H2020 GEOSAFE European project [4], whose

overall objective is to develop methods and tools

enabling to set up an integrated decision support system

to assist authorities in optimizing the resources during

the response phase to a natural disaster, mainly a wildfire

or a flooding. In such a circumstance, decisions which

have to be taken are about fighting the cause of the

disaster, adapting standard logistics (food, drinkable

water, health…) to the current state of infrastructures,

and evacuating endangered areas (see [2]). We focus

here on the late evacuation problem, that means the

evacuation of people and eventually critical goods which

have been staying at their place as long as possible.

T

While evaluation planning remains mostly designed by

experts, 2-step optimization approaches have been

addressed [2]: the first step (pre-process) involves the

identification of the routes that evacuees are going to

follow; the second step, which has to be performed in

real time, aims at scheduling the evacuation of estimated

late evacuees along those routes. As a matter of fact, this

last step involves 2 distinct work pieces, one about

forecasting, difficult in the case of wildfire, because of

their dependence to topography and meteorology [4], and

the second one about priority rules and evacuation rates

imposed to evacuees [3]. The model which we study here

is closed to the one proposed in [1] and called the non

preemptive evacuation planning problem (NEPP).

According to it, remaining evacuees have been clustered

into groups with same original location and pre-

computed route, and once a group starts moving, then it

must keep on at the same rate until reaching his target

safe area (Non Preemption hypothesis, which matches

practical concerns of the people who supervise the

evacuation process). While authors in [1] address their

model while discretizing both the time space and the rate

domains and applying constraint propagation techniques,

we consider it as an extension of the Resource

Constrained Project Scheduling Problem (RCPSP:

[5,6]), with continuous variables which identify

evacuation rates and with an objective function which

reflects the safety provided to every evacuee. We use this

RCPSP reformulation in order to design a heuristic

algorithm which deals with our problem according to

network flow like techniques, well-fitted to real-time

emergency contexts.

The paper is structured as follows: Section 2 provides the

NEPP model. Section 3 describes our RCPSP

reformulation. Sections 4, 5 are about algorithms and

numerical tests.

II. NON PREEMPTIVE EVACUATION PLANNING (NPEP)

We consider here a transit network H = (N, A): N is its

node set and A its arc set; Every arc e  A is provided

with the time TIME(e) required for some evacuee to

move through e and with the maximum number CAP(e)

of evacuees who may engage themselves e per time unit.

We distinguish:

- The Evacuation node subset N+, whose nodes are la-

belled i = 1..n and related to some population P(i).

- The Safe node subset N-and the Relay node subset

N=.

Evacuees of the population P(i) located at i  N+ move

along a pre-determined path (i), that means a sequence

of arcs ei
1,.., e

i
k(i) connecting i to some safe node S(i). We

set L_TIME(i) =  k = 1..k(i) TIME(e i
k), and, for any k =

Models and Algorithms for Natural Disaster Evacuation Problems

Christian Artigues
LAAS CNRS

TOULOUSE, France

Email: artigues@laas.fr

Emmanuel Hebrard
LAAS CNRS

TOULOUSE, France

Email: hebrard@laas.fr

Alain Quilliot
LIMOS CNRS UMR 6158

LABEX IMOBS3, Université

Clermont-Auvergne

Bat. ISIMA, BP 10125

Campus des Cézaux,

63173 Aubière, France

Email: quilliot@isima.fr

Hélène Toussaint
LIMOS CNRS UMR 6158

LABEX IMOBS3, CNRS

Bat. ISIMA, BP 10125

Campus des Cézaux,

63173 Aubière, France

Email: toussain@isima.fr

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 143–146

DOI: 10.15439/2019F90

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 143

1..k(i): L(i, k) =  k ≤ j TIME(e
i
k) and L*(i, k) =  k ≥ j

TIME(e
i
k).

