
Exact and approximation algorithms for sensor

placement against DDoS attacks

Konstanty Junosza-Szaniawski∗, Dariusz Nogalski†, Agnieszka Wójcik∗

∗ Warsaw University of Technology, Faculty of Mathematics and Information Science

ul. Koszykowa 75, 00-662 Warszawa, Poland

email: {k.szaniawski, a.wojcik}@mini.pw.edu.pl
† Military Communication Institute, C4I Systems Department

ul. Warszawska 22A, 05-130 Zegrze, Poland

email: d.nogalski@wil.waw.pl

Abstract—In DDoS attack (Distributed Denial of Service), an
attacker gains control of many network users by a virus. Then
the controlled users send many requests to a victim, leading to
lack of its resources. DDoS attacks are hard to defend because
of distributed nature, large scale and various attack techniques.

One of possible ways of defense is to place sensors in the
network that can detect and stop an unwanted request. However,
such sensors are expensive so there is a natural question about
a minimum number of sensors and their optimal placement to
get the required level of safety.

We present two mixed integer models for optimal sensor
placement against DDoS attacks. Both models lead to a trade-
off between the number of deployed sensors and the volume of
uncontrolled flow. Since above placement problems are NP-hard,
two efficient heuristics are designed, implemented and compared
experimentally with exact linear programming solvers.

Index Terms—DDoS, sensor placement, network safety opti-
mization, minimum multicut, heuristics.

I. INTRODUCTION

DENIAL of Service (DoS) attacks are intended attempts to

stop legitimate users from accessing a specific network

resource (Zargar et al. [1]). DoS attack is an attack on

availability, which is one of the three dimensions from the

well known CIA security triad - Confidentiality, Integrity and

Availability. Availability is a guarantee of reliable access to

information by authorized people. In 1999 the Computer Inci-

dent Advisory Capability (CIAC) reported the first Distributed

DoS (DDoS) attack incident (Criscuolo [2]). The attacker gets

the control of a large number of users by a virus and then

simultaneously performs a large number of requests to a victim

server via infected machines. As a result of a large number

of tasks, the victim server is out of resources and it cannot

provide its service to legitimate users. DDoS attacks are also

a problem in the context of Smart Grid environments (SG)

(Wang et al. [3], Provos and Holz [4], Cameron et al. [5]).

According to [5] availability is more critical than integrity and

confidentiality for SG environments.

DDoS attacks are difficult to defend because a large number

of machines may be controlled by botnets and participate in an

attack, and in consequence, an attack may be launched from

a large number of directions. A single bot (compromised ma-

chine) sends a small amount of traffic which looks legitimate,

but the total traffic at target from the whole botnet is very high.

This leads to exhaustion of resources and disruption of legal

users (Mirkovic and Reiher [6], Ranjan et al. [7]). Another

difficulty is that the attack pattern may be changed frequently.

Typically only a subset of botnet nodes conduct the attack

at the same time. After certain time, the botnet commander

switches to another subset of nodes that conduct the attack.

One of the ways to defend against a DDoS attack is to place

sensors in the network which recognize and stop unauthorized

demands. However, placing such sensors in every node of the

network would be very expensive and inefficient. Hence, a

natural question which arises is what should be the number

of sensors and where to place such sensors. The detection

precision may be higher closer to attack sources since its

easier to detect spoofed addresses and other anomalies. On

the other hand the traffic closer to targets is big enough

to accurately recognize actual flooding attack. In order to

efficiently control the flooding, sensors should be placed in the

core of the network, where most of the traffic can be observed.

A taxonomy of defense mechanisms against DDoS flooding

attacks including source-based, destination-based, network-

based, and hybrid (a.k.a. distributed) defense mechanisms is

discussed in [1].

Jeong et al. [8] and Islam et al. [9] minimize the number of

sensors such that every path of a given length (r) contains a

sensor. Any node less than r hops away is permitted to attack

another node, since the impact of the attack is regarded low,

especially for low r. In this paper we consider the problem of

sensor placement under a different assumption.

