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Abstract—In this paper, we present a fast Belief Function
based Inter-Criteria Analysis (BF-ICrA) method based on the
canonical decomposition of basic belief assignments defined on
a dichotomous frame of discernment. This new method is then
applied for evaluating the Multiple-Objective Ant Colony Op-
timization (MO-ACO) algorithm for Wireless Sensor Networks
(WSN) deployment.
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I. INTRODUCTION

IN OUR previous work [1] we propose a new and im-

proved version of classical Atanassov’s InterCriteria Anal-

ysis (ICrA) [2] - [4] approach based on Belief Functions (BF-

ICrA). This method proposes a better construction of Inter-

Criteria Matrix that fully exploits all the information of the

score matrix, and the closeness measure of agreement between

criteria based on belief interval distance. In [5], we show how

the fusion of many sources of evidences represented by Basic

Belief Assignments (BBAs) defined on a same dichotomous

frame of discernment can be fast and easily done thanks to the

Proportional Conflict Redistribution rule no.5 based canonical

decomposition of the BBAs, proposed recently in [6]. In the

recent paper we consider BF-ICrA based on this promising

technique. Then we show how to apply it for the evaluation of

the Multiple-Objective Ant Colony Optimization (MO-ACO)

algorithm for Wireless Sensor Networks (WSN) deployment.

After a condensed presentation of basics of belief functions

in Section II, including the short description of canonical

decomposition of dichotomous BBAs approach, and the main

steps of fast fusion method of dichotomous BBAs, in Section

III the BF-ICrA method is described and analyzed. Section IV

is devoted to the multi-objective ACO algorithm. In Section

V the results of the fast BF-ICrA method with the MO-

ACO algorithm for WSN layout deployment is presented and

discussed. Conclusion is given in Section VI.

II. BASICS OF BELIEF FUNCTIONS

A. Basic definitions

Belief functions (BF) have been introduced by Shafer in

[7] to model epistemic uncertainty and to combine distinct

sources of evidence thanks to Dempster’s rule of combination.

In Shafer’s framework, we assume that the answer1 of the

problem under concern belongs to a known finite discrete

frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn}, with

n > 1, and where all elements of Θ are mutually exclusive

and exhaustive. The set of all subsets of Θ (including empty

set ∅ and Θ) is the power-set of Θ denoted by 2Θ. A proper

Basic Belief Assignment (BBA) associated with a given source

of evidence is defined [7] as a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ m(A) = 1. The quantity

m(A) is called the mass of A committed by the source of

evidence. Belief and plausibility functions are respectively

defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (1)

and

Pl(A) =
∑

B∈2Θ|A∩B 6=∅

m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as

lower and upper bounds of an unknown (subjective) probabil-

ity measure P (A). The quantities m(·) and Bel(·) are one-

to-one and linked by the Möbius inverse formula (see [7], p.

39). A is called a Focal Element (FE) of m(·) if m(A) > 0.

When all focal elements are singletons, m(·) is called a

Bayesian BBA [7] and its corresponding Bel(·) function is

equal to Pl(·) and they are homogeneous to a (subjective)

probability measure P (·). The vacuous BBA, representing

a totally ignorant source, is defined as mv(Θ) = 1. A

dichotomous BBA is a BBA defined on a FoD which has only

two proper subsets, for instance Θ = {A, Ā} with A 6= Θ and

A 6= ∅. A dogmatic BBA is a BBA such that m(Θ) = 0. If

m(Θ) > 0 the BBA m(·) is nondogmatic. A simple BBA is

a BBA that has at most two focal sets and one of them is Θ.

A dichotomous non dogmatic mass of belief is a BBA having

three focal elements A, Ā and A ∪ Ā with A and Ā subsets

of Θ.

In his Mathematical Theory of Evidence [7], Shafer pro-

posed to combine s ≥ 2 distinct sources of evidence repre-

1i.e. the solution, or the decision to take.
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sented by BBAs with Dempster’s rule (i.e. the normalized con-

junctive rule), which unfortunately behaves counterintuitively

both in high and low conflicting situations as reported in [8]–

[11]. In our previous works (see [12], Vol. 2 and Vol. 3 for full

justification and examples) we did propose new rules of combi-

nation based on different Proportional Conflict Redistribution

(PCR) principles, and we have shown the interest of the PCR

rule No 5 (PCR5) for combining two BBAs, and PCR rule

No 6 (PCR6) for combining more than two BBAs altogether

[12], Vol. 2. PCR6 coincides with PCR5 when one combines

two sources. The difference between PCR5 and PCR6 lies in

the way the proportional conflict redistribution is done as soon

as three (or more) sources are involved in the fusion. PCR5

transfers the conflicting mass only to the elements involved in

the conflict and proportionally to their individual masses, so

that the specificity of the information is entirely preserved in

this fusion process.

The general (complicate) formulas for PCR5 and PCR6

rules are given in [12], Vol. 2. The fusion of two BBAs based

on PCR5 (or PCR6) rule which will be use for canonical

decomposition of a dichotomous BBA is obtained by the

formula

mPCR5(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a

denominator is zero, that fraction is discarded.

