

Improved Virus Optimization algorithm for two-objective tasks
Scheduling in Cloud Environment

Kadda Beghdad Bey1, Sofiane Bouznad1, Farid Benhammadi1 and Hassina Nacer2

1Laboratory of Distributed and Complexes Systems, Ecole Militaire Polytechnique,

BP 17 Bordj el Bahri, Algiers, Algeria

(k.beghdadbey, bouznad.sofiane and fbenhammadi2008)@gmail.com

2MOVEP Laboratory. Computer Science Department University of Science and Technology,

USTHB, Algiers, Algeria

sino nacer@yahoo.fr

Abstract ─ Cloud computing is increasingly recognized as a

new way to use on-demand, computing, storage and network

services in a transparent and efficient way. The development of

applications in cloud environments is faced with the need to

efficiently schedule a large number of tasks and resources.

However, in the most of the time, the resources in cloud are not

efficiently utilized due to inadequate scheduling task algorithm

in virtual machines. Therefore, task scheduling is one of the

most challenging issues in cloud computing. In this paper, we

propose two-objective virus optimization algorithm of the

makespan and the cost, for mapping tasks to virtual machines

in order to meet the needs of cloud service quality and proper

assignment of resources. Thus, based on genetic algorithm some

parameters of Virus optimization algorithm are redefined to

strengthen sorting ability between virus infection strategies.

Our combined methods aims to improve the performance of

scheduling algorithms. It outperforms some existing approaches

for task scheduling in Cloud computing.

Keywords: Independent task scheduling, Cloud computing, Virus

optimization algorithm, Genetic algorithm, Two-objective

optimization, CloudSim simulator.

I. INTRODUCTION

Within few years, IT industries start using Cloud Computing

(CC) by serving on demand requests of the users with self-

managed virtual infrastructure and with efficient resources

utilization. Growth of cloud computing slower down the

efficiency, throughput and resource utilization for which

cloud computing need to be evolve. Task scheduling is

considered as one way to enhance the efficient resource

utilization in cloud environments. In fact, independent

computational tasks are supposed to be executing in parallel

when they are executed concurrently on different virtual

machines. The scheduling strategy defines the instants when

the algorithm is called to produce a schedule based on the

resources performances forecasting and independent

computational tasks to be executed. The task scheduling

strategies can be classified on two different types: static and

dynamic. Static strategies define a schedule at compile or at

launch time based on the knowledge of the processors

availability and tasks to execute. Dynamic strategies, are

applied when the tasks arrival time is not known a priori and

therefore the system needs to schedule tasks as they arrive [1].

Plethora of multi-objective optimization techniques for

independent tasks scheduling has been proposed for

assignment of tasks to machine in Cloud Computing systems

[2-11]. The Min-Min heuristic is the well-known standard

scheduling algorithm for its performance, simplicity and

practicability. The Min-Min heuristic [3] gives the highest

priority for dynamic tasks scheduling in heterogeneous

computing systems. The principle of Min-Min heuristic is to

finish each task as early as possible and it schedules the tasks

with the selection criterion of minimum earliest completion

time.

In this paper, we are interested in two-objective

optimization for scheduling independent tasks in cloud

computing environment. The optimization process consists to

minimize the makespan value and the operational cost in

order to ensure the performance and quality of service in the

cloud. The proposed optimization approach uses a virus

optimization algorithm [10]. Thus to provide an improvement

of this algorithm for task scheduling purpose, we propose GA

operators to select strong and weak virus for exploitation and

exploration in space search. In addition, the initialization step

is based on standard scheduling algorithms such as Min-min,

Max-min and Tabou. Experimental results show that our

proposed approach improves the performance of several

existing approaches in literature such as the Min-Min (Max-

Min) heuristic, Genetic heuristic and Virus optimization

algorithms. Moreover, we present in this paper a comparative

study in which the proposed scheduling approach is evaluated

with improved Particle Swarm Optimization (PSO) approach

[12] using a set of different types of Expected Time to

Compute (ETC) matrices up to randomly heterogeneous

machines and heterogeneous tasks using simulated and real

data.

The remainder of this paper is organized as follows.

Section 2 describes the relevant multi-objective optimization

scheduling problems in Cloud environment. Section 3

formulates the two-objective optimization problem for

independent tasks scheduling. Section 4 details the proposed

standard combination, Virus optimization and genetic

algorithms used for resolving this problem. Experimental

results and performance evaluations of the proposed

combination are reported in section 5. Finally, section 6

presents conclusions and directions for future works.