In literature, one can find a well-known class of interdiction

problems, which can be related to our DDoS problem. Altner

et al. [10] study the Maximum Flow Network Interdiction

Problem (MFNIP). In MFNIP a capacitated s-t (directed)

network is given, where each arc has a cost of deletion,

and a budget for deleting arcs. The objective is to choose a

subset of arcs to delete, without exceeding the budget, that

minimizes the maximum flow that can be routed through

the network induced on the remaining arcs. The special case

of MFNIP when an interdictor removes exactly k arcs from

the network to minimize the maximum flow in the resulting

network is known as the Cardinality Maximum Flow Network

Interdiction Problem (CMFNIP) (Wood [11]). One of the

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 295–301

DOI: 10.15439/2020F106

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 295

recent works on interdiction problem addresses a two-stage

defender-attacker game that takes place on a network whose

nodes can be influenced by competing agents (Hemmati et

al. [12]). A more general problem on graphs was proposed

by Omer and Mucherino [13], which includes, among the

others, the interdiction problem. In our DDoS problem we

delete vertices, instead of arcs in CMFNIP. Additionally, we

consider multiflow instead of a single flow.

From an attacker point of view, a DDoS attack can be

modeled as a flow from multiple sources to single target (single

commodity flow). We define a directed graph with a capacity

function on edges, a set of sources (S) and a set of targets

(T). We receive a set of possible attacks P = {(S, ti), where

ti ∈ T is a target of an attack}. An attacker can conduct a

single or multiple attack p ∈ P . The strength of an attack is

given by a value of a maxflow for p ∈ P . The single attack

maxflow(p) can be computed efficiently by Ford-Fulkerson

algorithm [14].

Within our DDoS defense approach we want to place

sensors in network nodes, which recognize and stop unwanted

traffic. If a sensor is placed in a vertex v ∈ V then all the

edges incident to v are assumed controlled. We call D ⊂ V a

set of sensors. The goal of our defense is to limit maximum

uncontrolled flow towards each t ∈ T . To achieve that we

minimize multi-cut. The case of a single target |T | = 1
can be reduced to single pair min-cut/max-flow problem and

solved efficiently by a well-known Ford-Fulkerson algorithm

[14]. Additionally, in such case the maximum flow is equal

to the minimum cut. When the number of pairs is two the

problem can be reduced to the single pair case in an undirected

graph (Hu’s two-commodity flow theorem [15]). When the

number of pairs is more than two the problem of multi-cut

becomes NP-hard. The reduction goes from the multiterminal

cuts problem (Dahlhaus et al. [16]), also known as multiway

cuts (Garg et al. [17]). In the multiterminal cuts problem we

are given an edge-weighted graph and a subset of the vertices

called terminals, and asked for a minimum weight set of edges

that separates each terminal from all the others. When the

number of terminals is more than two the multiterminal cuts

is NP-hard (proved by Dahlhaus et al. [16]). Garg et al. [17]

proved that the undirected 3-way edge cut problem can be

reduced to the directed 2-way cut problem.

The main result of this paper are two mixed integer models

for optimal sensor placement against DDoS attacks. One

model generalises the edge multiterminal cut problem, and the

other generalizes node multiterminal cut problem. Hence, both

problems described by our models are NP-hard. Moreover we

present two efficient heuristics (one for each problem). Finally,

we present experimental comparison of solutions given by the

heuristics and the mixed-integer programming solvers.

II. PROBLEM DEFINITION

A. Problem of optimal sensor placement

Network Model: We assume that the network is modeled

as a directed graph G = (V,E) without multiple edges. Every

directed edge has assigned a capacity by a function c : E →

[0,∞). Each node in the network can be interpreted as a router

or an autonomous system.

Protected nodes: We use T ⊂ V to denote a set of

protected nodes (a.k.a target nodes) in a network. Each node

v ∈ T contains a protected resource and is a target of a

possible malicious flow.

Attack sources: We assume that network flooding tar-

geted at protected nodes T can start from any network node

(source). In practical scenario however we want to limit our

attention to a set of sources S ⊂ V .

Attacks: We define a set of possible attacks P = {(S, ti),
where ti ∈ T is a target of an attack}. We don’t assume which

traffic from a source sj ∈ S is legitimate and which one is

hostile. Every potential attack p ∈ P starts from S, is targeted

at t(p) and is modeled as a single-commodity flow. Routing

policies allow multi-path transmissions from sj ∈ S to t(p).
Sensors: A detection sensor can be placed in each network

node. When a sensor is placed in a node v ∈ V , then all the

incoming and outgoing nodes’ edges are assumed controlled.

