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Abstract—The physical design placement problem is one of the
hardest and most important problems in micro chips production.
The placement defines how to place the electrical components
on the chip. We consider the problem as a combinatorial
optimization problem, whose instance is defined by a set of 2-
dimensional rectangles, with various sizes and wire connectivity
requirements. We focus on minimizing the placement area and
the total wire-length.

We propose a local-search method for coping with the problem,
based on natural dynamics common in game theory. Specifically,
we suggest to perform variants of Best-Response Dynamics (BRD).
In our method, we assume that every component is controlled
by a selfish agent, who aim at minimizing his individual cost,
which depends on his own location and the wire-length of his
connections.

We suggest several BRD methods, based on selfish migrations
of a single or a cooperative of components. We performed
a comprehensive experimental study on various test-benches,
and compared our results with commonly known algorithms,
in particular, with simulated annealing. The results show that
selfish local-search, especially when applied with cooperatives of
components, may be beneficial for the placement problem.

I. INTRODUCTION

P
HYSICAL DESIGN is a field in Electrical Engineering

which deals with very large scale integration (VLSI).

Specifically, physical design is the main step in the creation of

Integrated Circuit (IC). The basic question is how to place the

electrical components on the chip. This fundamental question

became relevant with the invention of ICs in 1958 [19], and

remains critical our days with the development of micro-

electricity. Recent developments in micro-electricity enables

transistors to reach the size of nanometers, thus a single chip

can accommodate thousands of components of different sizes

and dispersed connectivity. Bad layout of electrical compo-

nents leads to expensive production and poor performance.

Figure 1 presents the Intel i7 processor [10], and demonstrates

how efficient design is crucial in enabling the accommodation

of many components on a small area.

The research was supported by THE ISRAEL SCIENCE FOUNDATION
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Fig. 1. Intel i7 processor placement.

The complexity of VLSI physical design led to the establish-

ment of a design process, in which the problem is divided into

several steps, each is an independent NP-complete problem.

The most fundamental steps are: (i) Floorplan: choose the

area of the chip and decide the positions of the building blocks

of the chip, (i.e., in Intel processor: cores, graphic processor,

cache, memory controller). (ii) Placement: Each of the above

mentioned building blocks consists of several components.

These components should be placed in a way that minimizes

area and wire-length. (iii) Signal and Clock Routing: route

the wires via components white space, which is an extra area

assigned for wiring.

In this work, we focus on the Placement problem. The

floorplan is usually performed manually, and the signal and

clock routing is more of a production engineering problem

which is tackled using different tools.

Several common methods for coping with the Placement

problem are based on local-search. We propose a new class

of local-search algorithms that consider the problem as a

game played among the components, where each component

corresponds to a selfish player who tries to maximize his own

welfare. Our algorithms are different from other algorithms

based on local search in the way they explore the solution

space. Every solution is associated with a global cost, and

every component is associated with its individual cost, which

is based on its own placement and connections. We move from

one solution to another if this move is selfishly beneficial for
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a single component or for a small cooperative of components,

without considering the effect on the global cost.

In this paper we first review the placement problem, and

survey some of the existing techniques to tackle it, in par-

ticular local-search algorithms and Simulated Annealing. We

then describe our new method of performing selfish Best-

Response Dynamics (BRD). In order to evaluate this method,

we performed an extensive experimental study in which we

simulated and tested several variants of BRD on various test-

benches. Our results show that BRD may produce a quick and

high quality solution.

A. The Placement Problem

The Placement process determines the location of the

various circuit components within the chip’s core area. The

problem, and even simple subclasses of it, were shown to

be NP-complete by reductions to the bin packing and the

rectangle packing problems [14], [15]. Moreover, a reduction

to the Quadratic assignment problem shows that achieving

even a constant approximation is NP-hard [9].

Bad placement not only reduces the chip’s performance, but

might also make it non-manufacturable by forcing very high

wire-length, lack of space, or failing timing/power constraints.

As demonstrated in Figure 2, good placement involves an

optimization of several objectives that together ensure the

circuit meets its performance demand [4], [17]:

1) Area: Minimizing the total area used to accommodate

the components reduces the cost of the chip and is

crucial for the production.

2) Total wire-length: Minimizing the total length of the

wires connecting the components is the primary objec-

tive of the physical design. Long wires require the in-

sertion of additional buffering, to insure synchronization

between the components. Short wires decrease the power

consumption and the system’s leakage.