From the implementation point of view, PCR6 is simpler

to implement than PCR5. For convenience, very basic (not

optimized) Matlab™codes of PCR5 and PCR6 fusion rules

can be found in [12], [13] and from the toolboxes repository

on the web [14]. The main drawback of PCR5 and PCR6 rules

is their very high combinatorial complexity when the number

of source is big, as well as the cardinality of the FoD. In this

case, PCR5 or PCR6 rules cannot be used directly because

of memory overflow. Even for combining BBAs defined on a

simple dichotomous FoD as those involved in the Inter-Criteria

Analysis (ICrA), the computational time for combining more

than 10 sources can take several hours2. That is why a fast

fusion method to combine dichotomous BBAs is necessary,

and we present it in the next subsections.

B. Canonical decomposition of dichotomous BBA

A FoD Θ = {A, Ā} is called dichotomous if it consists

of only two proper subsets A and Ā with A ∪ Ā = Θ and

A ∩ Ā = ∅, where Ā is the complement of A in Θ and A is

different from Θ and from Empty-Set. We consider a given

proper BBA m(·) : 2Θ → [0, 1] of the general form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b (4)

2with a MacBook Pro 2.8 GHz Intel Core i7 with 16 Go 1600 MHz DDR3
memory running Matlab™R2018a.

The canonical decomposition problem consists in finding the

two following simple proper BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x (5)

mc(Ā) = y, mc(A ∪ Ā) = 1− y (6)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The

simple BBA mp(·) is called the pro-BBA (or pro-evidence)

of A, and the simple BBA mc(·) the contra-BBA (or contra-

evidence) of A. The BBA mp(·) is interpreted as a source

of evidence providing an uncertain evidence in favor of A,

whereas mc(·) is interpreted as a source of evidence providing

an uncertain contrary evidence about A.

In [6], we have shown that this decomposition is possible

with Dempster’s rule only if 0 < a < 1, 0 < b < 1 and

a + b < 1, and we have x = a
1−b

and y = b
1−a

. However,

any dogmatic BBA m(A) = a, m(Ā) = b with a + b = 1
is not decomposable from Dempster’s rule for the case when

(a, b) 6= (1, 0) and (a, b) 6= (0, 1), and the dogmatic BBAs

m(A) = 1, m(Ā) = 0, or m(A) = 0, m(Ā) = 1 have

infinitely many decompositions based on Dempster’s rule of

combination. We have also proved that this canonical decom-

position cannot be done from conjunctive, disjunctive, Yager’s

[15] or Dubois-Prade [16] rules of combination, neither from

the averaging rule. The main result of [6] is that this canonical

decomposition is unique and is always possible in all cases

using the PCR5 rule of combination. This is very useful to

implement a fast efficient approximating fusion method of

dichotomous BBAs as presented in details in [5]. We recall

the following two important theorems proved in [6].

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with

A 6= Θ and A 6= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA

m(·) has a unique canonical decomposition using PCR5 rule

of combination of the form m = PCR5(mp,mc) with pro-

evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence

mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorem 2: Any dogmatic BBA defined by m(A) = a and

m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical

decomposition using PCR5 rule of combination of the form

m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorems 1 & 2 prove that the decomposition based on

PCR5 always exists and it is unique for any dichotomous

(nondogmatic, or dogmatic) BBA.

For the case of dichotomous nondogmatic BBA considered

in Theorem 1, one has to find x and y solutions of the system

a = x(1− y) +
x2y

x+ y
=

x2 + xy − xy2

x+ y
(7)

b = (1− x)y +
xy2

x+ y
=

y2 + xy − x2y

x+ y
(8)
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under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1.

The explicit expression of x and y are difficult to obtain

analytically (even with modern symbolic computing systems

like Mathematica™, or Maple™) because one has a quartic

equation to solve whose general analytical expression of its

solutions is very complicate. Fortunately, the solutions can be

easily calculated numerically by these computing systems, and

even with Matlab™system (thanks to the fsolve function) as

soon as the numerical values are committed to a and to b, and

this is what we use in our simulations.

C. Fast Fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous

BBAs ms(.), for s = 1, 2, . . . , S defined on the same FoD Θ
is based on the three following main steps:

1) In the first step, one decomposes canonically each di-

chotomous BBA ms(·) into its pro and contra evidences

mp,s = (mp,s(A),mp,s(Ā),mp,s(A∪ Ā)) = (xs, 0, 1−
xs) and mc,s = (mc,s(A),mc,s(Ā),mc,s(A ∪ Ā)) =
(0, ys, 1− ys),

2) In the second setp, one combines the pro-evidences

mp,s for s = 1, 2, . . . , S altogether to get a global

pro-evidence mp, and in parallel one combines all the

contra-evidences mc,s for s = 1, 2, . . . , S altogether to

get a global contra-evidence mc. The fusion step of pro

and contra evidences is based on conjunctive rule of

combination.

3) Once mp and mc are calculated, then one combines

them with PCR5 fusion rule to get the final result.