A set of nodes where sensors are placed is called D.

Definition 1: Attack flow A function f : P × E → [0,∞)
is called attack flow if both conditions are satisfied: conser-

vation of flow (1) and capacity constraints (2).

∀p∈P∀u∈V \{S,t(p)}∑

v:(v,u)∈E

fp(v, u) =
∑

w:(u,w)∈E

fp(u,w), (1)

where fp(u, v) = f(p, (u, v)).

∀e∈Efp(e) ≤ c(e). (2)

The attack flow value is given by

fp =
∑

v:(v,t(p))∈E

fp(v, t(p))−
∑

w:(t(p),w)∈E

fp(t(p), w). (3)

Definition 2: Maxflow By maxflowG(p), where t(p) ∈ T ,

we denote the maximum value of fp (3).

Definition 3: G \D Having a graph G = (V,E) and a set of

sensors D. A graph G\D is a graph (V \D,E\Eincident(D)),
where Eincident(D) is a set of edges incident to d ∈ D.

Definition 4: Uncontrolled flow An uncontrolled flow for

t ∈ T is a flow for which ft > 0 in a graph G \D.

For example, in Fig. 2 all the incoming and outgoing edges

of node 5 and 7 are controlled. An uncontrolled flow exists in

a graph G \ {5, 7}.

In order to defend against DDoS attack we want to place

sensors in a network in such a way that they can observe all

or most of the traffic coming from sources S to targets T .

Placing sensors in every node of the network would be very

expensive and inefficient. Having a limited number of sensors

available, we search for a placement such that uncontrolled

flows are ”distributed” among all tj ∈ T . We want to avoid

the situation in which some targets are fully protected (all

traffic from S is controlled) and the other targets receive a

296 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

high portion of an uncontrolled traffic, and in consequence

are vulnerable to DDoS attack.

We consider two models PC (Placement with required

Cardinality) and PQ (Placement with required Quality).

In the PC model we assume that the number of sensors

k is given and the task is to find a k-element set D ⊂ V

such that maxt∈T maxflowG−D(t) is minimal. Such model

is important from a practical perspective. In many cases the

number of available sensors is limited and one needs to find

an optimal placement.

In the second model, denoted by PQ, we want to minimize

the number k of sensors under the assumption that the amount

of uncontrolled flow does not exceed a given value. Formally,

A_t A’_t
2

3

4

5

6

7

1

8

Fig. 1. Cut for t = 8 ∈ T in G, source nodes S = {1, 2, 3, 4}, protected
nodes T = {8} and sensors D = {5, 7}.

2

3

4

5

6

7

1

8

Fig. 2. Uncontrolled flow in G (dashed lines), source nodes S = {1, 2, 3, 4},
protected nodes T = {8} and sensors D = {5, 7}.

for a given number q ∈ [0, 1], we ask what a minimal number

k ∈ N is such that there exists a k-element set D ⊂ V such

that

max
t∈T

maxflow(t)G−D ≤ (1− q) ·max
t∈T

maxflowG(t).

For q = 1 we get the question: what is the minimal number

of sensors that guarantee the total control in the network.

B. Complexity of the optimal sensor placement

In the multiway cuts problem we are given a directed graph

G = (V,E) with edge capacities c : E → R
+, and a set

of t terminals S = {s1, s2...st}. A (edge) multiway cut in

G is a set of nodes (edges) whose deletion separates every

terminal from every other terminal (i.e. the remaining graph

does not contain any path from si to sj for i 6= j). The problem

of computing the minimum (edge) multiway cut in directed

graphs is NP-hard in case t ≥ 2 (Garg et al. [17], Theorem

3.1).

Notice that the minimum node multiway cut can be reduced

to the problem described by PQ model for q = 1. Moreover

the minimum edge multiway cut problem can be reduced to

the problem described by PC model for k = 0. Hence both

our problems are NP-hard.

III. MODELS DESCRIPTION

Basic formulation of PC and PQ models: To solve the

problem of optimal sensor placement in the sense of models

PC and PQ we use mix-integer programming. Our solution is

based on a well-known Ford-Fulkerson Theorem [14] stating

that the maximum flow cannot exceed the minimum cut and

actually, in our solution we minimize the min-cuts. To compute

minimum cuts for every target t ∈ T we introduce a set At

such that any edge u, v is in a cut for t if and only if u ∈ At

and v 6∈ At (Fig. 1). The set D ⊆ V denotes the set of vertices

in which we place sensors. We start with the PC model.