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 109–117

DOI: 10.15439/2019F63

ISSN 2300-5963 ACSIS, Vol. 20

c©2019, PTI 109

II. RELATED WORKS

Various classical scheduling tasks algorithms have been

proposed and deployed until date in CC environments, such

as: First Come First Serve, Min-Min, Min-Max based

scheduling. These classical schemes posed drawbacks of

resulting into more execution time and reduced throughput.

Recently, several researches works focus on multi-objective

optimization tasks scheduling methods in CC and proposes

several techniques. Most of them are based on evolutionary

algorithms to minimize the operational cost and ensure the

performance and quality of service in CC. A vast literature

exists on bio inspired approaches for optimized scheduling

tasks in CC. Ahmad et al. [11] proposed a hybrid genetic

algorithm for solving the workflow-scheduling problem and

optimizing the load balance for maximum resource utilization.

The Multi-objective particle swarm optimization is another

class of task scheduling problem that has been addressed in

CC environment [12, 13]. Generally, the algorithms based on

this optimization achieved best performances compared to the

classical scheduling methods. In recent times, others methods

use the combination of several evolutionary strategies. This

combination of evolutionary type optimization algorithms

has provided the best ways to solve multi-objective

optimization problems, because of their efficiency,

robustness and quick convergence compared to strategies

using only single evolutionary optimization method. In 2015,

Shu, and al. [14] proposed an improved clonal selection

algorithm for meeting the service level agreement requested

by the users. The experimental results show that the proposed

algorithm performs better than other two algorithms with

minimum execution time and increased throughput of the

cloud computing system. In [15], authors proposed an

algorithm based on the combination of genetic algorithm

along with fuzzy optimization theory. Another multi-

objective optimized tasks scheduling algorithm using genetic

algorithms with greedy approach is proposed in [16]. This

algorithm not only performs task scheduling but also perform

others load balancing methods in Cloud environment. Chu

[17] used the combination of genetic algorithm and support

vector machines for two-objective optimized tasks

scheduling algorithm. Based on the cross operation of genetic

algorithm and components selection of partial regression, the

proposed work gives a high effective scheduling and service

cost may be reduced in cloud computing environment using

both completion time and cost of tasks. Similarly, Kim et al.

[18] have developed biogeography-based optimization for

tasks scheduling. This algorithm performs more satisfactorily

than other optimization algorithms, such as genetic algorithm

and particle swarm optimization, in large size problems.

Lakra et al. [19] proposed a Two-objective tasks scheduling

algorithm for mapping tasks to a VMs improving the

throughput of the datacenter and reducing the cost without

compromising the service level agreement in cloud

environment. The proposed scheduling algorithm in [20] is

involving Non-dominated sorting which targets the two-

objective issues considering completion time and cost

minimizations. The exposed results by the authors

outperform the preceding algorithms and this method

represents better convergence performance and resource

scheduling capability in the different number of resources.

These combination strategies perform satisfactorily than

other multi-objective optimization problems using only

genetic algorithm or particle swarm optimization.

III. PROBLEM DEFINITION

In cloud computing, many datacenters consist of several

servers where each server runs a number of virtual machines

that have different capacity to execute tasks with different

QoS parameter. Scheduling refers to the mapping or

assigning a task to a specific virtual machine, such that

resource utilization increases.The main problem is to bind set

of tasks received by the broker to the virtual machines with

the respect of optimized QoS. Based on the makespan and the

cost, this problem can be modelled using two-objective

optimization for tasks scheduling problem. This optimization

model includes two objective functions to be minimized

simultaneously:

Find X = {x1,x2,…………xn}

Which minimize two objective functions f1,f2 :Min(f1(x),

f2(x)), where X is the feasible solutions set.

Our two-objective model for task scheduling optimization

in CC environment can be described by a triplet (T, VM, F).

T ={t1,t2,...,tn} is a consumer tasks set including n tasks,

VM={vm1,vm2,..., vml} is a virtual machine resource set

including l virtual machine and F={Makespan, Cost} is a set

of the considered cloud resource scheduling and optimization

functions. The proposed model is defined as follows:

The Makespan is the maximum completion time of all

tasks in all virtual machines. It can be obtained using the

Expected Time to Compute (ECT) matrix by the following

equation:

 





n

i

ijij
mj

xETCMaxMakespan

1
1

Where :

 






otherwise0

on run will task a if1 ji

ij

vm t
x

-
ijETC is the estimated execution time of task

jt on

machine
ivm and the values of ETC matrix are calculated

by the following equation:

j

i

ij
mips

L
ETC 

110 COMMUNICATION PAPERS. LEIPZIG, 2019

Li indicates the number of instructions required by the task Ti

(implementation time) and Mipsj indicates the frequency of

cloud computing virtual machine vmj.