Because the PCR5 rule of combination is not associative, the

fusion of the canonical BBAs followed by their PCR5 fusion

will not provide in general the same result as the direct fusion

of the dichotomous BBAs altogether but only an approximate

result, which is normal. However, this new fusion approach is

interesting because the fusion of the pro-evidence mp,s (resp.

contra-evidences mc,s) is very simple because there is non

conflict between mp,s (resp. between mc,s), so that their fusion

can be done quite easily and a large number of sources can be

combined without a high computational burden. In fact, with

this fusion approach, only one PCR5 fusion step of simple

(combined) canonical BBAs is needed at the very end of the

fusion process. In [5], we have proved with a Monte-Carlo

simulation analysis that the approximation obtained by this

new fusion method based on the fusion of pro-evidences and

contra-evidences with respect to the direct fusion of the BBAs

with PCR5 (or PCR6 when considering more than two sources

to combine) is effective because the agreement between the

decision taken from the direct fusion method, and the indirect

(canonical decomposition based) method is very good. This

new fusion method based on this canonical decomposition

does not suffer of combinatorial complexity limitation which is

of great interest in some applications because many (hundreds

or even thousands) of dichotomous BBAs could be easily

combined very quickly. Actually with this method what takes

a bit time is only the canonical decomposition done by the

numerical solver. Our analysis [5] has shown that complexity

of this fast approach is quasi-linear with the number of sources

to combine.

III. THE BF-ICRA METHOD

In [1], we did present an improved version of Atanassov’s

Inter-Criteria Analysis (ICrA) method [2]–[4] based on belief

functions. This new method has been named BF-ICrA (Belief

Function based Inter-Criteria Analysis) for short. It has already

been applied to GPS surveying problems in [17]. We present

briefly in this section the principles of BF-ICrA.

BF-ICrA starts with the construction of an M × N BBA

matrix M = [mij(·)] from the score matrix S = [Sij ]. The

BBA matrix M is obtained as follows - see [18] for details

and justification.

mij(Ai) = Belij(Ai) (9)

mij(Āi) = Belij(Āi) = 1− Plij(Ai) (10)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai) (11)

where3

Belij(Ai) , Supj(Ai)/A
j
max (12)

Belij(Āi) , Infj(Ai)/A
j
min (13)

with

Supj(Ai) ,
∑

k∈{1,...M}|Skj≤Sij

|Sij − Skj | (14)

Infj(Ai) , −
∑

k∈{1,...M}|Skj≥Sij

|Sij − Skj | (15)

and

Aj
max , max

i
Supj(Ai) (16)

Aj
min , min

i
Infj(Ai) (17)

For another criterion Cj′ and the j′-th column of the score

matrix we will obtain another set of BBA values mij′(·).
Applying this method for each column of the score matrix we

are able to compute the BBA matrix M = [mij(·)] whose each

component is in fact a triplet (mij(Ai),mij(Āi),mij(Ai ∪
Āi)) of BBA values in [0, 1] such that mij(Ai) +mij(Āi) +
mij(Ai ∪ Āi)) = 1 for all i = 1, . . . ,M and j = 1, . . . , N .

The next step of BF-ICrA approach is the construction of

the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds

to the BBA (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄)) about positive

consonance θ, negative consonance θ̄ and uncertainty between

criteria Cj and Cj′ respectively. The construction of the triplet

Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ∪ θ̄)) is based on two steps:

• Step 1 (BBA construction): Getting mi
jj′(.).

For each alternative Ai for i = 1, . . . ,M , we

first compute the BBA (mi
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ ∪

3assuming that A
j
max 6= 0 and A

j
min

6= 0. If A
j
max = 0 then

Belij(Ai) = 0, and if A
j
min

= 0 then P lij(Ai) = 1.
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θ̄)) for any two criteria j, j′ ∈ {1, 2, . . . , N}. For

this, we consider two sources of evidences (SoE) in-

dexed by j and j′ providing the BBA mij and mij′

defined on the simple FoD {Ai, Āi} and denoted

mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and mij′ =
[mij′(Ai),mij′(Āi),mij′(Ai∪Āi)]. We also denote Θ =
{θ, θ̄} the FoD about the relative state of the two SoE,

where θ means that the two SoE agree, θ̄ means that they

disagree and θ ∪ θ̄ means that we don’t know. Hence,

two SoE are in total agreement if both commit their

maximum belief mass to the same element Ai or to

the same element Āi. Similarly, two SoE are in total

disagreement if each one commits its maximum mass

of belief to one element and the other to its opposite,

that is if one has mij(Ai) = 1 and mij′(Āi) = 1, or

if mij(Āi) = 1 and mij′(Ai) = 1. Based on this very

simple and natural principle, one can now compute the

belief masses as follows:

mi
jj′(θ) = mij(Ai)mij′(Ai) +mij(Ā)mij′(Ā) (18)

mi
jj′(θ̄) = mij(Ai)mij′(Āi) +mij(Āi)mij′(Ai) (19)

mi
jj′(θ ∪ θ̄) = 1−mi

jj′(θ)−mi
jj′(θ̄) (20)

mi
jj′(θ) represents the degree of agreement between the

BBA mij(·) and mij′(·) for the alternative Ai, m
i
jj′(θ̄)

represents the degree of disagreement of the two BBAs

and mi
jj′(θ ∪ θ̄) the level of uncertainty (i.e. how much

we don’t know if they agree or disagree). By construction

mi
jj′(·) = mi

j′j(·), m
i
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ ∪ θ̄) ∈ [0, 1]

and mi
jj′(θ) + mi

jj′(θ̄) + mi
jj′(θ ∪ θ̄) = 1. This BBA

modeling permits to build a set of M symmetrical

Inter-Criteria Belief Matrices (ICBM) K
i = [Ki

jj′ ] of

dimension N ×N relative to each alternative Ai whose

components Ki
jj′ correspond to the triplet of BBA values

mi
jj′ = (mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ ∪ θ̄)) modeling the

belief of agreement and of disagreement between Cj and

Cj′ based on Ai.