Formally, we define the following variables:

• For every v ∈ V a binary variable d[v] with the meaning

d[v] = 1 if and only if v ∈ D (there is a sensor in the

vertex v).

• For every t ∈ T and v ∈ V a binary variable a[t, v] with

the meaning a[t, v] = 1 if and only if v ∈ At. The sets

At allow us to compute a cut for the target t ∈ T .

• For every t ∈ T, e ∈ E a binary variable cutT [t, e] with

the meaning cutT [t, e] = 1 if and only if e ∈ belongs to

a cut in G−D for t.

• A real variable M ∈ R, that denotes the value of the

minimum cut in G−D.

A function to minimize is just M with respect to the below

restrictions (4)-(8). For every target t ∈ T each vertex s ∈ S

belongs to At (4). For every target t ∈ T the vertex t does not

belong to At (5). The restriction (6) guarantees that an edge

belongs to a cut if none of its ends is in a set D, the first

vertex is in At and the second vertex is not. The restriction

(7) makes sure that the number of sensors is fixed. Finally, the

equation (8) bounds the value of the cut with M .

DARIUSZ NOGALSKI ET AL.: EXACT AND APPROXIMATION ALGORITHMS FOR SENSOR PLACEMENT AGAINST DDOS ATTACKS 297

∀t∈T ∀s∈S a[t, s] == 1 (4)

∀t∈T a[t, t] == 0 (5)

∀t∈T ∀(u,v)∈E

cutT [t, u, v] ≥ a[t, u]− a[t, v]− d[u]− d[v]
(6)

∑

v∈V

d[v] = k (7)

∀t ∈ T
∑

(u,v)∈E

cutT [t, u, v] · c[u, v] ≤ M (8)

To obtain the PQ model it is enough to replace the target

function to minimize by
∑

v∈V d[v], omitting the restrictions

(7) and (8), and adding the restriction

∀t ∈ T
∑

(u,v)∈E

cutT [t, u, v] · c[u, v] ≤

(1− q) ·max
t∈T

maxflowG(t)
(9)

where maxt∈T maxflowG(t) is equal to the value of max

minimum cut Mt in G (result of PC model for k = 0).

IV. ALGORITHMS DESCRIPTION

Relaxed formulation of PC and PQ models: In this formu-

lation we relax two types of variables to allow the fractional

sensor placement (first) and fractional traffic control (second):

• For every v ∈ V a real variable d[v] ∈ [0, 1]
• For every t ∈ T, e ∈ E a real variable cutT [t, e] ∈ [0, 1].

In the basic model formulation (section III) when an edge u, v

is in a cut for some t (u ∈ At and v 6∈ At), placing a sensor in

either u or v classifies such edge as fully controlled. When no

sensor is placed in neither u nor v such edge is uncontrolled.

Whereas in the relaxed formulation we allow fractional sensor

placement (d variables) and fractional control of edges in a cut

(cutT variables).

To solve the PC and PQ problems, additionally to our two

models (section III), we have designed and implemented two

algorithms:

1) PCIterativeBestSensor (see alg 1)

2) PQIterativeBestSensor (see alg 2).

Both algorithms assume the following common input pa-

rameters: G graph representing a network with c capacity

function, T set of targets and S set of sources. Additionally,

PCIterativeBestSensor heuristics takes k (number of sensors)

as input and PQIterativeBestSensor heuristics q (quality fac-

tor).

A. PC Iterative Best Sensor Placement

The algorithm PCIterativeBestSensor constitutes k + 1 it-

erations. In each {1, .., k} iteration, linear program relaxation

is solved (line 5). From the relaxed LP solution a subset of

vertices L is selected from the set V \D such that d[v] 6= 0
and d[v] == max{d[j]}j∈V \D (line 6). Among the |L| best

sensor locations, the single best (max) one vmax is selected

and added to the model as a constraint (line 8). The constraint

fixes a sensor in the location vmax in the next iterations.

In the last iteration, the LP relaxation is solved assuming fixed

sensor placements for all v ∈ D (line 11).

Algorithm 1 PCIterativeBestSensor

1: Require G, c, T, S, k

2: Create the relaxed PC problem (section IV) with goal

minimize M . Add constraints {(4),(5),(6),(7),(8)} to the

problem.