3) Wire intersection: Our days, wire intersection is allowed

as long as a single wire does not have more than a

predefined number of intersections. The manufacturing

process enables several routing layers. Nevertheless, a

good layout avoids unnecessary intersections.

4) Timing: The timing cycle of a chip (clock frequency)

is determined by the delay induced by the longest wire,

usually referred to as the critical path.

Our work considers the initial placement calculation, denoted

global placement. This stage is followed by the detailed

placement stage, in which the global placement results are

put into use and the cells are actually placed on the die.

The detailed placement stage includes small changes to solve

local issues such as wire congestion spots, remaining overlaps,

layout constrains (such as via locations), connecting to the die

pinout, etc.

In the global placement stage, several parameters are opti-

mized. We focus on the total wire-length and placement area.

By adjusting the cost function associated with each configu-

ration, our method enables considering additional parameters

such as wire congestion, critical path length, and more.
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Fig. 2. An example of a good placement (left) v.s a bad placement (right). In
the good placement the wires are shorter and there is almost no congestion.
In this example, the area of both placements is the same.

B. Formal Description of the Placement Problem

We describe the placement problem as a combinatorial op-

timization problem. The components composing the problem

are represented by 2-dimensional rectangles denoted blocks.

In the placement, they can be rotated by 90◦, 180◦ or 270◦,

but not mirrored. The sides of the assigned blocks must be

parallel to each other, and to the bounding area. Whenever we

refer to a location in a block, we let (0, 0) be the bottom-left

corner, and every other point in the block is given by its (x, y)
coordinates with respect to this corner.

Formally, an instance of the problem is defined by:

1) A set of n blocks {B1, B2, .., Bn} to be placed on the

chip. Every block 1 ≤ i ≤ n , has associated width wi

and height hi.

2) A list of required connections between the blocks,

{N1, N2, .., Nm}. Every connection is given by a pair of

blocks, and the locations in which these blocks should

be connected. Formally Nj = 〈B1

j , x
1

j , y
1

j , B
2

j , x
2

j , y
2

j 〉,
for 0 ≤ x1

j ≤ w1

j , 0 ≤ y1j ≤ h1

j and 0 ≤ x2

j ≤ w2

j , 0 ≤
y2j ≤ h2

j , corresponds to a request to connect blocks B1

j

and B2

j , such that the wire is connected to coordinate

(x1

j , y
1

j ) in B1

j and to coordinate (x2

j , y
2

j ) in B2

j .

The output of the problem is a placement F given by the

locations of the blocks on the plane {L1, L2, .., Ln}, such that

for every 1 ≤ i ≤ n, Li = (xi, yi, ri). The parameter ri ∈
{0, 1, 2, 3} specifies how block Bi is rotated corresponding

to {0, 90, 180, 270} degrees. Note that a rotation by 180◦ is

not equivalent to not rotating at all, since the location of the

required connections is also rotated. Formally, block Bi is

placed in the rectangle whose diagonal endpoints are (xi, yi)
(this corner is independent of the value of ri), and (xi+wi, yi+
hi) if ri = 0, or (xi+hi, yi+wi) if ri = 1, or (xi−wi, yi−hi)
if ri = 2, or (xi − hi, yi + wi) if r3 = 1.

A placement is legal if no two blocks overlap, that is, the

rectangles induced by Li1 and Li2 are disjoint for all i1 6= i2.

This condition may be relaxed a bit in the global placement

stage, and allow small percentage of overlaps area. These

overlaps are resolved later during the detailed placement stage.

The bounding box of a Placement F , is the minimum axis-

aligned rectangle which contains all the blocks. The area of a

placement F is the area of the bounding box, and is denoted

A(F ).
The blocks’ location, together with the required connec-

tions, induce the wire-length of a placement. Formally, assume
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that blocks B1 and B2 are located in L1 and L2, respectively,

and let Nj = 〈B1

j , x
1

j , y
1

j , B
2

j , x
2

j , y
2

j 〉. We first calculate the

actual coordinates of the connection points, based on L1, L2,

and the values of 〈x1

j , y
1

j 〉 and 〈x2

j , y
2

j 〉. Let 〈x̂1

j , ŷ
1

j 〉 and

〈x̂2

j , ŷ
2

j 〉 be the points we need to connect. The wire-length

associated with Nj , denoted Len(Nj), is calculated in a way

that fits the actual production process, in which all wires

are parallel to the blocks and to the bounding area, that is,

Len(Nj) = ∆X + ∆Y = |x̂1

j − x̂2

j | + |ŷ1j − ŷ2j |. The total

wire-length of a Placement F is denoted L(F ), and is given

by L(F ) =
∑m

j=1
Len(Nj(F )). An example of wire-length

calculation is given in Figure 3.

