
Correlation Clustering: Let All The Flowers Bloom!

László Aszalós

Faculty of Informatics at University of Debrecen,

26 Kassai út H4028 Debrecen , Hungary

Email: aszalos.laszlo@inf.unideb.hu

Mária Bakó

Faculty of Economics at University of Debrecen,

138 Böszörményi str., H4032 Debrecen, Hungary

Email: bakom@unideb.hu

Abstract—Correlation clustering is a NP-hard problem, and
for large signed graphs finding even just a good approximation
of the optimal solution is a hard task. In this article we examine
the effect of ranking the nodes and processing them in order of
ranks. We demonstrate that based on the rate of positive edges
in the graph it is worth using different optimisation methods.
We show that all building blocks of our methods are necessary
under certain circumstances.

I. INTRODUCTION

O
NE OF the typical tools of unsupervised learning is

cluster analysis. Here, we wish to put similar elements

into the same group, and put different elements into different

groups. The clustering methods are usually based on the

distance or density of the objects. There is an exception—

correlation clustering—where we only have a similarity rela-

tion of the objects. This is a tolerance relation, i.e. reflexive

and symmetric, but not necessarily transitive. The result of a

clustering is a partition of objects, which can be understood as

an equivalence relation, i.e. a reflexive, symmetric and transi-

tive relation. In 1965 Zahn asked the following question [14]:

What is the closest equivalence relation for a given tolerance

relation?

In 2004 Bansal et al. have showed that this task is NP-

hard and gave a non-optimal solution [6], which of course

only produces an approximate solution. [6] also contains a

generalization of the original problem, where the edges have

weights, and instead of distances we want to optimize the sum

of weights of misplaced edges. The generalized problem has

many applications (mainly in image processing), and there are

numerous approximation methods available in the literature,

each based on a different approach: from minimal cut to linear

programming [1], [8], [9], [10], [11], [13].

The clustering problem itself can be formulated as a com-

binatorial optimisation task, and therefore we can apply the

usual methods: hill-climbing, scattered search, bee algorithm,

harmony search, etc. In recent years, the authors have exam-

ined most of these [2], [5] and moreover have developed a new

method (contraction) to solve the original clustering problem.

Various implementations of this new method were born, on one

hand to accelerate the methods, and on the other to achieve

as close an approximation as possible.

Obviously, a general method cannot offer the best approx-

imation in every particular case. Therefore, we can achieve

a better approximation than the methods described above if

we choose the most fitting method for each individual task.

The contraction itself is a universal method, i.e. it can be used

for all tolerance relations; however, implementations can be

developed to fit the specialities of the given problem to be

solved. As there are no widely accepted benchmark tolerance

relations, we use random, signed graphs to test our methods.

The random signed graphs can be easily identified by partial

tolerance relations. (A positive edge denotes that the relation

holds between the nodes of the edge; a negative edge denotes

that the relation does not hold between the nodes of the

edge; a missing edge means partiality, that is we have no

information about similarity or dissimilarity.) Two types of

random graphs are common. The Erdős-Rényi graph is a dense

graph, where there is an edge between any pair of nodes with

probability p. For any random colouring of the same graph—

that is we assign positive or negative signs to the edges—

the distance between the tolerance relation (which belongs

to the signed graph) and the closest equivalence relation is

almost the same due the symmetry of this kind of graphs.

This means that the colouring does not affect the distance

between the tolerance and the equivalence relations. Phase

transformation of correlation clustering—determining the size

of the biggest cluster in the nearest equivalence relation—can

be solved relatively easily [12].

Barabási-Albert’s scale-free—later abbreviated to BA-

type—graph is a sparse graph, so the number of edges will

be proportional to the number of vertices. Because there are

only a few edges in the graph, it follows that usually there

are only a few adjacent vertices, therefore the colouring of a

given edge has a much stronger effect as before. Furthermore,

these kind of graphs are not symmetric. Hence the distance

of tolerance relations correspond to the random colourings of

the same graph and the closest equivalence relation can vary

within wide limits, as Fig. 1.3. in [3] demonstrates this. There

is not yet a conjecture for the phase transformation problem for

BA-type graphs. Measurement results for large graphs could

possibly help to formalise this conjecture. This is the reason

why we wish to develop a both efficient and accurate method

for BA-type graphs, and determine which methods are the best

for certain conditions.

