Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 20

Communication Papers of the 2019 Federated Conference on Computer Science and Information Systems

Positioning Improving of RSU Devices Used in V2I Communication in Intelligent Transportation System

, ,

DOI: http://dx.doi.org/10.15439/2019F288

Citation: Communication Papers of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 20, pages 7379 ()

Full text

Abstract. In this work we present solutions which aim at enhancement of the localization precision of the road side unit (RSU) devices which will participate in vehicle-to-infrastructure (V2I) communication in future autonomous driving and intelligent transportation systems (ITS). Currently used localization techniques suffer from limited accuracy which is due to various factors, including noise, delays caused by environmental conditions (e.g. temperature variation) and differences in elevation between devices communicating with each other in the road environment. In case of application of the ITS, these factors can be the source of significant discrepancies between real positions of the RSUs and their estimated values provided by the V2I system. The proposed techniques, based on various approximation techniques, as well as linear and nonlinear filters, allow to improve the localization accuracy, reducing the positioning errors by more than 90 \%.

References

  1. O. Hassan, I. Adly, K.A. Shehata, “Vehicle Localization System based on IR-UWB for V2I Applications”, 8th International Conference on Computer Engineering & Systems (ICCES), Nov. 2013.
  2. Lianlin Zhao, Eric T. Psota, Lance C. Pérez, “A Comparison Between UWB and TDOA Systems for Smart Space Localization”, IEEE International Conference on Electro/Information Technology (EIT), 2014, pp.179-193.
  3. Euro New Car Assessment Program (NCAP) – Safety Assist: https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/safety-assist/
  4. Lin Mingyao, “Transmission system for wireless electronic traffic sign and position”, Patent CN1841411 (A) – 2006-10-04.
  5. Hu Jianguo, “Traffic sign wireless broadcasting system”, Patent CN203070537 (U) – 2013-07-17.
  6. Kuo Hsiao-Chen, “Traffic sign wireless broadcast device”, Patent TW201104632 (A) - 2011-02-01
  7. Marzieh Dashti, Mir Ghoraishi, et al., “High-Precision Time-of-Arrival Estimation for UWB Localizers in Indoor Multipath Channels”, Novel Applications of the UWB Technologies, edited by Boris Lembrikov, ISBN 978-953-307-324-8, Aug., 2011.
  8. Ł. Zwirełło, Realization Limits of Impulse-Radio UWB Indoor Localization Systems, Dissertation, Karlsruher Institut für Technologie (KIT), Fakultät für Elektrotechnik und Informationstechnik, 2013.
  9. P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, X. Savatier, “A study of Vicon system positioning performance”, Sensors, 17(7), 1591, http://dx.doi.org/10.3390/s17071591, 2017.
  10. R. Długosz, J. Pauk, P.A. Farine “New Trends in Motion Capture Systems for Human Gait Analysis”, Machine Graphics and Vision, vol. 20, no. 3, 2011, pp. 319-331.
  11. P. Karbownik, G. Krukar, A. Shaporova, et al., “Evaluation of Indoor Real Time Localization Systems on the UWB Based System Case”, 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, Alberta, Canada, Oct. 2015.
  12. S. Kabil, B. Ait Essaid, A. Ait Ouahman, et al., “Analysis of UWB-OFDM system for Vehicle to Infrastructure communication”, 4th In- ternational Conference on Logistics (LOGISTIQUA), June 2011, pp. 319-331.
  13. D. Dardari, N. Decarli, et al., “High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists” Mobile Information Systems, Vol. 2017, Article ID 8149348, 2017.
  14. S. Kabil, R. Elassali, F. Elbahhar, et al., “Orthogonal Frequency-Division Multiplexing Ultra Wide Band System in Real Environment for Vehicle to Infrastructure Application”, Journal of Computer Science, Vol. 9, Iss. 10, DOI : 10.3844/jcssp.2013.1305.1317, pp.1305-1317.
  15. J. Wang, Y. Gao, Z. Li, X. Meng, C. M. Hancock, “A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication”, Sensors, 16(7), 944; http://dx.doi.org/10.3390/s16070944, 2016.
  16. R. Dlugosz, M. Szulc, M. Kolasa, et al., “Design and Optimization of Hardware-Efficient Filters for Active Safety Algorithms,” SAE International Journal Passengers Cars – Electronic and Electrical Systems, 8(1):2015, http://dx.doi.org/10.4271/2015-01-0152, 2015.