A:(3,6)

X

Y

B:(3,7)

D:(10,8)C:(7,8)

F:(6,3)

E:(8,5)

(0,0)

Fig. 3. An Example of wire-length calculation. There are three connections
between the pairs of points {A,F}, {D,E} and {B,C}. The total wire-
length is (|XA − XF | + |YA − YF |) + (|XE − XD| + |YE − YD|) +
(|XB −XC |+ |YB − YC |) = (3 + 3) + (2 + 3) + (4 + 1) = 16.

The goal in the placement problem is to minimize αL(F )+
(1 − α)A(F ) where the parameter 0 ≤ α ≤ 1 weight the

importance of the two objectives. These days (as the number

of components per chip rises) it is a very common practice

to focus on the wire-length of the placement and only when

finished optimizing the wire-length, perform small changes

in order to gain better area result, with a minimal harm of

the achieved wire-length. Thus, in our experiments (to be

described in Section III), we give a substantially higher weight

to the wire-length.

C. Current Techniques for Efficient Placement

We now overview the common disciplines to handle the

Placement problem. Some algorithms are tailored for simpli-

fied classes of instances. Specifically,

1) Standard cell: Components may have different width,

but they all have the same height and are placed in rows.

With over-cell routing the goal is to minimize the width

of the widest row and the total wire-length.

2) Gate array / FPGA: The area is discretized to equally

sized squares where each square is a possible component

location. All the components have the same size and

shape but different connections between them, the goal

is to minimize the total wire-length.

Both classes induce simplified problems, which are still

NP-hard, but can be approximately solved using Linear Pro-

gramming [22], [7], Greedy Algorithms [25], [2], Slicing Tree

representation [3], or by Divide and Conquer algorithms that

allows temporal block overlaps [2], [7].

A different solution approach is to develop heuristics,

usually with strong randomness involved. Most heuristics

have no assumptions on the problem thus able coping with

general instances. Heuristics have no performance guarantee

but perform well in practice. Some heuristics were tailored

for Standard cell and Gate array instances [8], [16], [24].

The most commonly used algorithm concept for placement

is simulated annealing (SA) [23], [20]. Modern algorithms of

our days are always compared against it and many of them are

based on its concept. While SA is unlikely to find an optimal

solution, it can often find a very good one. The name simulated

annealing come from annealing in metallurgy, a technique

involving heating and controlled cooling of a material to

increase the size of its crystals and reduce their defects. Both

are attributes of the material that depend on its thermodynamic

free energy. Heating and cooling the material affects both

the temperature and the thermodynamic free energy. The

simulation of annealing as an approach for minimization of

a function of large number of variables was first formulated

in [13]. Many modern algorithms are based on the concepts

of simulated annealing.

Additional widely used placement methods include (i)
Force Directed Placement, in which the problem is trans-

formed into a classical mechanics problem of a system of

objects attached to springs [21], (ii) Placement by Partitioning,

in which the circuit is recursively partitioned into smaller

groups [2], [7], (iii) Numerical Optimization Techniques,

based on equation solving and eigenvalue calculations [25],

[18], and (iv) Placement by Genetic Algorithm, that emulates

the natural process of evolution as a means of progressing

toward optimum, [25]. Some of these methods are only suited

for Standard cell or Gate array instances, and some are

general. A survey of the above and of additional algorithms

for placement can be found in [1], [24], [11].

II. OUR LOCAL-SEARCH METHOD FOR SOLVING THE

PLACEMENT PROBLEM

The main challenges involved in solving the Placement

problem are the need to optimize several objectives simul-

taneously, and to achieve even a good approximate solution

in reasonable time. Optimizing even a single objective is an

NP-hard problem. Naturally, combining several objectives, that

may be conflicting, makes the problem more challenging.

Our proposed method not only performs a good placement

in a relatively short time, but also copes with the multiple

objective challenge.

A. The Placement Problem as a Game

We propose to tackle the problem by a local-search al-

gorithm, using natural dynamics common in game theory.