The structure of the article is the following: after the

introduction, in Section II we present our notations including

the elements needed to build our methods. Next we delineate

the overall results, and review our experiments. In Section IV

we discuss the results and the roles of the building blocks of

our methods. Finally we conclude our results and we give our

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 21–28

DOI: 10.15439/2019F93

ISSN 2300-5963 ACSIS, Vol. 20

c©2019, PTI 21



further plans.

II. SYSTEM OF NOTATION

A. Tolerance and equivalence relation

Let a set of objects be denoted by V , and their similarity

(tolerance) relation by T , where T ⊂ V × V . The partition p

is a function: p : V → N, where objects x and y are in the

same cluster if and only if p(x) = p(y). Accordingly we can

interpret the cluster of x as gx = {y ∈ V |p(x) = p(y)}.

Of course, the partition p determines an equivalence relation

where elements are in a common cluster in p.

By the distance between the tolerance relation T and the

equivalence relation based on p we mean the number of

cases—called as a conflict—in which exactly one of the two

relations holds, i.e.

• xTy and p(x) 6= p(y) or

• xTy does not hold, but p(x) = p(y).

Our task in case of a given tolerance relation T is to

determine the partition p for which the distance between T

and p is minimal, or in other words the number of conflicts

is minimal. The exponentially growing Bell numbers [7] give

the number of partitions, so the exhaustive search—apart from

some special cases—is not applicable, hence we can only get

approximate solutions.

Although it is not feasible in reality, but the objects can be

thought of as magnets, where the similar ones are attracted

to each other, and the different ones toss each other. If we

left these magnets alone, after some time they would form a

state of equilibrium. Here the magnets construct groups. These

groups can be considered as clusters and the whole collection

of clusters as partitions. The steps of the magnets we want to

model are:

• another magnet group is more attractive for a magnet than

its own group, so it is moved to that group

• two magnet groups attract each other, so these groups are

joined.

The first step is to be later referred to as motion, while the

other as merging. The value of attraction between objects x

and y—denoted by a(x, y)—will be:

• 1, if the relation holds between them, i.e. the objects are

similar,

• −1, if the relation does not hold between them, i.e. the

object are dissimilar,

• 0, if the relationship is not interpreted between the two

objects.

The attraction a : V × V → N of objects can be generalized

as the attraction between an object and a cluster, that is a :
V ×2V → N and as the attraction between two clusters, that is

a : 2V ×2V → N which are defined as a(x, g) =
∑

y∈g a(x, y)
and a(g, h) =

∑
x∈g a(x, h), where g, h ⊂ V .

The summing here corresponds to the superposition known

from physics. We left to the reader to check that at the

motion and merging steps, the distance between T and the

partition that is changed by either of these two steps will only

decrease. Therefore, if we can no longer reduce the number of

conflicts using motion and merging, then the resulting partition

is actually a local minimum, and we stop.

B. Optimization methods

It is easy to check that for V = {a, b, c} if aTb and aTc

holds but bTc does not, then more local minima exist. In this

simple case the number of conflicts (the distance) at these

local minima are the same. In case of thousands of objects,

the situation becomes very complicated, and many of the local

minima aren’t global minima, moreover there are significant

differences between distances at minima.

The question is, in what order do we take our steps to avoid

these traps, and get close to the global minima? [3] presented

three structures, where the accuracy of the last one was up

to twelve percent worse than the others’. So we omit this

structure from this article, and so it is not shown in Fig. 1.

First, we reiterate the other two structures. Then, we look at the

different implementations of the merging and motions steps,

and finally look at how these come together into methods.

In the case of the upper structure in Fig. 1—called sequen-

tial—a motion step is followed by a merging step, and if at

least one of them can be executed, then the partition changes,

and so we can try to reduce the conflicts again. If the partition

has not changed during the motion and merging steps, our

algorithm stops. In case of lower structure—called repeated—

we apply the motion step until it reduces the distance between

T and p. Once the motion step can no longer change the

partition, we begin to merge. We repeat the merging step

until it reduces the distance between T and p. If at least one

merging step has made a reduction to the distance (denoted

in the Fig. 1 by any?) in this cycle, that is, if the partition

has been changed by some merging steps, then we can begin

a new round, and test the motion step again. When the motion

and merging steps do not change the partition, we must stop.