However, the Cost function in our tasks scheduling

problem is based on the cost Cj of each virtual machine vmj.

The total execution cost for all tasks scheduling can be

defined according to the following formula:





n

i

jijij

l

j

CxETCC

11

Above all, we need to find the most reasonable tasks

scheduling which minimizes the makespan and the cost in

cloud system. Thus, the two-objective tasks scheduling

problem can be modeled by the aggregation (Weighted Sum

Method) of objective optimization functions defined as:

under the constraints:

Where  and (1-) represents the weights of the makespan

and the cost in our two-objective function.

In two-objective optimization, a sufficient solution that

minimizes these two objective functions at the same time can

considers their linear combination (aggregation called

Weighted Sum Method) or Pareto optimal solutions. These

solutions cannot be enhanced for any objective without

degrading minimum of the other objective. For example,

consider the following case where a scenario of ETC matrix

defined by ten tasks and three virtual machines as given in

Table 1. According to the two task assignments (Figure 1),

we obtain two solutions (Makespan=0.68, Cost=80.13$) and

(makespan=0.40, Cost=82.8$). Therefore, these solutions

show that the makespan objective can degrade the cost

objective in the solution selection. Thus, we can select one

solution based on the  value according to the weights of

these two objectives.

TABLE I. AN EXAMPLE OF ETC VALUES

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Cost($) Mips

Vm1 0.10 0.20 0.05 0.10 0.15 0.06 0.15 0.10 0.06 0.20 60 1000

Vm2 0.17 0.33 0.08 0.17 0.25 0.10 0.25 0.17 0.10 0.33 40 600

Vm3 0.07 0.13 0.03 0.07 0.10 0.04 0.10 0.07 0.04 0.13 120 1500

(a) Scenario 1

(b) Scenario 2

Fig 1. Two scenarios of tasks scheduling in CC.

))1(()(CMakespanMinxZ  

 



















10

1,0

1

1


ij

m

j

ij

x

Tix

KADDA BEGHDAD BEY ET AL.: IMPROVED VIRUS OPTIMIZATION ALGORITHM 111

IV. PROPOSED META-HEURISTIC APPROACH:

MOVOA

The development of applications for CC environments is

being challenged by the need of scheduling a large number of

tasks, datasets and resources efficiently [21]. The general

problem of optimally mapping tasks to machines has been

shown to be NP-complete. In this work, we propose a

combined evolutionary heuristics for solving independent

task scheduling problems in CC environment. This

combination uses the two-objective optimization methods

based on adapted virus optimization algorithm and genetic

operators. This combination allows finding the task

assignment that minimizes the makespan and the cost. In this

section, we briefly give a description of the original virus

optimization algorithm [10] and thereafter we introduced our

tasks scheduling method based on improvement of this

algorithm.

A. Virus Optimization Algorithm

The Virus Optimization algorithm is a meta-heuristic

technique, population-based solution used to solve many

optimization problems with single objective like continuous

domain problems [10]. This algorithm imitates the behavior

of the viruses attacking a living cell by infection. Once they

are entered, they will start replicating and alter the genetic

material of the host cell. More viruses will be produced and

ultimately host cell will die. In this algorithm, solution space

is taken as cell itself and global optima can be found inside

the cell. Many viruses can coexist within a host cell and each

such virus represents a solution in the solution space. The

viruses are divided into two categories: Strong and Weak,

which corresponds to the exploration and exploitation

capability of the virus optimization algorithm. Strong viruses

will have high objective function value compared to weak

viruses and they will replicate faster than them. The algorithm

does mainly three types of phases: initialization, replication,

updating and maintenance. An advantage of this algorithm is

that it can be easily parallelized and therefore easily

implemented.

The initialization step occurs according to the fitness

value and consist to create the starting population of the

possible solutions (virus) fulfilling the constraints. These

solutions are sorted based on the objective function

evaluation to select strong and weak virus [10]. In the

replication step, VOA generates new virus where are ranked

in strong and weak ones according to some objective function

values. For example, if the required number of strong viruses

is three, then the first three virus of the created list are

considered strong while the remaining are considered weak.