Specifically, we suggest to perform variants of Best-Response

Dynamics (BRD), assuming the components correspond to

strategic selfish agents who strive to optimize their own

welfare. In a BRD process, every agent (player) in turn, selects
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his best strategy given the strategies of the other players. In our

game, the strategy space of a player consists of all the locations

his component can be placed in, given the location of the other

components. Players keep changing strategies until a Nash

equilibrium of the game is reached. A Nash equilibrium is a

strategy profile in which no player can benefit from changing

his strategy [12]. A lot of attention is given to best-response

dynamics in the analysis of non-cooperative games, as this is

the natural method by which players proceed toward a NE.

The common research questions are whether BRD converges

to a NE, the convergence time, and the quality of the solution

(e.g. [5], [6]).

BRD can also be performed with coordinated deviations.

That is, in each step, a group of players, denoted a cooperative,

moves simultaneously, such that their total cost is reduced.

Note that in a coordinated deviation of a cooperative, unlike a

coalition, some members of the cooperative may be hurt. The

deviation is beneficial if the total members’ cost is reduced.

In order to consider the placement problem as a game played

by selfish agents, we need to associate a value, or cost, for

each player in each possible configuration of the game. In

our setting, players correspond to blocks and configurations

correspond to placements. The BRD process is define with

respect to a cost function that depends on the wire-length

connected to the player’s block, and the total placement area.

The individual cost function is calculated for each block or

cooperative, and is relevant only to the currently playing block

or cooperative.

Recall that for a configuration F , the global cost of F is

Global_cost(F ) = αL(F ) + (1− α)A(F ),

where L(F ) is the total wire-length, A(F ) is the bounding

box area, and the parameter α is used to weight these two

components of the cost function. In our algorithms, the global

cost function, is used only to evaluate the final configuration

- in order to compare different methods and to analyze the

progress of the algorithms.

The individual cost function is used to evaluate the possible

deviations of the currently playing block. For a single block

Bi, let LBi
(F ) denote the total wire-length of B′

i’s connec-

tions. By definition, L(F ) = 1

2

∑
1≤i≤n LBi

(F ). The total

individual wire-length is divided by 2, since every wire is

counted in the individual wire-length of its two endpoints. For

a configuration F and a block Bi, the individual cost of Bi

in F is defined as follows:

Ind_cost(Bi, F ) = α · (LBi
(F ))2 + (1− α) ·A(F ).

Note that in the individual cost function, the corresponding

wire-length is squared – for normalization with the area

component.

Let Γ be a subset of the blocks. In order to evaluate

configurations that are a result of a coordinated deviation, we

define, for a cooperative Γ in a configuration F , the individual

cost of Γ in F :

Ind_cost(Γ, F ) = α ·
∑

Bi∈Γ

(LBi
(F ))2 + (1− α) ·A(F ).

Since finding the best response is NP-hard in most scenarios

and particularly for coordinated deviation, we perform a better-

response move, in which the player (or a cooperative) benefits,

but not necessarily in the optimal way. In practice, we perform

the best response move in a restricted search space. Also, in

some algorithms, when there is no local improving step, we

may perform a move which harms the cost function. Such

moves result in a temporary worse state and are used in order

to allow the algorithm to escape from local minima.

In our experiments, we compared our results with those

achieved by Simulated Annealing (SA), Greedy Local Search

(GLS) algorithm, based on hill climbing, and Fast Local

Search (FLS) algorithm (faster version of the greedy local

search). For each test-bench we run our algorithms as well

as these algorithms, and compared the results. In this paper

we only provide the comparison with SA, as it outperformed

the other two local-search methods.

B. Search for a Solution over the Solution Space

Before presenting our algorithms we give an overview of the

local search technique, and explain how the search for the solu-

tion is performed. A local-search algorithm performs a search

over the solution space. Every possible solution (placement F )

is associated with a score (Global_cost(F )). The global cost

function defines a placement-cost multidimensional complex,

on which the algorithm advances. Each point on the complex is

a placement and the complex includes all possible placements.

Every local-search algorithm moves on the placement-cost

complex searching for a point corresponding to a placement

having minimum cost. The local-search paradigm implies that

the movement along the complex is almost continues. When

the algorithm encounters a heap on the complex which it

cannot pass, it may try to bypass it in order to continue the

search in that direction.

The main challenge when applying such algorithms, is how

to pick the next point to explore and how to decide when to

stop the search. As demonstrated in Figure 4, we can continue

to search up to some point of worse cost but we do not know

what awaits us further down the path of the search. We may

attempt to remember each minimum we visit during the search

and traverse different search paths from each local minimum

detected. However, such methods perform a brute force search,

which in turn results in exponential running time. Finding the

global minimum means we have found an optimal solution

for an NP-hard problem. Hence, such algorithms must have

exponential running time (regardless of the algorithm’s logic)

unless P = NP.