Whilst the motion step only changes the partition locally,

and in small increments; the merging step—especially in the

final stages of the optimisation, when we have big clusters—

can cause significant global changes. This is the reason why

the third structure—which is similar to the repeated structure,

with the position of the motion and merging steps swapped—

results in larger distances in the tests because the method

reached a local minimum much earlier.

C. Alternative implementations of the motion step

To determine the motion step, the forces of a(x, g) should

be calculated for each object x and each cluster g, and for

each object x we need to find its most attractive cluster h

for which a(x, h) = maxg a(x, g). If the object x is moved

to another cluster h—because that cluster is more attractive

for the object than its own cluster, i.e. a(x, h) > a(x, gx)—
object x may become a status quo breaker there, and an

earlier element of this new cluster is transferred to a third

cluster and this chain reaction could continue. However, the

previously calculated values of attractiveness of objects and

clusters will be invalidated by changing the partition and need

to recalculated.

22 COMMUNICATION PAPERS. LEIPZIG, 2019



Fig. 1. Structure of our optimization methods.

Fig. 2. Alternative flows of motion step.

We had an implementation of the motion step (flow all in

Fig. 2) that takes all the objects one-by-one, and calculates

the actual attractions of the objects. If some other (maybe

empty) cluster is more attractive than its own cluster, it moves

the object into that cluster. In the figure the colouring of the

portion of the rectangle represents the range of the calculation.

Here, we take every object x ∈ V and calculate the values

maxg a(x, g) and a(x, gx). The latter gives the attraction of

its own cluster. If the former is larger - that is, another cluster

has a greater attraction, then object x must move. Because

we examine each object in a row, this process received the

name all, and the abbreviation a. In the figure, the colouring

of the corresponding rectangle shows that you do not need

to compute attractions a(y, g) for all objects y and for all

clusters g, but only the ones that belong to object x: a(x, g)
for all clusters g. This determines the movement of x, and so

we can move to the next object in the queue, and determine

the attractions belonging to it.

The flow independent in Fig. 2—as the colouring shows—

starts by calculating all the attractions a(x, g) for all x ∈ V

and all clusters g. (That is why the entire rectangle is painted.)

Next it determines the set

M = {x ∈ V |max
g

a(x, g) > a(x, gx)},

i.e. the set of objects to move. In each step we need to select

some object from the set M . If this object x moves from

cluster g to the cluster h, then the set M in the next step

will be reduced to M\(g ∪ h) because the clusters g and h

have changed, therefore the values previously calculated for

these clusters are no longer valid and therefore should not be

used. As the set M becomes empty, the process stops. Since

the clusters affected by the motions (both from and to) are all

different due to the deletions, the flow has been assigned the

name independent and the abbreviation i.

LASZLO ASZALOS, MÁRIA BAKÓ: CORRELATION CLUSTERING: LET ALL THE FLOWERS BLOOM! 23



We began to research the representatives of the clusters, and

the methods to specify them [4]. To find the representatives

of the clusters, a (initially unit) vector has to be multiplied

by the matrix of the similarity relation and normalised again

and again until a fixed point is obtained. In order to keep the

running time under control, only a fixed number of steps were

performed and the objects were ranked according to the result

vector. Considering this rank, we can create two variants of the

flow all, where this rank determines the order of processing,

and not the (arbitrary chosen) identifiers of the objects. If we

process objects in increasing order, we get the flow ordered,

abbreviated by o, while if we choose the descending order,

then flow reversed, or shortly r.

D. Alternative implementations of the merging step

For the merging step we use the attractions between clus-

ters: a(g, h). As merging causes a global change, a cautious

approach allows merging two clusters only once. We are using

the greedy approach, so we are interested in the most profitable

merging, i.e. merge those two clusters for which the number

of conflicts decreases the most. This is illustrated by the flow

one in Fig. 3, and we will refer to it by O.