In the last step, once the new viruses have been generated

using the replication process, VOA checks and maintain the

new population size using the corresponding objective

function values. As a result, only the strong viruses are kept

ordered according to their objective function values. The

checking process verifies the convergence and VOA

determines whether the exploitation has to be intensified by

creating new members closer to the stronger viruses [10].

However, the Maintain process (antivirus) is activated by

interaction between the viruses and the host cell; the antivirus

is triggered at each replication, killing a given number of

viruses according to some fixed parameters such that the

number of strong virus, weak virus and population size [10].

For example, if the needed number of strong viruses is three,

then the first three viruses in the created virus list are

considered strong while the remaining viruses are considered

weak. In addition, this process eliminates some virus from the

population if the total number of viruses inside the host cell

exceeds 1000 virus. Finally, the stopping condition of the

VOA algorithm can be the maximum number of the iterations

or the maximum number of the replications.

B. Task scheduling based on improved VOA

Based on the original VOA, we adapted modifications in

order to enhance the performances of initialization and

replication steps. This following section presents the

description to accomplish to the VOA adaptation for two-

objective optimization based tasks scheduling in CC, called

MOVAO. The population initialization step uses standard

algorithms such as Min-Min, Max-Min and Tabou to

generate the initial population. In the modification step, a

combination of the genetic operators in the virus replications

of the classical VOA is applied. Fig.2 shows the visual

representation for the main steps of the proposed two-

objective optimization process based on VOA and genetic

algorithm.

The presented diagram consists of four steps:

Initialization, classification, replication and antivirus

(maintenance). The proposed two-objective tasks scheduling

algorithm is described in Algorithm 1. First, we defined the

control parameters of the proposed MOVOA as follows:

. Popsize: Size of the initial population;

. Popvirus: Maximum number of viruses in a cell;

. Ntask: Number of tasks to be performed;

. Nvms: Number of virtual machines;

. PvirusStrong: The proportion of strong viruses in a population;

. NvirusStrong: Number of strong viruses;

. Nvirus: Number of viruses to be removed in the antivirus process;

. NrepStrong: Number of viruses to generate from a strong virus;

. NrepWeak: Number of viruses to generate from a weak virus;

. ETC: Matrix of task execution times in virtual machines;

. C: Vector of execution cost on each virtual machine;

. Sbest: Vector representing the best solution found.

In our proposed MOVOA, the population initialization is

based on some standard scheduling algorithms such as Min-

Min, Max-Min and Tabou. According to the logic of the

VOA, this first step is to create the starting population of the

possible solutions fulfilling the constraints of these standards

algorithms.

112 COMMUNICATION PAPERS. LEIPZIG, 2019

Fig.2 MOVOA Flow chart for task scheduling in CC.

Algorithm 1: MOVOA Algorithm

1 : Input : Popsize, Ntasks, NVM, PVirusStrong, ETC, C, PopVirale;

2 : Output : Sbest;

3 : Pop[Popsize] = Initialze_Population(Popsize, Ntasks, Nvm) ;

4 : Moy = Evaluate_Fitness(Pop, ETC) ;

5 : i = 1 // Iterations number;

6 : while (i <= Iteration-max) do

7 : classification(Pop, PVirusStrong) ;

8 : [Nrep-strong, Nrep-low] = random(1,10); // Avec Nrep-strong>Nrep-

low

9 : Popnew= replication (Pop, Nrep-strong, Nrep-low) ;

10 : Calculate the viruses number to be eliminated according

to the equation:

Nvirus= rand (0, Populationsize− Strongmembers);

11 : antivirus (Popnew, Nvirus) ;

12 : Averagenew= Evaluate_Fitness(Popnew, ETC) ;

13 :if (Averagenew>Average) then

14 : Increment intensity by1;

15 : endif

16 : if (size(Popnew) >Popvirale) then

17 : reduction (Popnew) ;

18 : endif

19 : Pop = Popnew;

20 : Average = Averagenew;

21 : i = i + 1 ;

22 : endwhile

23 : return the best solution of Pop : Sbest;

Once the starting population has been initialized, each

virus of the population will must be classified as strong or

weak virus according to their objective function values and

some predefined parameters (number of strong viruses). As

shown in algorithm 2, this classification process is based on

the fitness function (two-objective function Z(x)) and the

strong virus number. For example, if we fix the strong viruses

number to three, so the first three viruses in the created list

are then considered strong while the remaining viruses are

considered weak.