The main difference between our algorithms and previous

algorithms based on local search (in particular SA, GLS, FLS),

is the way we evaluate each solution in the solution space, and

the way we advance to the next solution in the search process.

Previous algorithms calculate the cost function for the entire

placement, while our algorithms base their progress on the

individual cost of a block (or of a cooperative of blocks).

The main goal of this work is to examine the quality of

local-search algorithms for the placement problem, in which
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Fig. 4. A general description of a local-search method. The algorithm
traverses the cost-placement multidimensional complex. Local search may
end-up in a local minimum, unable to escape, thus also unable to find an
optimal placement.

the search on the solution space is determined by only a

single block (or a small cooperative), in a selfish manner,

according to its individual cost-over-time curve. Our method

does not use a global cost function; we present the global

objective parameters (wire-length, total area, etc.) only for the

analysis. As detailed in Section II-C, some of our algorithms

accept moves that harm a bit the individual cost function

(thus breaking the selfishness to some extent). This possibility

allows the algorithms to escape local minimum and the search

becomes much more versatile.

C. Algorithms Based on Best-Response Dynamics

The BRD process proceeds as follows: Every block corre-

sponds to a player. In every step a player or a cooperative of

players have a chance to change their current location, in a way

that reduces their individual cost in the resulting configuration.

In some of our algorithms, a step increasing the individual cost

may be accepted with some probability.

Every block can perform one or more of the following

moves: {Up, Down, Left, Right, Rotate 90◦, Rotate 180◦, Ro-

tate 270◦}. A step is legal as long as the resulting configuration

is legal.

We use three search methods for the block migrations:

1. Best Response (BRD): Each block is controlled by a

selfish player. Each player can perform one move per turn, the

move is the best local move the block can perform to reduce

its individual cost. The algorithm advances in rounds, where

in each round, every player gets an opportunity to migrate.

Players are allowed to perform only legal moves (no block-

overlaps are created).

2. Constant Perturbations (BRD-ConstPerb): In This variant

of BRD, when a player does not have a legal improving move

to perform, he may, with some non-negligible probability,

choose a step which harms its individual cost. In our experi-

ments we found 0.3 to be a good probability for accepting a

worse state. It is small enough not to harm the selfishness on

one hand, and allows the placement to escape local minima

on the other.

3. Relaxed Search (BRD-RlxSrch): This algorithm is another

variant of BRD. The difference is that players can select illegal

locations - that involve block overlaps. While blocks are not

allowed to overlap beyond a reasonable limit in the final

configuration, temporal overlaps may be fruitful. Our relaxed

search allows overlaps with varying fines on the area of the

overlap. The overlaps fine are added to the block’s individual

cost. The fines are increased every round - to encourage

convergence to a final placement with hardly any overlaps.

The Global placement stage can tolerate small overlaps, so

the output is accepted if the final placement does include some

overlaps.

Each of the above algorithms is ran in two variations:

without and with swap moves. A swap move is a move in

which the active block swaps places with some other block

if the swap is legal and reduces the active block’s individual

cost, as well as the global cost function (this ensures we avoid

recurrent swaps between a pair of blocks). Swap moves break

the locality of the search and allows another method with

which to escape local minima. Instead of attempting to escape

a local minimum by accepting a worse state, the algorithm

can escape a local minimum by jumping to a better, yet not

local neighbor, state. Swap moves do not break the selfishness

of our algorithms but rather only the locality, and only to

some extent. As our experiments reveal, enabling swap moves

improves the quality of the solution.

D. Coordinated Deviation of a Cooperative

Unlike a unilateral deviation, a coordinated deviation is initi-

ated by a group of players, denoted a cooperative, who migrate

simultaneously. Such a migration may harm the individual

cost of some cooperative members (for example, if they give

up good spots for other members), however, the total cost of

the cooperative members is strictly reduced. When applying a

coordinated deviation, we first determine the cooperative size

and then the blocks composing it. A coordinated deviation is

therefore defined by (i) the search method, (ii) the cooperative

size method, and (iii) the cooperative member selection

method.

We simulated three different methods for determining the

cooperative’s size:

1) Increasing: Starting from k = 1, after converging to

a k-NE profile, which is stable against deviations of

cooperatives of size k, we increase the active cooperative

size to k + 1. We keep increasing the cooperative size

up to a predefined limit.