It is clear that the attractions of the merging clusters towards

a third cluster will add up, so the attractions of the clusters

can be maintained relatively easily. The flow recalculate

(abbreviated by R) visualises this process. It is important

to note—and this is also indicated by the colouring of the

individual rectangles—that there is no need to recalculate

all the attractions, therefore we can save ourselves from

performing a lot of calculations by using this variant, instead

of repeating flow one. Although the final result is exactly the

same, the amount of calculation needed in the second case is

only a fraction of the original.

The recalculation of forces may be omitted if we take the

value of attractions in decreasing order, and we merge the

clusters only if they have not yet changed in this process.

This variant is called independent, and abbreviated by I .

III. TEST RESULTS

A. Overall results

The combination of the structures and the implementations

of the motion and merging steps provide an applicable method.

In the names of the methods the first letter is the code of the

structure (Fig. 1). The middle letter of the name of a method

is the code of the motion step (Fig. 2), and the last letter is the

code of the merging step (Fig. 3). Similarly to [3] we created

a graph showing the results achieved with different methods.

We tested the various methods with 100 different BA type

randomly generated tolerance relations of 5000 objects. We

used the same tolerance relations as input for each method,

and summed up the resulting conflicts and the running times

of our Python implementations. These sums are presented in

Fig. 4. Note that, the axis y has a logarithmic scale in order to

equally allow for the demonstration of the fast and the slow

methods.

The triangles in the upper left corner denote methods using

the single merger (O). This location means that these are very

accurate methods, but they can take up to ten times more time

to run than the other two kinds of merging steps. In the lower

right corner of the figure, crosses denote the methods applying

the independent merger (I), these are fast but inaccurate.

We can find a coterie on the left side of Fig. 4. From left to

right the pairs SaR-RaR, SrR-RrR and SoR-RoR overlap.

While method RiR is above these (red circle), its pair, the

SiR (black circle) is on the right side of the figure.

Based on this graph, we could think that the two new motion

steps (r and o) are worse than the previous ones (a and i).

Keep in mind that this figure was created by summing up the

number of conflicts and running time, which can easily cover

important details.

B. Detailed results

Let us consider a more sophisticated approach. We took

1200 different BA-type random tolerance relation of 500
objects, and examined 101 different colourings for each of

them. Here the rate q of positive edges varies from 0 to 1, and

we took the average of conflicts for each ratio.

From the slow methods, only SaO was kept in this test and

it is represented with a triangle in the top left corner of Fig. 4,

because it minimised the number of conflicts and therefore

we consider it is as a benchmark. Since we approached the

same distances with each of the 17 optimization methods, we

would not really see any striking differences if we were to

present the result on a typical graph. For this reason, we divide

all the values by the corresponding values of the benchmark

(Fig. 5). We can separate some of the methods, but most of

them are very close to each other. However, it can be seen that

some lines cross the level of 1, giving better results than the

benchmark. We have no method that is always better than the

benchmark, but we can find ones that are better for a small q,

and ones are better for a big q.

For example method SaR can only tighten the benchmark

around q = 1. The only difference between the methods SaR

and SaO is that the latter merges once before attempting to

move all the elements again, while the former continues to

merge as long as possible. If only a few clusters with large

number of elements constitute a partition, then there is no

problem with successive merging, but in other cases this step

causes too much change that cannot be counterbalanced by

motion steps.

Consider the method RiR, which is dominated by the

above-mentioned method SaR in the Pareto sense in Fig. 4,

but rates of Fig. 5 shows that in many cases it exceeds the

SaO method for both small and large q values. Therefore the

Pareto set of Fig. 4 is not enough in itself to provide a method

for finding the closest partition to a given tolerance relation.

Instead of presenting additional individual graphs, we made

two summary figures (Fig. 6 and 7), where q = 0 corresponds

to the left of the picture and q = 1 to the right. The methods

with worst performance were not included in these figures.

Fig. 6 shows the cases (method and q) which overtake the

24 COMMUNICATION PAPERS. LEIPZIG, 2019



Fig. 3. Alternative implementations of merging step

Fig. 4. Cumulative results on random relations: running time and efficiency
of the variants of contraction. Shape and colour denote the merging step and
the optimization method

benchmark, while Fig. 7 shows the cases when the benchmark

is the winner. The greater the difference, the darker the colour.