Algorithm 2: Population classification into strong and

weak viruses

1 : Input :Pop, PvirusStrong;

2 : Trier(Pop) according to the fitness function;

3 : NvirusStrong= size(Pop) ×PvirusStrong;

4 : for i = 0 to size(Pop) do

5 : if (i <NvirusStrong) then

6 : setType(Pop[i], strong) ;

7 : else

8 : setType(Pop[i], weak) ;

9 : endif

10 : endfor

After classifying the viruses, each ranked virus in the

population will reproduce by creating new viruses. Thus, two

strategies for this reproduction are adopted. For the strong

virus, four viruses and only three new viruses for weak are

generated. The reproduction process based on improved

replication function is designated in Algorithm 3.

The improvement uses two genetic operators according to

virus types. In order to avoid the local convergence for strong

virus reproduction (local solution), the mutation operator is

used for these types of viruses. However, one-point and two-

point crossover operators are used only for weak viruses. For

example, for the two-point crossover operator, we generate

two new viruses from two weak viruses, which are randomly

selected from the population, as illustrated in figure Fig.3.

Fig.3 An example for crossover operation for two weak
viruses

2 5 1 2 3 1 4 4 1

3 5 2 3 5 4 4 1 5

WV1

WV2

3 5 1 2 3 1 4 1 5

2 5 2 3 5 4 4 4 1

NV1

NV2

 Cut Points

KADDA BEGHDAD BEY ET AL.: IMPROVED VIRUS OPTIMIZATION ALGORITHM 113

Algorithm 3: Improved replication with genetic operators

1 : Input :Pop, NrepStrong, NrepWeak;

2 : Output :Popnew;

3 : Popnew= Pop ;

4 : for i = 0 to size(Pop) do

5 : if (Type(Pop[i]) == strong)then

6 : Insert (listVirusStrong, Pop[i]) ;

7 : else

8 : Insert (listVirusWeak, Pop[i]) ;

9 : endif

10 : endfor

11 : while (listVirusWeak! = Empty) do

12 : for i = 0 to NrepWeak do

13 : // Remove two viruses from the list of weak viruses

14 : [virus1, virus2] =Insert (listVirusWeak) ;

15 : [fils1, fils2] =Crossing (virus1, virus2) ;

16 : Insert (Popnew, [fils1, fils2]) ;

17 : endfor

18 : endwhile

19 : while (listVirusForts! = V ide) do

20 : for i = 0 to NrepStrong do

21 : // Remove one viruses from the list of strong viruses

22 : virus1 = Remove (listVirusStrong) ;

23 : fils1 = Mutation(virus1) ;

24 : Insert (Popnew, fils1) ;

25 : endfor

26 : endwhile

After the replication process, the virus maintenance
process execution (Antivirus algorithm) killed a given
number of viruses according to the original mechanism [10]
among the weak viruses set, because the weak viruses
performing worse. In addition, if the total number of viruses
inside the host cell exceeds 1000, generally the maintenance
process will reduce the population size to the amount set
initially defined (1000 viruses in our case). This
extermination is based on fitness function values as a criterion
performance of the virus population. The proposed antivirus
process is described in Algorithm 4. Finally, if population
performances did not improve after some replication process,
the algorithm stops.

Algorithm 4: Principe of antivirus function ().

1 : Input :Pop, Nvirus ;

2 : Output :Popnew;

3 : Popnew = Pop ;

4 : Trier(Popnew) according to the fitness function;

5 : for i = 0 to Nvirus do

6 : Eliminate the last virus of Popnew ;

7 : endfor

V. RESULT AND EXPERIMENTS

In this section, an evaluation and comparison to validate the
proposed strategy for task scheduling based MOVOA in
Cloud Computing is presented. The conducted experiments
use an Intel®CoreTM i7-2600 machine. Moreover, we ran a set
of experiments to compare it with the other heuristic-based
approaches for independent task scheduling using the
Cloudsim. The proposed approach has been applied to
simulated and real data, with 12 different types of ETC matrix
up to 16, 32, 64, 128 and 256 heterogeneous machines, and
up to 512, 1024, 2048, 4096 and 8182 randomly generated
heterogeneous tasks used in [2]. Thus, we evaluate the
proposed MOVOA algorithm in order to minimize two
objectives that are the makespan and the cost. These different
types of ETC matrix are generated based on the following
properties [2]:

Task heterogeneity – represents the amount of variance among the
execution times of tasks for a given machine. The task heterogeneity
is defined as: lo: low and hi: high.