• Step 2 (fusion): Getting mjj′(.).

In this step, one needs to combine the BBAs m
i
jj′(.)

for i = 1, . . . ,M altogether to get the component

Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄)) of the Inter-

Criteria Belief matrix4 (ICBM) K = [Kjj′ ]. For this

and from the theoretical standpoint, we recommend to

use the PCR6 fusion rule [12] (Vol. 3) because of known

deficiencies of Dempster’s rule.

Once the global Inter-Criteria Belief Matrix (ICBM) K =
[Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄))] is calculated, we

can identify the criteria that are in strong agreement, in

strong disagreement, and those on which we are uncertain.

For identifying the criteria that are in strong agreement, we

evaluate the distance of each component of Kjj′ with the BBA

4For presentation convenience, the ICBM K = [Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))] is decomposed into three matrices

K(θ) = [Kθ
jj′

= mjj′ (θ)], K(θ̄) = [K θ̄
jj′

= mjj′ (θ̄)] and

K(θ ∪ θ̄) = [Kθ∪θ̄
jj′

= 1−mjj′ (θ)−mjj′ (θ̄)].

representing the best agreement state and characterized by the

specific BBA5 mT (θ) = 1. From a similar approach we can

also identify, if we want, the criteria that are in very strong

disagreement using the distance of mjj′(·) with respect to the

BBA representing the best disagreement state characterized

by the specific BBA mF (θ̄) = 1. We use the belief interval

distance dBI(m1,m2) presented in [19] for measuring the

distance between the two BBAs.

A. Fast BF-ICrA method

The computational complexity of BF-ICrA is of course

higher than the complexity of ICrA because it makes a more

precise evaluation of local and global inter-criteria belief

matrices with respect to inter-criteria matrices calculated by

Atanassov’s ICrA. The overall reduction of the computational

burden of the original MCDM problem thanks to BF-ICrA

depends highly on the problem under concern, the complexity

and cost to evaluate each criteria involved in it, as well as the

number of redundant criteria identified by BF-ICrA method.

The main drawback of BF-ICrA method is the PCR6

combination required in its step 2 for combining altogether

the dichotomous BBAs mi
jj′(.). Because of combinatorial

complexity of PCR6 rule, it cannot work in reasonable com-

putational time as soon as the number of sources to combine

altogether is greater than 10, which prevents its use for solving

ICrA problems involving more than 10 alternatives (as in

the examples 2 and 3 presented in section V). That is why

it is necessary to adapt the original BF-ICrA method for

working with a large number of alternatives and criteria. For

this, we can in step 2 of BF-ICrA exploit the method for

the fast fusion of dichotomous BBAs presented in section

II-C. More precisely, each dichotomous BBA mi
jj′(.) will be

canonically decomposed in its pro-evidence mi
jj′,p(.) and its

contra-evidence mi
jj′,c(.) that will be combined separately to

get the global pro-evidence mjj′,p(.) and the global contra-

evidence mjj′,c(.). Then, the BBAs mjj′,p(.) and mjj′,c(.)
are combined with PCR5 rule to get the BBAs mjj′(.) and,

finally, the global Inter-Criteria Belief Matrix K = [Kjj′ =
(mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄))]. The principle of this mod-

ified step 2 of BF-ICrA is summarized in the Figure 1 for

convenience.

Another simpler fusion method to combine the dichotomous

BBAs mi
jj′(.) would just consist to average them. In section V,

we will show how these two methods behave in the examples

chosen for the evaluation of MO-ACO Algorithm for optimal

WSN deployment.

IV. MULTI-OBJECTIVE ACO ALGORITHM

Recently Wireless Sensor Networks (WSNs) have attracted

the attention of the research scientists community, conditioned

by a set of challenges: theoretical and practical. WSNs consists

of distributed sensor nodes and their main purpose is to

monitor the real-time environmental status, based on gathering

available sensor information, processing and transmitting the

5We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.
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Figure 1. Principle of fast fusion of mi
jj′

(.) of Step 2 of BF-ICrA.

collected data to the specified remote base station. It is a

promising technology that is used in a coverage of application

requiring minimum human contribution, ranging from civil

and military to healthcare and environmental monitoring. One

of the key mission of WSN is the full surveillance of the moni-

toring region with a minimal number of sensors and minimized

energy consumption of the network. The lifetime of the sensors

is strongly related to the amount of the power loaded in the

battery, that is why the control of the energy consumption

of sensors is an important active research problem. The small

energy storage capacity of sensor nodes intrudes the possibility

to gather the information directly to the main base. Because

of this they transfer their data to the so called High Energy

Communication Node (HECN), which is able to collect the

information from across the network and to transmit it to the

base computer for processing. The sensors transmit their data

to the HECN, either directly or via hops, using closest sensors

as communication relays. The WSN can have large numbers

of nodes and the problem can be very complex.