2) Iterating: Each round has a different cooperative size,

the sizes are incremented after each round, when the

size reaches a predefined limit we reset the size to a

single block.

3) Random: Each cooperative has a random size, the size

is uniformly distributed between a single block and a

predefined limit.

The cooperative’s members are selected in the following

way: we iterate over all the blocks, selecting a different

head block of the cooperative in each round. The head block

constructs a cooperative according to one of the following

methods:
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1) Closest Connected blocks: in every iteration we add to

the cooperative a block with the shortest wire-length to

some other block already in the cooperative.

2) Farthest Connected blocks: in every iteration we add to

the cooperative a block with the longest wire-length to

some other block already in the cooperative.

3) Closest Geometrically blocks: in every iteration we add

to the cooperative a block with the smallest closest ge-

ometrical distance to the head block of the cooperative.

4) Farthest Geometrically blocks: in every iteration we add

to the cooperative a block with the highest geometrical

distance to the head block of the cooperative.

5) Random: Random set of blocks. The cooperative is

built by uniformly adding blocks one by one, until the

cooperative size is reached.

In our experiments, we run and compared various combina-

tions of search algorithms with cooperative size and forma-

tion methods. The algorithms advance as follows: once the

cooperative has been formed, all the feasible permutations

of possible moves for the cooperative (depending on the

search algorithm) are calculated. For each permutation we

calculate the individual cost of the cooperative in the resulting

placement. The permutation that minimizes this cost is chosen.

Only the cooperative cost is taken into account, and we ignore

the global cost as well as the internal distribution of the cost

among the blocks composing it.

E. Expected Algorithms’ Progress

In this section we review our algorithms by describing their

progress in general. A typical cost-over-time progress of BRD-

ConstPerb is depicted in Fig 5. Since players can choose a step

which harms their individual cost, we expect the algorithm to

be able to escape local minima by moving to a more expensive

placement and improving it by a sequence of cost-reducing

moves, which hopefully lead to a better local minimum.
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Fig. 5. Expected progress of the BRD-ConstPerb search method with
unilateral deviations.

The progress of our BRD-RlxSrch method depends heavily

on the fines for overlaps. Recall that these fines increase

with the run time. As illustrated in Figure 6, this enables the

algorithm to explore more areas in the solution space. Once

the fines are above some threshold, the algorithm explores

feasible or almost feasible solutions whose cost may be higher

than former non-feasible solutions explored earlier.
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Finally, Figure 7 illustrates the typical cost-over-time

progress of BRD-RlxSrch and BRD-ConstPerb when coordi-

nated deviations are allowed. The possibility to accept worse

or unfeasible solutions enables the algorithm to escape local

minima and to advance in the search space towards a better

solution.
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Fig. 7. Expected progress of BRD-ConstPerb and BRD-RlxSrch with
coordinated deviation.

In the above figures we present the slopes as monotonically

nicely curved lines, in reality this is not the case. The real lines

have various gradient changes, and they are far from being

nicely curved over the monotonic movement sections. The

figures present the tendency of the algorithm and the overall

progress.

III. EXPERIMENTAL RESULTS

In this section we present our experimental study. Our

experiments simulate the global placement stage. This stage

is followed by the detailed placement stage, in which the

global placement results are applied and the blocks are actually

placed on the die. Usually at the detailed placement stage,

small changes occur in order to solve some local issues such as

wire congestion spots, remaining overlaps, layout constraints,

connecting to the die pinout, etc.

We first demonstrate our concept by presenting the results of

the unilateral deviation algorithms. Next, we compare some of
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our heuristics with the Simulated annealing algorithm. Finally,

we study coordinated deviations and analyze the effects of

the cooperative size and structure. We explore how coordi-

nated deviations improves the results obtained by unilateral

deviations, regardless of the selected method for the search

algorithm, and also consider algorithms that combine unilateral

and coordinated deviations.

A. Experiments Setup

All algorithms are ran on the same machine with similar

conditions. We sample various parameters during the algo-

rithms run, in order to study not only the final outcome but

also the search process. Time measurement is conducted and

counted by the algorithms context timers, thus if a context

switch occurs the timer pauses. While the time values them-

selves vary on different machines, the progress of the algo-

rithms and comparison between them is valid and independent

of the machine.