We must comply with capacity restrictions: During one

time unit, no more than Deb(i) evacuees may start moving

from i  N
+

and no more than CAP(e) evacuees may

simultaneously engage themselves on a given arc e. Also,

forecast about the way the natural disaster will evolve

imposes that for any arc e of the transit network, nobody

may start moving along e after deadline Dead(e), while

the whole evacuation process should be over at global

deadline T-Max. Thus all evacuees coming from i  N
+

should reach related safe node S(i), before (i) = Inf (T-

Max, Inf k = 1..k(i) (Dead(e
i
k) + L*(i, k)).

Besides, authorities impose Non Preemption : once

evacuees related to evacuation node i have started

moving, they must keep on at the same speed and rate

along path (i), until they all reach safe node S(i). We

denote by vi the related evacuation rate (number of

evacuees per time unit which enter on (i) at until i

becomes empty. We derive an upper bound v-max(i) for

vi by setting: v-max(i) = Inf (Inf j CAP(e
i
k)), Deb(i)). We

also see that if we are provided with the start-date Ti of i

evacuation process and with its evacuation rate vi then we

deduce its end-date T*i = Ti + L_TIME(i) + P(i)/vi. We

deduce from deadline (i) a minimal evacuation rate v-

min(i) = P(i)/((i) – L_TIME(i)).

Then, the Non Preemptive Evacuation Planning Problem

(NEPP) is about the computation of an evacuation

schedule, which means of start-times Ti and evacuation

rates vi, i  N+. The quality of such a schedule = (T,v)

is going to be the weighted safety margin  i P(i).((i) -

T*i).

III. A RCPSP ORIENTED REFORMULATION OF NPEP.

We identify evacuation nodes i of network H and related

evacuation jobs. So the key idea here is to consider the

arcs e of the network H as resources, likely to be

exchanged by evacuation jobs i, j whose paths (i) and

(j) share arc e. In order to formalize it, we introduce

Conditional Time Lags:

- If (i) = {e
i
1,.., e

i
k(i)} and (j) = {f

j
1,.., f

j
k(j)} share arc e

= e
i
k= f

j
l, and if evacuees from j come on e after

evacuees from i, then delay Tj – Ti will be no smaller

than TL-Elem(i, j, e) = L(i, k-1) – L(j, l-1) + P(i)/vi.

- Set Arc(i,j) = {e (i)  (j)} and TL(i,j, vi) = Sup e

 Arc(i,j) (L(i, k-1) – L(j, l-1) + P(i)/vi) = Conditional

Time Lag between i and j. If Arc(i,j) ≠ Nil and
evacuees of j enter after evacuees of i on the arcs of

Arc(i,j), then we must have Tj ≥ Ti + TL(i,j, vi). We

notice TL(i,j, vi) depends in a convex way on the

evacuation rate vi of i.

This notion is illustrated by following Figure 1:

 P(x) = 50, vy = 10; P(y) = 40, vy = 15 =>

 L(x,2) = 7; L(y, 2) = 5; TL(x,y vx) = 7 + 4 – 5 = 6.

Figure 1: Conditional Time Lags.

We derive a RCPSP (Resource Constrained Scheduling:

[5,6]) reformulation of NEPP, which relies on the fact

that we consider every evacuation job i  N
+
 as a job,

whose execution requires resources which are arcs e 

(i), constrained by their capacities CAP(e) and whose

start-dates are constrained by conditional time lags:

NPEP-RCPSP Model :

{Preliminary : We add to the set N
+
 two fictitious jobs

s (source) and p (sink), in order to express the way

resources are exchanged between jobs as a flow

vector. Then we set, for any i  N
+
: TL(s,i, CAP(e)) =

0 and TL(i,p, vi) = L_TIME(i) + P(i)/vi.