In order to solve successfully the key mission of WSNs, in

[20], we did apply multi-objective Ant Colony Optimization

(ACO) to solve this hard, from the computational point of

view, telecommunication problem. The number of ants is

one of the key algorithm parameters in the ACO and it is

important to find the optimal number of ants needed to achieve

good solutions with minimal computational resources. In [20],

the optimal solution was obtained by applying the classical

Atanassov’s ICrA method. In the next section we will present

the results obtained by the fast BF-ICrA approach and compare

their results.

The problem of designing a WSN is multi-objective, with

two objective functions: 1) one wants to minimize the energy

consumption of the nodes in the network, and 2) one wants

to minimize the number of nodes. The full coverage of the

network and connectivity are considered as constraints. For

solving this problem, we have proposed to use a M ulti-

Objective Ant Colony Optimization (MO-ACO) algorithm in

[20] and we have studied the influence of the number of ants

on the algorithm performance and quality of the achieved solu-

tions. The computational resources, which the algorithm needs,

are not negligible. The computational resources depends on the

size of the solved problem and on the number of ants. The aim

is to find a minimal number of ants which allow the algorithm

to find good solution for WSN deployment.

The ACO algorithm uses a colony of artificial ants that

behave as cooperating agents. With the help of the pheromone

and the heuristic information they try to construct better solu-

tions and to find the optimal ones. The pheromone corresponds

to the global memory of the ants and the heuristic information

is a some preliminary knowledge of the problem. The problem

is represented by a graph and the solution is represented by

a path in the graph or by tree in the graph. Ants start from

random nodes and construct feasible solutions. When all ants

construct their solution the pheromone is updated. The new,

added, pheromone depends to the quality of the solution. The

elements of the graph, which belong to better solutions will

receive more pheromone and will be more desirable in the

next iteration. In our implementation, we use the MAX-MIN

Ant System (MMAS) which is one of the most successful

ant approaches originally presented in [21]. In our case, the

graph of the problem is represented by a square grid. The

nodes of the graph are enumerated. The ants will deposit

their pheromone on the nodes of the grid. We will deposit

the sensors on the nodes of the grid too. The solution is

represented by tree. An ant starts to create a solution starting

from random node, which communicates with the HECN.

Construction of the heuristic information is a crucial point

in the ant algorithms. Our heuristic information represented

by (21) is a product of three values.

ηij(t) = sij lij(1− bij) (21)

where sij is the number of the new points (nodes of the

graph) which the new sensor will cover, and which are not

covered by other sensors, and

lij =

{

1 if communication exists ;

0 if there is no communication.
(22)

and where bij is the solution matrix. The matrix element

bij equals 1 when there is sensor on this position, otherwise

bij = 0. With sij , we try to increase the number of points

covered by one sensor and thus to decrease the number of

sensors we need. With lij , we guarantee that all sensors

will be connected. With bij we guarantee that maximum one

sensor will be mapped on the same point. The search stops

when transition probability pij = 0 for all values of i and

j. It means that there are no more free positions, or that

all area is fully covered. At the end of every iteration the

quantity of the pheromone is updated according to the rule:

τij ← ρτij + ∆τij , with the increment ∆τij = 1/F (k) if

(i, j) belongs to the non-dominated solution constructed by

ant k, or ∆τij = 0 otherwise. The parameter ρ is a pheromone
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decreasing parameter chosen in [0, 1]. This parameter ρ models

evaporation in the nature and decreases the influence of old

information on the search process. After that, we add the new

pheromone, which is proportional to the value of the fitness

function constructed as F (k) = f1(k)
maxi(f1(i))

+ f2(k)
maxi(f2(i))

,

where f1(k) is the number of sensors proposed by the k-th ant,

and f2(k) is the energy of the solution of the k-th ant. These

are also the objective functions of the WSN layout problem.

We normalize the values of two objective functions with their

maximal achieved values from the first iteration.

V. APPLICATION OF THE FAST BF-ICRA METHOD

In this section we present the results of the fast BF-

ICrA method with the MO-ACO algorithm for WSN layout

deployment. Fidanova and Roeva have developed a software,

which realizes the MO-ACO algorithm. This software can

solve the problem at any rectangular area, the communication

and the coverage radius can be different and can have any

positive value. We can have regions in the area. The program

was written in C language, and the tests were run on computer

with an Intel Pentium 2.8GHz processor. In their tests, they

use an example where the area is square. The coverage and

communication radii cover 30 points. The HECN is fixed in

the centre of the area. In the sequel we consider three examples

of areas with three sizes: 350× 350 points, 500× 500 points,

and 700×700 points. The MO-ACO algorithm is based on 30

runs for each number of ants. We extract the Pareto front from

the solutions of these 30 runs, and we show the achieved non

dominated solutions (approximate Pareto fronts) for each case

on which the BF-ICrA will be applied. The score matrices for

each case is given in Tables I, II and III [20].

Table I
THE 6× 10 SCORE MATRIX S FOR 350× 350 CASE (EXAMPLE 1).

S =















ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

111 30 36 30 30 30 30 30 30 30 30

112 30 36 30 30 30 30 30 30 30 30

113 28 35 28 30 30 30 28 28 28 28

114 26 26 26 26 26 26 26 26 26 26

115 26 26 26 26 26 26 26 26 26 26

116 26 26 26 26 26 26 25 25 26 25















Each row of S corresponds to the number of sensors used in

WSN to cover the area as indicated in the first column at the

left side of the score matrix. Each column of S corresponds

to ACOj algorithm used with j ants (j = 1, 2, . . . , 10). Each

element Sij of S corresponds to the energy corresponding to

this number of sensors and with the number of ants used for

Multiple Objective ACO algorithm.