Our experiments were performed on 6 different test-

benches, T 4
30
, T 6

30
, T 8

30
, T 4

40
, T 4

40
and T 8

40
, where T c

n corre-

sponds to an instance of n blocks, with c connections-

per-block. In all instances, the block sizes are randomly

distributed, height and width being a random equally dis-

tributed number in the range [30, 80] (pixels). The different

connections-per-block parameter enables a good comparison

and allows us to isolate and emphasize various aspects of the

algorithms.

Recall that the Individual cost of a block Bi in a placement

F is defined to be Ind_cost(Bi, F ) = α · (LBi
(F ))2 + (1−

α) · A(F ). We run the search algorithms with various values

for α, and found out that the wire-length component should

get much higher weight. Thus, all the results described in this

section were obtained with α = 0.9. This fits the common

practice these days to focus on minimizing the wire-length of

the placement and only when done optimizing the wire-length,

perform small changes in order to gain better area result.

As detailed in Section II-C, we used three local search

method: BRD – only legal profitable moves, BRD-ConstPerb –

legal but maybe harmful moves, and BRD-RlxSrch – profitable

but maybe non-legal moves (overlaps associated with fine).

These search methods are constructed into algorithms, com-

bining unilateral players and coordinated deviation players.

Each of these local search methods run in two different

variations, without or with swap moves. Note that a swap move

differs from a cooperative of size 2. The two members of a

cooperative may swap places as long as it improves their total

cost. However, a swap move is initiated by a single block and

may hurt significantly the individual cost of the second block

involved.

In order to better evaluate the algorithms, we performed

each experiment several times. Specifically, we ran the algo-

rithms on the same instance with 5 different random initial

placements. While the initial placement has a strong impact

on the results, the final result depends on the progress of the

algorithm as much as on the initial placement. If for any test

bench one algorithm is better than the other, then it is almost
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Fig. 8. Progress of total wire-length. No swap moves.

certain better for any initial placement. The variation between

the results of different algorithms is consistent for most of the

initial placements. In order to compare the algorithms we look

at the average results over all initial placements.

B. Results for Unilateral Deviations

The first experiment we present is a comparison of the three

search methods, when applied without and with swap moves.

We run each of these variants on our test-bench T 4
40

, that is,

an instance consisting of 40 blocks each with 4 connections.

All the algorithms were applied starting from the same initial

placement. Figures 8 and 9 present the progress of wire-

length over running-time without and with swaps, respectively.

Figures 10 and 11 present the progress of area over running

time with and without swaps, respectively. We can see that the

algorithms reach their stopping criteria at different times and

have different progress gradient.
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Fig. 9. Progress of total wire-length. Swap moves allowed.

The BRD algorithm is the first to finish - its local search

is more restricted and thus, the stopping criteria is reached

earlier. Each algorithm has a different progress curve. The

gradient of the changes in the cost function according to

the time is different. Nevertheless an obvious pattern can be

observed: the algorithms that can progress to a worse state
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tend to continue and improve their result as the algorithm

progresses. Such algorithms are able to escape local minima

and continue the search, thus obviously the progress gradient

is much more moderate. Moreover, we also witness the major

influence of swaps. Allowing swaps increases the running time

but improves the result. Such behavior leads to having a more

moderate gradient of change, but due to the increase in run

time, we eventually reach a lower level and a better result.

For BRD-RlxSrch and BRD-ConstPerb we can see peaks

and drops in the performance – corresponding to reaching and

escaping local minima. In BRD the spikes are limited due to

the search method, which always chooses an improving step.

Still, the curve is not monotonically decreasing as the improve-

ment are with respect to the deviating block’s individual cost,

that may conflict with the global cost.

Due to space constraints we do not present the plot pre-

senting the progress of the overlap area in the BRD-RlxSrch

algorithm. In both applications, with or without swaps, the

overlap area is not increasing or decreasing monotonically.

Initially, the algorithm explores non-feasible solutions, that

have low wire-length and bounding box area; however, as the

fine for overlaps is increased, the placements become more

and more overlap-free. The final placement achieved by the

relaxed search algorithm is feasible, and its quality is more or

less equivalent to the quality achieved by BRD-ConstPerb.

C. Comparison with the Simulated Annealing Algorithm

In this section we present a comparison of our unilateral

deviation algorithms with the Simulated Annealing (SA) al-

gorithm. We present the results by normalizing the SA result

to 1. We ran SA and each of our algorithm on all six

test-benches, and normalized the result with respect to the

corresponding SA result. For example, if on some instance

the SA algorithm produces a placement whose area is 12000
pixel2, and our algorithm produces a placement whose area is

9600 pixel2, then the result of our algorithm is presented as

9600/12000 = 0.8.