Output Vectors : For any i in N
+
  {s,p} compute

start-date Ti and evacuation rate vi; In order to do it

we involve, for any pair (i,j) and any arc e in Arc(i,j)

the part wi,j,e of access rate to e which is given by i to j

Constraints :

o For any i  p, Ti + L_TIME(i) + P(i)/ vi ≤ (i) ;

 (*Deadline Constraints*) (E1)

o for any pair (i,j) and any e in Arc(i,j), wi,j,e ≠ 0 ->

Tj ≥ Ti + TL(i,j, vi); (*Conditional Time Lag

Constraints*) (E2)

o Ts = 0 ; (E3)

o For any i in N
+
, N

+
 and any arc e in (i), (*Flow

Constraints*):  j such that e  Arc(x,y) wi,j,e = vi

 =  j such that e  Arc(j,i) wj,i,e; (E4)

o For any arc e of the transit network H : (*Flow

Constraints*):CAP(e) =  i such that e  (i) ws,i,e

 =  i such that e  (i) wi,p,e; (E5)

o For any i dans N
+
, v-Min(i) ≤ vi ≤ v-Max(i). (E6)

Maximize:  i P(i).((i) – Ti – L_TIME(i) - P(i)/vi)

Explanation: (E1) tells that every evacuation job i must

be achieved before deadline (i). (E2) means that if job i

provides j with some access to arc e, then the conditional

time lag inequality holds. (E4, E5) express Flow Kirshoff

laws: arcs e are resources that evacuation jobs exchange

between them; so job i receives vi resource (evacuation

rate) for any e  (i) and no more than CAP(e) such

resource may be simultaneously distributed between

evacuation jobs .

144 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

IV. ALGORITHMS

 NMEP model contains both NP-Hard RCPSP and TSP

problems. We have to choose between assigning high

rates vi to jobs i or let them monopolize the access to

transit arcs, or conversely restricting vi in order to make i

share its arcs. In order to do it, we implement a two-step

approach: MNEP-First-Step searches a feasible schedule

satisfying (E1,..,E6), while MNEP-Second-Step increases

rates vi in order to improve the weighted safety margin.

A. The Greedy-NPEP Process.

Greedy-NPEP starts from some linear ordering  defined

on N
+
  {s,p}, and considers at any time some job i0

such that for any j prior to i0 according to , vj, Tj and

values (j,e) = access level to arc e that job j can transmit

to i0 are available.Then it applies a 3 stage function

Assign(i0) which computes (see Fig. 1) vi0, Ti0 and flow

values wj,i0,e, j s.t j  i0, and e  Arc(j,i0), or, in case of

failure, a job j-fail  i0 considered as cause of the failure.

- (1) : Assign scans path (i0), and for any e in (i0),

provides i0 with access rate to e in such a way

resulting end-date T*i0 ≤ (i0). (see Fig. 2):

Assign1

For e in (i0) do

Let L-Job = {j s.t (j  i0) AND (e  Arc(j, i0) AND

((j, e)  0), ordered according to increasing Tj +

TL(j, i0, vj) values}; v <- 0 ; Not Stop ;

While L-Job ≠ Nil AND Not Stop do

If Tj+ TL(j, i0, vj) + L_TIME(x0) +

P(i0)/(v+(j, e)) ≤ (i0) then

Compute w such that Tj + TL(j, i0, v(j)) +

L_TIME(x0) + P(i0)/(v+w) = (i0);

Stop ; v <- v + w ; wj,i0,e <- w ;

Else v <- (j,e) + v; wj,i0,e <- (x,e) ;

If Not Stop then Fail : Choose j-Fail in L-Job

Else v-aux(e) <- v ;

 If Not Fail then Vi0 <- Sup e v-aux(e); e0 <- Arg Sup.

= s,…, x1, …, x2, ….x3, …., x0,….
(x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25;

(x0); P(x0) = 50; L_TIME(x0) = 10; Arc(x2, x0) =

{e1}; Arc(x1, x0) = {e1, e2}; Arc(x3, x0) = {e2}; TL(s,

x0) = 0; TL(x1, x0) = 6; TL(x2, x0) = 3; TL(x3, x0) = 4;

=>

Assign-1 -> ws,x0,e1 = 2; ws,x0,e2 = 3; wx1,x0,e1 = 8; vx0

= 10; Success; Assign- 2 -> wx2,x0,e2 = 7; Success;

Assign-3 -> wx1,x0,e1 = 0; wx2,x0,e1 = 8; Tx0 = 21.