Application of BF-ICrA in example 1 (350× 350 points)

In this example, one sees from the score matrix of the

Table I that ACO1, ACO3 and ACO9 algorithms perform

equally for all alternatives (i.e. all rows) and they define

a first group/cluster of methods providing exactly the same

performances. Similarly, ACO4, ACO5 and ACO6 constitute a

second group of algorithms. The third group is made of ACO7,

ACO8 and ACO10 algorithms. It is worth noting that these

Table II
THE 22× 10 SCORE MATRIX S FOR 500× 500 CASE (EXAMPLE 2).

S =















































































ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

223 90 96 90 90 89 81 90 90 90 90

224 61 96 89 89 88 65 61 59 57 71

225 61 96 74 58 60 58 57 58 57 57

226 59 95 73 57 59 57 56 58 57 57

227 60 57 57 57 57 56 56 57 57 57

228 60 57 57 57 57 56 56 57 54 57

229 58 57 57 55 57 56 56 56 54 56

230 57 57 57 55 57 52 56 54 54 56

231 57 55 57 55 55 52 56 54 54 56

232 57 55 55 51 54 50 52 51 54 48

233 57 55 55 51 54 50 51 51 54 48

234 57 55 55 51 53 50 51 48 53 48

235 57 55 54 51 53 50 51 48 50 48

236 57 55 54 51 53 50 51 48 50 48

237 57 55 54 51 53 50 51 48 50 48

238 57 55 53 51 53 50 51 48 50 48

239 56 55 53 50 53 50 51 48 50 48

240 53 53 53 50 53 50 51 48 50 48

241 53 53 53 50 53 50 51 48 50 48

242 53 53 53 50 53 50 51 48 50 48

243 53 53 53 50 53 50 51 48 50 48

244 53 53 53 50 52 50 51 48 50 48















































































Table III
THE 19× 10 SCORE MATRIX S FOR 700× 700 CASE (EXAMPLE 3).

S =



































































ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

437 173 173 173 173 173 118 168 172 261 172

438 173 173 173 173 173 118 112 117 260 172

439 172 173 173 173 140 93 110 115 131 172

440 172 173 173 173 115 93 110 114 111 162

441 172 173 173 122 111 93 110 114 111 110

442 172 173 173 114 111 93 110 112 111 110

443 172 150 123 114 111 93 110 112 111 110

444 124 112 112 106 107 93 110 102 111 105

445 117 112 112 106 107 93 110 102 108 105

446 117 112 105 105 105 93 107 102 104 105

447 117 112 105 105 105 93 105 102 102 105

448 115 111 105 105 105 93 105 102 102 105

449 115 111 105 105 105 93 102 99 102 105

450 113 111 105 105 105 93 102 99 102 105

451 113 109 105 105 105 93 102 99 97 105

452 113 109 105 105 105 93 99 99 97 104

453 113 109 105 105 105 93 99 99 97 104

454 113 109 105 105 96 93 96 96 96 104

455 106 106 105 105 96 93 96 96 96 97



































































three groups {ACO1,ACO3,ACO9}, {ACO4,ACO5,ACO6},
and {ACO7,ACO8,ACO10} differ only very slightly, whereas

the ACO2 algorithm (i.e the 2nd column of the score matrix

S) differs a bit more from all the three aforementioned groups.

Example 1 with fast PCR6: If we apply the fast BF-ICrA

method using approximate PCR6 fusion rule based on the

canonical decomposition of the M = 6 dichotomous BBAs

(mi
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ∪ θ̄)), we get the matrix of mass of

belief of agreement between criteria given in Table6 IV.

Table IV
MATRIX K≈PCR6(θ) FOR EXAMPLE 1.































0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806

0.821 0.928 0.821 0.950 0.950 0.950 0.805 0.805 0.821 0.805

0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806

0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795

0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795

0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795

0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843

0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843

0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806

0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843































The matrix of distances to full agreement based on fast BF-

ICrA method, denoted by D≈PCR6(θ), is given in Table V.

6All the numerical values presented in the matrices have been truncated at
their 3rd digit for typesetting convenience.
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Table V
MATRIX D≈PCR6(θ) WITH FAST BF-ICRA FOR EXAMPLE 1.































0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193

0.178 0.071 0.178 0.049 0.049 0.049 0.194 0.194 0.178 0.194

0.134 .0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193

0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204

0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204

0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204

0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156

0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156

0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193

0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156































In examining the table V, one sees that ACO1, ACO3
and ACO9 are at a small distance 0.134, with respect to

other algorithms, so that they belong to the same group

and behave similarly. Same remarks holds for the group

{ACO4,ACO5,ACO6} because its inter-distance is zero,

and for the group {ACO7,ACO8,ACO10} because its inter-

distance is 0.156. In a relative manner ACO2 appears closer

to {ACO4,ACO5,ACO6}, than {ACO1,ACO3,ACO9} or

{ACO7,ACO8,ACO10}, which intuitively makes sense when

comparing directly the columns of the matrix of Table I.