3: Let’s initiate a set of vertices in which we place sensors

D = ∅
4: for i = 1, .., k do

5: Solve the problem

6: Let L = {v, s.t. v ∈ V \D and d[v] 6= 0 and d[v] ==
max{d[j]}j∈V \D}

7: Choose randomly vmax ∈ L, where probability of

selecting an element vmax equals 1
|L|

8: Add constraint d[vmax] == 1 to the problem

9: D = D ∪ {vmax}
10: end for

11: Solve the problem

12: Retrieve M from the problem solution

13: Return (D,M)

B. PQ Iterative Best Sensor Placement

The preparatory step of the algorithm PQIterativeBestSen-

sor is a computation of the value of maxt∈T maxflowG(t)
(line 2). In each while loop, linear program relaxation is solved

(line 6). From the relaxed LP solution a subset of vertices

L is selected from the set V \ D such that d[v] 6= 0 and

d[v] == max{d[j]}j∈V \D (line 7). Among the |L| best sensor

locations, the single best (max) one vmax is selected and added

to the model as a constraint (line 9). The constraint fixes a

sensor in the location vmax in the next iterations.

V. COMPUTATIONAL RESULTS

A. Experiment Setup

The two models PC and PQ and two algorithms PCItera-

tiveBestSensor and PQIterativeBestSensor were run with the

use of CPLEX 12.10 for Python. Python 3.7 was utilized to

implement heuristics and automate simulations. The simula-

tions were run on a personal computer with 1.9GHz CPU,

16GB RAM and 64-bit Windows platform.

The experiments were conducted on 9 types

of grid networks: Net|V |, where |V | =
{64, 81, 100, 121, 144, 169, 196, 225, 256} indicates the

298 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Algorithm 2 PQIterativeBestSensor

1: Require G, c, T, S, q

2: Compute a value of maxt∈T maxflowG(t)
3: Create the relaxed PQ problem (section IV) with goal

minimize
∑

v∈V d[v]. Add constraints {(4),(5),(6),(9)} to

the problem

4: Let’s initiate a set of vertices in which we place sensors

D = ∅
5: while (∃t ∈ T

∑
(u,v)∈E cutT [t, u, v] · c[u, v] > (1 − q) ·

maxt∈T maxflowG(t)) do

6: Solve the problem

7: Let L = {v, s.t. v ∈ V \D and d[v] 6= 0 and d[v] ==
max{d[j]}j∈V \D}

8: Choose randomly vmax ∈ L, where probability of

selecting an element vmax equals 1
|L|

9: Add constraint d[vmax] == 1 to the problem

10: D = D ∪ {vmax}
11: end while

12: Return D

number of vertices in a network. All of these networks are

directed graphs, with a single edge in each direction u, v and

v, u. An example of a small grid network is demonstrated in

Fig. 3. Each vertex in a graph may correspond to a router or

an autonomous system in telecommunication network.

For the purpose of simulation scenarios, for each net-

work type, four random instances of each network type

were generated, each with randomly selected capacities (c).

Each edge capacity was randomly selected from the range

c(e)e∈E ∈< 100, 200 > (random selection with uniform

distribution). Additionally, for each simulation scenario, four

random instances of target locations Ti=1..4 ⊂ V) were

generated (all vertices V have equal probabilities). For each

target instance Ti, four random instances of source locations

were generated (Sj=1..4 ⊂ V \Ti)(all vertices V \Ti have equal

probabilities). As a result, each value (volume of uncontrolled

flow; execution time) presented on each diagram is an average

computed from 64 measurements. Finally, for all scenarios we

assumed |T | = 10 and |S| = 40.

B. Scenario1: PC problem, Net100, increasing number of

sensors

The experiments were conducted for the grid network

Net100. The number of sensors was increasing from k = 0
to k = 10.

The diagram Fig. 4 demonstrates the average volume of

uncontrolled traffic (y axis) depending on the number of

sensors. As the number of sensors increases, the average

volume of uncontrolled traffic decreases to zero (for k = |T |),
for both PC model and PCIterativeBestSensor heuristics. The

observed average objective values of PCIterativeBestSensor

are higher than those of PC by up to 8%.