Machine heterogeneity – represents the variation among the
execution times for a given task across all the machines. The
machine heterogeneity is defined as: lo: low and hi: high.

Consistency – an ETC matrix is said to be consistent whenever a
machine m executes all tasks faster than another machine and the
inconsistency if the machine m may be faster than another machine
for some tasks and slower for others. The consistency type is defined
as: c: consistency; s: semi-consistency and i: inconsistency.

For real data, we have created many VMs and tasks with

different task size using log file introduced in [24]. Task size
ranges from 100 to 10000 and the virtual machines from 3 to
48. The VMs have been created with the same processing
power MIPS range.

First, we give the results of the improved initialization
process adopted in our MOVOA. For simulated data, the
obtained results in Table 2 indicate that the standard
algorithms (Min-max, Min-Min and Tabou) in initialization
process outperform the original VOA. Thus, it is important to
note that our improved initialization process in VOA permits
to give this algorithm competitive with standard algorithms
presented in the literature.

For the setting of the three MOVOA parameters such as
growth rate of weak viruses (B) and growth rate of strong
viruses (B) and strong virus rate in the population (C), Pareto-
optimal front is adopted, where each parameter and their
combination are tested. Fig.4 illustrates the influence results
of these parameters. As can be seen, the growth rate of strong
viruses is the more important parameter for our MOVOA.

Fig.5 shows the influence of the strong virus rate on
MOVOA convergence. Experimental results from this figure
show that the strong virus rate in the population (C) has better
convergence speed and search ability in solving the task
scheduling problem. Our simulation parameters setting give
the final results adopted for our MOVOA approach. Table 4
summarizes the values of these parameters.

114 COMMUNICATION PAPERS. LEIPZIG, 2019

TABLE II. RESULTS OF IMPROVED VOA IN INITIALIZATION PROCESS

Benchmarks VOA VOA-MaxMin VOA-MinMin VOA-TS

5
1
2
×
1
6

A.u_c_hihi 33515841,2075974 9478748,54705373 11641581,3124835 40734849,2597272

A.u_c_hilo 3737479,59860668 139640,463361260 890323,882382025 717846,168886722

A.u_c_lohi 9895642,40071556 325969,379074195 3548603,69777885 1806764,43897363

A.u_c_lolo 118682,944348105 4741,88496593059 24576,3120032209 186154,388470771

A.u_i_hihi 54581417,6358823 5744281,35952104 46888394,9179914 54177713,8001841

1
0
2
4
×
3
2

A.u_c_hihi 4383867358,88497 81168110,2585890 597798515,574730 6242746503,06729

B.u_c_hihi 1246601703,33311 24296362,6739020 191214363,403808 1736816774,16309

B.u_i_lolo 536609,894367258 1825,32098972682 39076,0630305110 553247,143843531

B.u_s_hi 1620976031,0024 14406243,8979040 207133649,666086 1631866310,84382

B.u_s_hilo 16045273,0005123 161710,828037789 2246707,62102429 16504173,9119531

2
0
4
8
×
6
4

A.u_c_hihi 10540814353,3380 68382087,7694320 4066453996,05607 21023179983,7550

B.u_c_hihi 1020053393,50667 6809804,53715252 429375587,707337 1961912055,42496

B.u_s_hilo 34185834,4073316 156508,279151177 2833080,10334692 35777433,2609869

B.u_i_lolo 1150676,97244939 1062,26755656421 40530,6137005020 1160879,21708258

B.u_s_hihi 3326676485,82300 14012103,8195210 286662462,690487 3523788387,30358

4
0
9
6
×
1
2
8
 A.u_c_hihi 23996285871,9060 6624387,60572100 399220512,895295 24316863996,2840

B.u_c_hihi 2411310541,92293 559791,014140813 57468211,0218529 2449266772,19776

B.u_i_lolo 2411851,97259703 553,207997194039 41703,9413734879 2458020,21421099

B.u_s_hilo 71071822,1568924 132058,746687681 4053296,88793036 73666932,4830240

B.u_s_hihi 7163570672,51973 12989954,2801580 370826776,222161 7359095019,85810

8
1
9
2
×
2
5
6
 A.u_c_hihi 50062019882,6850 2855306,64712900 410602822,406195 50514086017,2900

B.u_c_hihi 146893067,056463 936711,747171347 123165194,094830 14813093403,2000

B.u_i_lohi 4946876,98939152 336,242668651566 41518,2627413454 5005558,14873186

B.u_s_hilo 149517372,311974 109082,878871015 5591057,69139399 15091076305,0000

B.u_s_hihi 26761574493,4720 3612402,92343436 118162914,600465 28141746047,1400

Fig.4 The setting of the three MOVOA parameters

Fig.5 Influence of strong virus rate in the population.