Example 1 with averaging fusion: The matrix of distances

to full agreement based on BF-ICrA method using average

fusion rule, denoted by DAver.(θ), is given in Table VI.

Table VI
MATRIX DAVER.(θ) WITH BF-ICRA USING AVERAGING RULE FOR

EXAMPLE 1.































0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156

0.082 0.030 0.082 0.016 0.016 0.016 0.142 0.142 0.082 0.142

0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156

0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138

0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138

0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138

0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198

0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198

0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156

0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198































One sees that only the group {ACO4,ACO5,ACO6}
can be clearly identified based on the averaging fu-

sion rule. The other groups ACO2 appears also close to

{ACO4,ACO5,ACO6}. But ACO1, ACO3 and ACO9 are

closer to {ACO4,ACO5,ACO6} also than in-between. Same

remarks holds for ACO7, ACO8, and ACO10. So one sees that

the averaging fusion rule is not recommended for making the

BF-ICrA in this example.

Application of BF-ICrA in example 2 (500× 500 points)

Example 2 with fast PCR6: If we apply the fast BF-ICrA

method using approximate PCR6 fusion rule based on the

canonical decomposition of the M = 22 dichotomous BBAs

(mi
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ ∪ θ̄)), we get the following matrix

of distances to full agreement, denoted by D≈PCR6(θ), given

in Table VII.

Based on these results, one sees that no clear group can

be identified but we emphasize in boldface in Table VII the

minimal value for each row of the distance matrix D≈PCR6(θ)
(diagonal elements excluded). We see that ACO2 is at the

farthest distance of ACO1 because D12(θ) = 0.376, but in

Table VII
MATRIX D≈PCR6(θ) WITH FAST BF-ICRA FOR EXAMPLE 2.































0.158 0.376 0.338 0.300 0.286 0.279 0.247 0.251 0.225 0.280

0.376 0.324 0.426 0.456 0.437 0.453 0.457 0.433 0.435 0.449

0.338 0.426 0.407 0.411 0.382 0.423 0.418 0.402 0.393 0.414

0.300 0.456 0.411 0.349 0.323 0.381 0.368 0.370 0.362 0.363

0.286 0.437 0.382 0.323 0.284 0.348 0.334 0.334 0.328 0.333

0.279 0.453 0.423 0.381 0.348 0.316 0.298 0.317 0.308 0.308

0.247 0.457 0.418 0.368 0.334 0.298 0.235 0.276 0.255 0.283

0.251 0.433 0.402 0.370 0.334 0.317 0.276 0.265 0.260 0.303

0.225 0.435 0.393 0.362 0.328 0.308 0.255 0.260 0.211 0.304

0.280 0.449 0.414 0.363 0.333 0.308 0.283 0.303 0.304 0.277































the mean time ACO2 is at closest distance to ACO1 because

D2j(θ) > 0.376 (for j > 2) as shown in second line of

Table VII. So we can conclude that ACO2 is not close to

any other algorithm in fact. If we choose a ad-hoc distance

threshold, say for instance 0.28, then we can identify the group

{ACO1,ACO7,ACO8,ACO9}.

Example 2 with averaging fusion: The matrix of distances

to full agreement based on BF-ICrA method using average

fusion rule, denoted by DAver.(θ), is given in Table VIII.

Table VIII
MATRIX DAVER.(θ) WITH BF-ICRA USING AVERAGING RULE FOR

EXAMPLE 2.































0.361 0.316 0.310 0.311 0.336 0.300 0.306 0.316 0.320 0.309

0.316 0.125 0.158 0.198 0.225 0.187 0.216 0.225 0.240 0.206

0.310 0.158 0.165 0.185 0.215 0.178 0.200 0.215 0.227 0.193

0.311 0.198 0.185 0.183 0.216 0.181 0.197 0.217 0.231 0.192

0.336 0.225 0.215 0.216 0.243 0.214 0.231 0.249 0.261 0.226

0.300 0.187 0.178 0.181 0.214 0.159 0.175 0.194 0.210 0.176

0.306 0.216 0.200 0.197 0.231 0.175 0.181 0.202 0.216 0.186

0.316 0.225 0.215 0.217 0.249 0.194 0.202 0.215 0.229 0.204

0.320 0.240 0.227 0.231 0.261 0.210 0.216 0.229 0.233 0.222

0.309 0.206 0.193 0.192 0.226 0.176 0.186 0.204 0.222 0.183































Based on the average fusion rule there is no clear

clustering of algorithms. However based on shortest inter-

distance we could make the following distinct pairwise group-

ings {ACO2,ACO3}, {ACO6,ACO7}, {ACO4,ACO10},
{ACO8,ACO9} and {ACO1,ACO5} if necessary, but remem-

ber that average fusion rule cannot provide the best result as

shown in Example 1.

Application of BF-ICrA in example 3 (700× 700 points)

Example 3 with fast PCR6: If we apply the fast BF-ICrA

method using approximate PCR6 fusion rule based on the

canonical decomposition of the M = 19 dichotomous BBAs

(mi
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ∪ θ̄)), we get the matrix of distances

to full agreement, denoted by D≈PCR6(θ), given in Table IX.

Table IX
MATRIX D≈PCR6(θ) WITH FAST BF-ICRA FOR EXAMPLE 3.