Figure 2: Assign Process.

- (2) : Assign1 computes vi0 and, for any e ≠ e0 in (i0)

a value v-aux(e) which may be less than vi0; So

Assign2 increases the wj,i0,e for e  e0 in order to

make job i0 run at the same rate for all arcs e of

(i0). This part of the Assign process may induce a

failure which Assign2 assign to some job j-Fail.

- (3): Assign3 makes decrease the number of arcs

provided with non null wj,i0,e values by shifting

values wj,i0,e which involve, for a given j, only one

arc e, to another job j’ such that e  Arc(j’, i0),

wj’,i0,e ≠ 0 and (j’, e) ≥ wj,i0,e + wj’,i0,e.

Then Greedy-NPEP comes as follows:

Greedy-RCPSP-TL() :

Ts <- 0 ; For any arc e do (s, e) <- CAP(e); Not Stop;

While (Not Stop) and  no fully scanned do

Apply Assign to current i0 and partial schedule;

If Success(Assign) then

For e in (i0) and j s.t (j  i0)  (e  Arc(j,i0))

do (i0, e) <- vi0; (j,e) <- (j,e) - wj,i0,e;

Else Stop ; Return the pair (j-Fail, i0).

B. NPEP-First-Step

 Greedy-NPEP may fail even in the case when a solution

(T, v, w) exists. It raises the question of the way we deal

with linear ordering .

 Initialization of : For any i, we set SME(i) = (i) –

L_TIME(i) – 2.P(i)/(v-max(i) + v-min(i)), and

compute  by randomly sorting N
+
 in such a way that

if P(i) < P(j) and SME(i) < SME(j), then i  j.

 Makingevolve. In case of failure, Greedy-NPEP

returns a pair (j-Fail, i0), and this pair is inserted into

a Tabu like set FORBID whose meaning is: If (j, i) is

FORBID, then we should have (i  j).

 So, global process NPEP-First-Step comes as follows:

Procedure NPEP-First-Step(Max-Iter: Threshold)

Initialize  as described above ; FORBID <- Nil ;

Iter <- 0 ; Not Stop ; Success <- 0 ;

While (Iter ≤ Iter-Max) AND (Not Success) do

Generate  consistent with FORBID and Apply

Greedy-NPEP; If Failure then Search a failure

responsible (j-Fail, i0) pair and put into FORBID.

ALAIN QUILIOT: MODELS AND ALGORITHMS FOR NATURAL DISASTER EVACUATION PROBLEMS 145

C. NPEP-Second-Step

In case NPEP-First-Step yields a feasible solution (T, v,

w) NPEP-Second-Step improves it, by acting on rates vi

in such a way time lags L_TIME(i) + P(i)/vi decrease in

an ad hoc way. Let us denote by U-Active, the set of pairs

(i,j) which are allowed to support non null wi,j,e flow

values. We notice that if U-Active is fixed, then resulting

restriction of NPEP is a convex optimization problem

defined on the (v,w) polyhedron defined by (E4, E5, E6).

So we fix U-Active according to the end of NPEP-First-

Step, and deal with induced convex program:

- We derive from current v, w, values T*i, related

critical paths, and values  = i), i  N
+
 ≥ 0, such

that  i P(i). T*i =  i (i)/vi + Constant: Vector Grad

= (Gradi = - (i)/v
2

i, i  N
+
) is a sub-gradient vector;

- Then we modify v and w according to (I1): v <- v +

V ; w <- w + W, with V and W s.t V.Grad < 0 and v +

V and w + W comply with (E4, E5, E6) and computed

by solving Project-Grad following linear program:

Project-Grad(U-Active, v, w, , Grad) LP :

{Compute V= (Vi, i  N
+
), and W = (Wi,j,e, (i, j) 