KADDA BEGHDAD BEY ET AL.: IMPROVED VIRUS OPTIMIZATION ALGORITHM 115

Table 3 Parameter setting values

Parameters Value

PvirusStrong 33.33% of classified population

Popsize 50 virus

Popvirus Intul

IterationsMax 30 Iterations

After tuning the parameters, we compare our MOVOA

with some evolutionary algorithms with different values of

the parameter  and using a real instances. There are many
prior works on multi-objective optimization problems for
independent task scheduling using evolutionary techniques.

The most popular of meta-heuristic algorithms are Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO).
The comparison results with three competing algorithms
(standard Max-Min algorithm and 2 evolutionary algorithms)
are shown in Fig. 6. The results show that the MOVOA
algorithm outperforms all the algorithms and still provides
stable performance when the benchmark functions are subject
to a variation of the two-objection linear combination

parameter . Once again, MOVOA with Min-max
initialization not only outperforms these evolutionary
algorithms, but also shows outstanding results for all

instances when =0.75 (Fig. 10(c)). Note that MOVOA
performs the best in all of the thirteen instances except for

80024.

Fig. 6 Comparisons of MOVOA algorithm with Max-Min, GA and PSO algorithms.

=0.25

=0.50

=0.75

116 COMMUNICATION PAPERS. LEIPZIG, 2019

VI. CONCLUSION

Scheduling of tasks is one of the most challenging problems

in cloud computing environment. The proposed two-

objective optimization for tasks scheduling algorithm in CC

environment is based on the combination of virus

optimization and genetic algorithms. This last algorithm

gives a best replication for strong and weak virus in space

search. Moreover, Max-Min algorithm reinforces the

population initialization process for the proposed approach.

The proposed algorithm has been simulated and the results

are compared with standard and evolutionary algorithms

previously implemented multi objective tasks scheduling

algorithm for CC environment. Based on Weighted Sum

Method and Pareto-optimal front, the proposed MOVOA

showed competitive performance in terms of average two-

objective function value, achieving the best results in most of

the tested instances and outperforms some standard and

evolutionary algorithms. The proposed algorithm can be

generalized by taking consideration of some other QoS

parameters of the CC environment.

REFERENCES

[1] J. Barbosa and B. Moreira, “Dynamic job scheduling on heterogeneous
clusters”, Eighth International Symposium on Parallel and Distributed

Computing, 2009.

[2] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent

tasks on non-identical processors, Journal of the ACM 24 (2) (1977),

pp 280–289.

[3] H. Izakian, A. Abraham, V. Snasel, “Comparison of Heuristics for

Scheduling Independent Tasks on Heterogeneous Distributed

Environments”, In: IWHGA ’09: Proceedings of the IEEE International
Workshop.

[4] S. Tareghian, Z. Bornaee, “Algorithm to improve job scheduling
problem in cloud computing environment”, 2nd International
Conference on Knowledge-Based Engineering and Innovation (KBEI).

IEEE, 2015, pp 684-688.

[5] C.Y. Liu, C.M. Zou and P. Wu, “A Task Scheduling Algorithm Based
on Genetic Algorithm and Ant Colony Optimization in Cloud

Computing”, International Symposium on Distributed Computing and

Applications To Business, Engineering and Science. 2014, pp 68-72.

[6] F. Tao, Y. Feng, L. Zhang, et al., “CLPS-GA: A case library and Pareto

solution-based hybrid genetic algorithm for energy-aware cloud service

scheduling”. Journal of Applied Soft Computing, 2014, 19(6), pp 264–
279.

[7] M. Zhang, Y. Yang, Z. Mi, et al., “An Improved Genetic-Based

Approach to Task Scheduling in Inter-cloud Environment[, Ubiquitous

Intelligence and Computing”, IEEE 15th Intl Conf on Scalable

Computing and Communications and Its Associated Workshops (UIC-

ATCScalCom), 2015: 997-1003.