In order to make the differences more visible, in Fig. 7 we set

the same black colour for the bigger differences.

It is interesting to compare the numbers and the coloured

strips belonging to the methods; but for most of us these pic-

tures and numbers contain too much information. So it follows

that they should be compressed somehow, highlighting only

the relevant information. For this reason, we have summed

up the numbers (rates) grounding Fig. 5. We did not do a

complete summing on interval [0, 1]—similarly to Fig.4—, but

we constructed four subintervals and summed on them, as a

Fig. 5. Rate of number of conflicts and the benchmark value at different
rates q of positive edges. Lower value is better.

Fig. 6. Methods and rates q which give better result than the benchmark
method SaO.

LASZLO ASZALOS, MÁRIA BAKÓ: CORRELATION CLUSTERING: LET ALL THE FLOWERS BLOOM! 25



Fig. 7. Methods and rates q which give worse result than the benchmark
method SaO.

TABLE I
SUBSUMS OF OUR OPTIMIZATION METHODS

Method

0.38∑

0

0.58∑

0.39

0.7∑

0.59

1∑

0.71

SaO 0.0 0.0 0.0 0.0
RaR 1.9 7.1 9.6 10.0
RiR 16.6 16.6 4.2 -7.2
SaR 2.3 8.1 11.3 11.1
RoR -5.8 16.9 23.9 24.0
SoR -5.2 18.2 25.0 24.8
RrR 54.8 14.7 6.1 1.4
SrR 55.7 15.7 7.3 2.6
SoI -15.4 72.7 116.7 108.6
SaI -10.9 68.3 120.3 111.0
RoI -14.3 79.5 125.3 110.4
RaI -9.5 75.3 129.2 112.2
RiI -7.2 81.0 132.5 107.7
SrI 42.6 75.3 122.6 109.8
RrI 44.5 81.9 133.4 111.2
SiI 162.8 172.4 164.8 122.7
SiR 368.1 282.9 115.4 36.2

Table I shows. Here, the rows of the table are sorted by their

sums, so the better methods are at the top, and the mostly weak

methods are at the end in the table. Here the running time

could not be taken into account because it was not recorded.

There are several negative numbers in the first column

of Table I, i.e. several methods perform better for small q

than the benchmark. As q is small, tolerance is achieved

between a few pairs of objects, so many small clusters will

be included in the resulting partition. Therefore the merging

steps do not cause very significant changes, so we can iterate

the merging of clusters inside one merging step. According

to the information summarised in this table, the best results

belong to the methods SoI and RoI . To verify our findings, we

made some experiments similar to Fig. 4. However, whilst q

was arbitrary in that random tolerance relations used, here we

tighten it for the given intervals. Fig. 8 reinforces that these

methods really are the best, where RoI is more than three

times faster than SoI . Only method RaI precedes both of

them in speed but not in precision, and these three methods

are the Pareto set (that is, there does not exist a method which

is faster and more accurate at the same time).

There are no negative numbers in the second and third

columns of Table I, i.e. no method can overtake the slowly and

Fig. 8. Cumulative results on random relations where q ∈ [0, 0.38]: running
time and efficiency of the variants of contraction

Fig. 9. Cumulative results on random relations where q ∈ [0.38, 0.58]:
running time and efficiency of the variants of contraction

confidently evolving benchmark. Fig. 9 shows that the method

SoO—not included in the table—is the absolute winner, even

ahead of the benchmark. But it takes a long time to complete

it. The method SoO is 22 times slower than the third ranked

method RoR and 23 times slower than fourth ranked method

SoR.

The methods RaR-SaR, which got small numbers in the

second column of the table are the fifth and sixth most effective

methods, and the methods SrR-RrR have scored the eighth

and ninth place, but the methods RoR-SoR are better than all

of them in the Pareto sense. The method SiO marked with the

fourth triangle is the tenth, and there are some more efficient

(faster and more precious) methods.

In Fig. 10—the figure representing the third column—

triangles are located in the first five places, only the method

RiR slipped in between them in the fourth place. That is,

the principle haste makes waste really applies here. Looking

26 COMMUNICATION PAPERS. LEIPZIG, 2019



Fig. 10. Cumulative results on random relations where q ∈ [0.59, 0.7]:
running time and efficiency of the variants of contraction

at the captions of the figure, we can see that most of the

conflicts are here, so we have to handle the merging steps very

carefully. The greedy independent merger performs poorly, all

the crosses are on the right.