U-Active, e Arc(i,j)) such that;

o  (i,j, e), wi,j,e + Wi,j,e ≥ 0 ;

o  i  s,p, e  (i),  j Wi,j,e =  j Wj,I,e = Vi ;

o  e,  j Ws, j, e =  j Wj,p, e = 0 ;

o i ≠ s,p, v-Min(i) ≤ vi + Vi ≤ v-Max(i) ;

o 2. ≥  i ≠ s,p Vi.Grad(i) ≥ }

Then NPEP-Second-Step comes as follows:

Procedure NPEP-Second-Step:

Let (T, v, w) be the feasible solution computed by

NPEP-First-Step and T* related end-date vector;

Derive U-Active; Not Stop ; Val <-  i P(i). T*i;

While Not Stop do

Compute and coefficients (i), i  N

;

Solve Project-Grad(U-Active, v, w, , Grad);

If no solution then Stop Else

Apply (I1), update Ti, T*i and related

critical paths; If Val-Aux =  i P(i).Ti; If

Val-Aux ≥ Val then Stop.

V. NUMERICAL EXPERIMENTS.

Purpose: Algorithms were implemented on AMD

Opteron 2.1GHz. Our goal was to evaluate the ability of

NPEP-First-Step to deal with tight deadlines and the

ability of NPEP-Second-Step to improve this solution.

Instances/outputs: An instance is a path collection {(i),

i  N
+
}, given together with values P(i), (i) and

TIME(e
i
k). It is summarized by a 3-uple: (n, m, ), where

n = Car(N
+)

, m = number of arc e, and  is as above. We

both created our own instances and used an instance

generator of [1].In order to get benchmarks, we generated

ad hoc schedules (T, v) and derived deadlines (i) which

made us be provided with almost optimal solutions.

Outputs: For every 10 instance package, we compute:

- The number Trial of iterations on necessary to get

a feasible solution through NPEP-First-Step;

- The improvement margin (%) IMPROVE induced

by NPEP-Second-Step;

- The gap between NPEP .and optimal value VAL

Table below provides results for   [1,2].

Inst. 1: n =

20, m = 10

Trial IMPROVE

(%)

GAP

(%)

CPU-

NPEP

 = 1.2 22.30 13.8 4.7 40.4

 = 1.5 2.50 29.5 13.0 12.3

 = 1.7 1.39 40.8 17.7 8.1

 = 2.0 1.08 61.7 19.3 5.2

Inst. 1: n =

30, m = 15

 = 1.2 40.6 14.6 5.6 70.5

 = 1.5 6.60 30.2 14.5 19.5

 = 1.7 2.05 42.3 19.1 12.0

 = 2.0 1.19 65.5 22.5 7.9

Comment: Tighting deadlines (i) improve solutions.

VI. CONCLUSION

We described here a two-step RCPSP oriented algorithm

for the NPEP Problem. Remains now to deal with the

design of an exact method for small instances and with an

integrated computation of routes (i).

REFERENCES

[1] C.Artigues, E.Hebrard, Y.Pencolé, A.Schutt, P.Stuckey: A study

of evacuation planning for wildfires; 17 th Int. Workshop on

Constraint Modelling/Reformulation, Lille, France, (2018).

[2] V.Bayram : Optimization models for large scale network

evacuation planning and management : a review ; Surveys in O.R

and Management, (2016), DOI : 10.1016/j.sorms.2016.11.001.

[3] C.Even, V.Pillac, P.Van Hentenryk: Convergent plans for large

scale evacuation; In Proc. 29 th AAAI Conf. On Artificial

Intelligence, Austin, Texas, p 1121-1127, (2015).

[4] Geo-Safe-; MSCA-RISE 2015 European Project –id 691161.

http://fseg.gre.ac.uk/fire/geo-safe.html. Accessed Jue 12, (2018).

[5] M.J. Orji, S. Wei. Project Scheduling Under Resource

Constraints: A Recent Survey. Inter. Journal of Engineering

Research & Technology (IJERT) Vol. 2 Issue 2, (2013)

[6] A.Quilliot, H.Toussaint: Flow Polyedra and RCPSP, RAIRO-

RO, 46-04, p 379-409, (2012)

146 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