[8] B. Keshanchi, A. Souri, N.J. Navimipour, “An improved genetic
algorithm for task scheduling in the cloud environments using the

priority queues: Formal verification, simulation, and statistical testing”,
Journal of Systems and Software, 2017, 124, pp 1-21.

[9] K. Beghdad Bey, F. Benhammadi, M. Y Boudaren and S. Khamadja,

“Load Balancing Heuristic for Tasks Scheduling in Cloud
Environment”, 19th International Conference on Enterprise

Information Systems (ICEIS2017), 26-29 April 2017.

[10] Y.C. Liang and J. R. C. Juarez, “A novel metaheuristic for continuous
optimization problems: Virus optimization algorithm”. In:
Engineering Optimization 48.1 (2016), pp.73–93.

[11] S. G. Ahmad, C. S. Liew, E. U. Munir, T. F. Ang, S. U. Khan, “A
Hybrid Genetic Algorithm for Optimization of Scheduling

Workflow”, Applications in Heterogeneous Computing Systems, Vol.
87, January 2016, pp. 80-90.

[12] L. Guo, G. Shao, and S. Zhao, “Multi-objective Task Assignment in

cloud computing by Particle Swarm Optimization”. In Proceedings of
8th Int. Conf. on Wireless Communications, Networking and Mobile

computing, 2012, pp 1-4.

[13] S. Pandey, L. Wu, S. Guru and R. Buyya, “A particle swarm
optimization based heuristic for scheduling workflow applications in

cloud computing environments”. 24th IEEE Int’l Conference on
Advanced Information Networking and Applications (AINA), Perth,

Australia, 2010, pp. 400-407.

[14] W. Shu, W. Wang, Y. Wang, “A Novel Energy-Efficient Resource

Allocation Algorithm Based on Immune Clonal Optimization for

Green Cloud Computing”. EURASIP Journal on Wireless
Communications and Networking, Vol. 64, December 2014.

[15] S. Tayal, “Task Scheduling optimization for the Cloud Computing
Systems”, International journal of advanced engineering sciences and

technologies, Vol No. 5, Issue No. 2, 201, pp. 111-115.

[16] T. Wang, Z. Liu , Y. Chen, Y. Xu, X. Dai, “Load Balancing Task
Scheduling based on Genetic Algorithm in Cloud Computing”, 12th
International Conference on Dependable, Autonomic and Secure

Computing, IEEE 2014.

[17] H. Chu, “Service Cost of Resource Scheduling in Cloud Computing
based on an Improved Algorithm Combining Support Vector Machine

with Genetic Algorithm”, International Journal of Grid and Distributed

Computing Vol. 9, No. 6 (2016), pp.51-62.

[18] S. Kim, J. Byeon, H. Yu and H. Liu, “Biogeography-Based

Optimization for Optimal Job Scheduling in Cloud Computing”,
Applied Mathematics and Computation, Elsevier, Vol.247, pp. 266-

280, 2014.

[19] A.V Lakra, and D. K Yadav, “Multi-Objective Tasks Scheduling

Algorithm for Cloud Computing Throughput Optimization”,
International Conference on Intelligent Computing, Communication &

Convergence, 2015.

[20] A. Narwal and S. Dhingra, “Task Scheduling Algorithm Using Multi-
Objective Functions for Cloud Computing Environment”,
International journal of control theory and applications, Vol. 10(14),

pp. 227-238, 2017.

[21] N. Bansal, A. Maurya, T. Kumar, et al., “Cost performance of QoS
Driven task scheduling in cloud computing”. Procedia Computer

Science, 57, 2015, pp. 126-130.

[22] M. Abdullahi, M. A. Ngadi, S. M. Abdulhamid, “Symbiotic Organism
Search Optimization Based Task Scheduling in Cloud Computing

Environment”. Future Generation Computer Systems, Vol. 56, March
2016, pp. 640-650.

[23] Y. Sun, J. White, S. Eade, D. C. Schmidt, “ROAR: AQoS-Oriented

Modeling Framework for Automated Cloud Resource Allocation and

Optimization”, Journal of Systems and Software, 2015.
[24] D. G. Feitelson and B. Nitzberg, “Job characteristics of a production

parallel scientific workload on the NASA Ames iPSC/860”, In:
workshop on job scheduling strategies for parallel processing,

Springer, 1995, pp. 337–360.

KADDA BEGHDAD BEY ET AL.: IMPROVED VIRUS OPTIMIZATION ALGORITHM 117