In the last column of Table I there is only one negative

number and it belongs to the method RiR. The numbers

belonging to methods RrR and SrR are small, but positive.

If we narrow the last interval to [−0.81.1], then all three

numbers would turn negative (while the others would remain

be positive), and their values would be −5.4, −2.8 and −2.2
respectively. These are the three methods in the last three

rows of Fig. 6, and only these strips have significant non-

white parts on the right. The method RiR is overcome by

the methods SiO and SrO, but their runtime is nearly 5
and 10 times higher. On the other hand, RiR defeated our

benchmark in the last interval, and the benchmark followed

by the aforementioned methods RiR and SiR.

IV. DISCUSSION

When wishing to use these optimisation methods in practice,

it is possible to choose a precise or fast method depending on

the desired outcome, along with the q value of the tolerance

relation. The Pareto set is the set of methods that are optimal

in that sense. That is, there is no such method which is better

in both speed and precision than those in the Pareto set, so it is

worth choosing a method contained in this set. Table II shows

for each of the intervals which methods are optimal in this

sense, and what are their ranks among the examined methods

in accuracy and speed. For example, the method RaI in the

first row of the table is the fastest of all, but if we disregard

the first interval, then it performs with very poor accuracy.

Consider the building blocks of our methods and look at

their roles. The sequential structure provides the most accurate

solutions in each case, finding the closest equivalence relation

for the tolerance relation of the problem. However, this often

takes a lot of time. For a few tasks, a half-percent error can be

Fig. 11. Cumulative results on random relations where q ∈ [0.71, 1]: running
time and efficiency of the variants of contraction

TABLE II
PARETO SETS ON DIFFERENT INTERVALS

Method [0, 0.38] [0.39, 0.58] [0.59, 0.70] [0.71, 1]

RaI 4/1 14/1 18/1 16/1
RaR 8/7
RoI 2/2 14/2
RoR 3/8 10/6
RrI 14/3
RrR 5/10
RiI
RiR 4/13 3/12

SaI 12/6
SaR 6/8 9/6
SoI 1/7
SoR 4/7 11/4 10/4
SrI
SrR 6/9
SiI
SiR

SaO 2/18
SoO 1/19
SrO
SiO 1/17 1/18

sacrificed in accuracy for a fractional time calculation. That is

why we may need a repeated structure.

The implementation recalculate of the merging step can be

interpreted as a compromise between the two structures, as this

implementation is practically a cycle around the interpretation

one. The interpretation recalculate is indicated by a circle

in our figures. Except for the first interval, these circles are

shown below the triangles (one) and to left on the crosses

(independent), so they can also be considered as a compromise

in this sense, they try to balance between the speed and the

accuracy.

Apart from the first interval, the triangles (one) occupy the

left upper part of the figures, resulting in precise solutions and

LASZLO ASZALOS, MÁRIA BAKÓ: CORRELATION CLUSTERING: LET ALL THE FLOWERS BLOOM! 27



even the most accurate ones.

The crosses only perform well in the first interval, but then

there are dominant.

When we turn to the implementation of motions, the imple-

mentation of ordered performed very nicely as a new player.

The fact that we start by first processing the low-ranking

objects—that cause the small changes—has clearly proven to

be efficient in the first two intervals, reaching two-two podium

positions. If we compare the efficiency in the lower left corner

of the figure (ignoring the speed) we get the order of o-a-r-i,

i.e. by fixing the structure and merging step we go from the

most powerful method to the weakest.

In the third and fourth intervals, we cope with orders i-a-

r-o and i-r-a-o, respectively. Partly this is the reason that in

the third interval the method SaR is also a Pareto optimum

beside the method RiR, and the method of RaR is just

behind SaR. In the fourth interval, for similar reasons we

can discover the Pareto optimum chain of methods RiR-RrR-

SrR-RaR-SaR-SoR. Therefore, by prioritising the speed of

the implementations all and reversed can play a role.