When presenting the results, we distinguish between two

groups of algorithms. The first group includes algorithms that

are more run-time oriented than result-oriented, while the other

aim to achieve a good result. The first group consists of BRD

with and without swaps, and BRD-ConstPerb without swaps,

while the second group consists of BRD-RlxSrch with and

without swaps, and BRD-ConstPerb with swaps.

Figures 12 and 13 present the results for the total wire-

length, and Figures 14 and 15 present the results for the

placement area. In all the figures, the horizontal black line

represents the result achieved by the SA algorithm.
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Figures 16 and 17 present the comparison between the run-

times of the algorithms. The algorithm of the first group are

indeed much faster than SA. Also, all algorithms when run

without swaps are at least 5 times faster than SA.

The experiments reveal that we can achieve better results

of both wire-length and placement area while paying with a

slightly worse running time. As well as the other way around,

that is, slightly worse result can be achieved with a fraction of

the running time. We also witness certain algorithms, which

on the majority of the test benches, have succeeded to achieve

a better result in a lower running time.

D. Coordinated Deviation

As detailed in Section II-D, coordinated deviations are

performed by a cooperative of blocks. In this section we

analyze the results achieved by our search algorithms when
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applied with coordinated deviations. Recall that a deviation of

a cooperative is beneficial if the total cost of the cooperative

members is strictly reduced. In addition to the local-search

method (BRD, BRD-ConstPerb and BRD-RlxSrch), the al-

gorithms are different in the way they determine the active

cooperative size and formation. In all the experiments with

coordinated deviations, the algorithms were performed on the

same instance and the same initial placements.

Due to space constraints, we do not present the results
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using plots, and only summarize our conclusions. Our results

show that the cooperative size has the largest influence on

the results. The method for determining the cooperative size

in each round is not crucial as the predefined limit for the

maximal cooperative size. The higher this limit, the better the

results. In addition, the experiments do not crown a specific

method for selecting the cooperative members - the results

vary and depend heavily on the initial placement.

We witnessed a major improvement in the results already

with cooperatives of two blocks (compared with unilateral

deviations). Further increase in the cooperative size do tend

to improve the result, however it involves an exponential

increase in the running time. Therefore, the best is to run the

algorithm initially with cooperatives of size two, and allow

non-frequent rounds in which larger cooperatives are activated.

Such executions converge to a final placement much faster

than SA, and if performed multiple times, with different initial

placements, are expected to produce at least one excellent

outcome.

We believe that this unique algorithm, that combines our

search methods with a mixture of coordinated and unilateral

deviations, is the main result of this work.
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IV. SUMMARY AND CONCLUSIONS

In this work we examined the performance of local search

algorithms for the global placement problem in VLSI physical

design. Our algorithms are different from common local

search algorithms in the way they explore the solution space.

Every solution is associated with a global cost (based on

its bounding-box area, the total wire-length, and possibly

additional parameters), and every component is associated

with its individual cost (based on its own placement and

connections). We explore the solution space by moving from

one solution to another if this move is selfishly beneficial for a

single or for a cooperative of components, without considering

the effect on the global cost. Best-response dynamics (BRD)

is performed until no component has a beneficial migration.

We suggested several methods for selecting the component(s)

initiating the next step, and for selecting their migration. In

order to evaluate our algorithms, we have tested them on

various test-benches, and each test-bench was ran with various

initial placements.

Based on our experiments, we can distinguish between two

approaches for handling the problem. The first approach is to

use algorithms with high run-time that also tend to supply good

results. Due to their high run-time, these algorithms can only

be ran a small number of times (with several different initial

placements). The second approach is to use fast algorithms

and ran them many times. We expect to get at least one

good output. The first approach rely on the algorithms’ ability

to consider multiple local minima, thanks to their ability to

escape local minimum. In the second approach the algorithms

tend to stop at the first local minimum they found, however,

this is compensated by the high number of runs, with many

different initial placements.

Our algorithms, even for instances on which they perform

poorly, achieve results not far from SA with only a fraction

of its running time. This feature obviously can be very handy

when one tries to get a quick estimation of the results achiev-

able for a given instance. We believe that this work has proved

the concept of selfish local search to be valid and efficient.

Moreover, this concept may be useful in solving additional

optimization problems arising in real-life applications.
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