0.313 0.388 0.465 0.498 0.469 0.500 0.426 0.451 0.498 0.477

0.388 0.339 0.403 0.496 0.461 0.500 0.421 0.440 0.497 0.464

0.465 0.403 0.348 0.493 0.456 0.500 0.416 0.437 0.495 0.457

0.498 0.496 0.493 0.362 0.385 0.500 0.376 0.391 0.470 0.303

0.469 0.461 0.456 0.385 0.230 0.380 0.256 0.288 0.300 0.324

0.500 0.500 0.500 0.500 0.380 0 0.312 0.356 0.308 0.500

0.426 0.421 0.416 0.376 0.256 0.312 0.137 0.185 0.272 0.330

0.451 0.440 0.437 0.391 0.288 0.356 0.185 0.205 0.314 0.351

0.498 0.497 0.495 0.470 0.300 0.308 0.272 0.314 0.283 0.438

0.477 0.464 0.457 0.303 0.324 0.500 0.330 0.351 0.438 0.228































We observe that the average distance between ACO algo-

rithms is much higher than in Tables V and VII of examples
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1 and 2. This shows clearly the difficulty to precisely identify

the clusters of similar algorithms because only few ACO

algorithms perform actually very well for this third example.

Eventually, and based on shortest inter-distance we could make

the first pairwise group {ACO7,ACO8} because D78(θ) =
0.185 is the minimal inter-distance we have between the ACO

algorithms. Once the rows and columns of Table IX corre-

sponding to ACO7 and ACO8 are eliminated, then the second

best group will be {ACO5,ACO9} because D59(θ) = 0.300.

Similarly, we will get the group {ACO4,ACO10} because

D4,10(θ) = 0.303, and then the group {ACO1,ACO2} because

D12(θ) = 0.388. Finally we could also cluster ACO3 with

ACO6 because D36(θ) = 0.500, although this distance of

agreement is quite large to be considered as a trustable cluster.

Example 3 with averaging fusion: The matrix of distances

to full agreement based on BF-ICrA method using average

fusion rule, denoted by DAver.(θ), is given in Table X.

Table X
MATRIX DAVER.(θ) WITH BF-ICRA USING AVERAGING RULE FOR

EXAMPLE 3.































0.170 0.154 0.142 0.221 0.351 0.350 0.392 0.345 0.332 0.298

0.154 0.120 0.092 0.167 0.321 0.295 0.369 0.313 0.290 0.261

0.142 0.092 0.042 0.114 0.289 0.237 0.342 0.279 0.242 0.224

0.221 0.167 0.114 0.054 0.255 0.139 0.327 0.260 0.184 0.177

0.351 0.321 0.289 0.255 0.339 0.245 0.391 0.355 0.287 0.324

0.350 0.295 0.237 0.139 0.245 0 0.304 0.242 0.115 0.247

0.392 0.369 0.342 0.327 0.391 0.304 0.390 0.368 0.336 0.387

0.345 0.313 0.279 0.260 0.355 0.242 0.368 0.328 0.288 0.341

0.332 0.290 0.242 0.184 0.287 0.115 0.336 0.288 0.190 0.279

0.298 0.261 0.224 0.177 0.324 0.247 0.387 0.341 0.279 0.261































Surprisingly, the use of averaging rule provides in this

example lower distance values on average with respect to

values given in Table IX. However no clear clustering of

algorithms can be made because only few ACO algorithms

perform actually very well for this third example. If we adopt

the pairwise strategy to cluster algorithms, we will obtain

now as first group {ACO2,ACO3} because D23(θ) = 0.092,

as second group {ACO6,ACO9} because D69(θ) = 0.115,

as third group {ACO4,ACO10} because D4,10(θ) = 0.177,

as fourth group {ACO1,ACO8} because D18(θ) = 0.345,

and finally we could also cluster ACO5 with ACO7 because

D57(θ) = 0.391. one sees that there is no strong correlation

between results obtained from BF-ICrA based on fast PCR6

and those based on averaging rule, which is not surprising

because the rules are totally different. Nevertheless the group

{ACO4,ACO10} is agreed by both methods here.

VI. CONCLUSIONS

The fast Belief Function based Inter-Criteria Analysis

method, using the canonical decomposition of basic belief

assignments defined on a dichotomous frame of discernment

was applied, tested and analysed in this paper. This new

method was applied for evaluating the Multiple-Objective

Ant Colony Optimization (MO-ACO) algorithm for Wireless

Sensor Networks (WSN) deployment. Based on the BF-ICrA

outcomes it was shown a very high correlation with fast

PCR6 rule for the ACO1, ACO3 and ACO9 group, for the

ACO4, ACO5 and ACO6 group, and for the ACO7, ACO8

and ACO10 group of algorithms in example 1 (case of

size 350 × 350) as intuitively expected. This is because the

considered ACO algorithms can solve the problem with good

solution quality in example 1. These high correlations were

not observed in the other two cases for example 2 (case of

size 500 × 500) and 3 (case of size 700 × 700) because

only few ACO algorithms perform actually very well for

these examples. So, if we considered results in case of larger

problem sizes, the BF-ICrA results show that the number of

ants has the significant influence on the obtained results, as

already pointed out in [20].
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