The motion step’s independent implementation is very di-

visible. The SiI and SiR methods perform poorly for every

interval. However, RiR is considered to be the Pareto optimum

in the last two intervals, and it is very close to it in the

second interval too. Additionally, the most accurate method

of the last two intervals is SiO. The latter may be due to the

fact that larger clusters are formed here, so moving an object

from cluster g to cluster h in this implementation means that

elements of g and h will be excluded from moving in that

step. So from the four moving methods, it moves the least

amount of items. Implementation O also means a one-time

merging, so we change our partition the least as possible with

this method. Many of these small changes—together—give the

closest partition.

If we summarise the above statements, we see that each

implementation and structure has its own place, and it is

worth using different methods under different circumstances

(for different q values).

V. CONCLUSION AND FURTHER WORK

We’ve reviewed our previously described methods and im-

plemented two new ways to move our objects in order of

their importance and process them accordingly. We carried

out a much larger and more thorough experiment than before,

which included the new methods too. We elected four inter-

vals of [0, 1] in which the methods perform differently. By

restricting our experiments to these intervals we determined

which methods should be used for a given tolerance relation.

Python implementations were suitable for prototyping, test-

ing new and newer ideas. Now we wish to develop a faster

(probably C++) implementation that constantly updates the

values of forces a(x, g) when changing the partition, and stores

whether the information on objects that need to be moved or

joined is valid or outdated.

This can eliminate unnecessary calculations, which can

speed up our methods. It should be taken into account how
much energy such an administration needs, and whether it

makes the software faster or slower.

REFERENCES

[1] Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via
mathematical programming. The European Physical Journal B 66(3),
409–418 (2008)

[2] Aszalós, L., Bakó, M.: Advanced search methods (in Hungar-
ian). http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0103
13 fejlett keresoalgoritmusok (2012)

[3] Aszalós, L., Bakó, M.: Contraction methods for correlation clustering:
The order is important. In: Recent Advances in Computational Opti-
mization, pp. 1–13. Springer (2019)

[4] Aszalós, L., Nagy, D.: Iterative set approximations based on tolerance
relation. In: International Joint Conference on Rough Sets, pp. 76–88.
Springer (2019)

[5] Bakó, M., Aszalós, L.: Combinatorial optimization methods for correla-
tion clustering. In: D. Dumitrescu, R.I. Lung, L. Cremene (eds.) Coping
with complexity, pp. 2–12. Casa Cartii de Stiinta, Cluj-Napoca (2011)

[6] Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine
Learning 56(1-3), 89–113 (2004). DOI 10.1023/B:MACH.0000033116.
57574.95. URL http://dx.doi.org/10.1023/B:MACH.0000033116.57574.
95

[7] Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments
of sums of random variables. Probability and Mathematical Statistics
30(2), 185–205 (2010)

[8] Bonchi, F., Gionis, A., Gullo, F., Tsourakakis, C.E., Ukkonen, A.:
Chromatic correlation clustering. ACM Transactions on Knowledge
Discovery from Data (TKDD) 9(4), 34 (2015)

[9] Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation
clustering in general weighted graphs. Theoretical Computer Science
361(2-3), 172–187 (2006)

[10] Emanuel, D., Fiat, A.: Correlation clustering–minimizing disagreements
on arbitrary weighted graphs. In: European Symposium on Algorithms,
pp. 208–220. Springer (2003)

[11] Giotis, I., Guruswami, V.: Correlation clustering with a fixed number
of clusters. In: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 1167–1176. Society for Industrial
and Applied Mathematics (2006)

[12] Néda, Z., Florian, R., Ravasz, M., Libál, A., Györgyi, G.: Phase
transition in an optimal clusterization model. Physica A: Statistical
Mechanics and its Applications 362(2), 357–368 (2006). DOI 10.1016/j.
physa.2005.08.008. URL http://dx.doi.org/10.1016/j.physa.2005.08.008

[13] Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmen-
tal Papers (CIS) p. 107 (2000)

[14] Zahn Jr, C.: Approximating symmetric relations by equivalence rela-
tions. Journal of the Society for Industrial & Applied Mathematics
12(4), 840–847 (1964). DOI 10.1137/0112071. URL http://dx.doi.org/
10.1137/0112071

28 COMMUNICATION PAPERS. LEIPZIG, 2019