The diagram Fig. 5 demonstrates the average time of

execution (y axis). The observed average values of execution

time of PC are up to 10 times higher than those of PCItera-

tiveBestSensor.

1

4

7

2

5

8

3

6

9

Fig. 3. An example of a small grid network |V | = 9

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

V
o

lu
m

e
 o

f
u

n
co

n
tr

o
ll

e
d

 t
ra

ff
ic

 (
a

v
g

)

Number of sensors (k)

PC

PCIterativeBestSensor

Fig. 4. Scenario1, volume of uncontrolled traffic (avg), PC vs. PCItera-

tiveBestSensor

0

2

4

6

8

10

12

14

0 2 4 6 8 10

T
im

e
 o

f
e

x
e

cu
ti

o
n

 (
a

v
g

)

Number of sensors (k)

PC

PCIterativeBestSensor

Fig. 5. Scenario1, time of execution (avg) [s], PC vs. PCIterativeBestSensor

DARIUSZ NOGALSKI ET AL.: EXACT AND APPROXIMATION ALGORITHMS FOR SENSOR PLACEMENT AGAINST DDOS ATTACKS 299

C. Scenario2: PC problem, k=5, increasing size of the grid

Net64, Net81, ... , Net169

The experiments were conducted for the grid networks:

Net64, Net81, Net100, Net121, Net144, Net169. The number

of sensors was fixed k = 5.

The diagram Fig. 6 demonstrates the average time of

execution (y axis) as the size of the network increases (|V |).
As |V | grows, the gap between PCIterativeBestSensor and PC

increases significantly in favour of the heuristics.

D. Scenario3: PQ problem, Net196, increasing value of qual-

ity factor

The experiments were conducted for the grid network

Net196. The value of quality factor was increasing q ∈
{0.1, 0.2, ..., 1.0}.

The diagram Fig. 7 demonstrates the average number of

sensors (y axis) required to control the q-factor of the network

traffic (x axis). As the value of q-factor increases, the number

of required sensors increases on average, for both PQ model

and PQIterativeBestSensor heuristics. However, at a certain

point sensor usage becomes saturated. In the worst observed

cases PQIterativeBestSensor required approximately one sen-

sor more than PQ to achieve the same quality.

The diagram Fig. 8 demonstrates the average time of

execution (y axis). The observed average values of execution

time of PQ are up to 5 times higher than those of PQItera-

tiveBestSensor.

E. Scenario4: PQ problem, q=0.5, increasing size of the grid

Net121, Net144, ... , Net256

The experiments were conducted for the grid networks:

Net121, Net144, Net169, Net196, Net225, Net256. The quality

factor was fixed q = 0.5.

The diagram Fig. 9 demonstrates the average time of

execution (y axis) as the size of the network increases (|V |).
As |V | grows, the gap between PQIterativeBestSensor and PQ

increases significantly in favour of the heuristics.

0

10

20

30

40

50

60

70

60 110 160

T
im

e
 o

f
e

xe
cu

ti
o

n
 (

a
v

g
)

Number of network vertexes (|V|)

PC PCIterativeBestSensor

Fig. 6. Scenario2, time of execution (avg) [s], PC vs. PCIterativeBestSensor

F. Summary of simulation results

The PC algorithms simulations lead to a number of obser-

vations. Firstly, for all test networks, as the number of sensors

0

2

4

6

8

10

12

0 0,2 0,4 0,6 0,8 1

N
u

m
b

e
r

o
f

se
n

so
rs

 (
a

v
g

)
Quality factor (q)

PQ

PQIterativeBestSensor

Fig. 7. Scenario3, number of sensors (avg), PQ vs. PQIterativeBestSensor

0

5

10

15

20

25

0 0,2 0,4 0,6 0,8 1

T
im

e
 o

f
e

xe
cu

ti
o

n
 (

a
v

g
)

Quality factor (q)

PQ

PQIterativeBestSensor

Fig. 8. Scenario3, time of execution (avg) [s], PQ vs. PQIterativeBestSensor

0

5

10

15

20

25

30

120 170 220

T
im

e
 o

f
e

xe
cu

ti
o

n
 (

a
v

g
)

Number of network vertexes (|V|)

PQ

PQIterativeBestSensor

Fig. 9. Scenario4, time of execution (avg) [s], PQ vs. PQIterativeBestSensor

300 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

increases, the volume of uncontrolled traffic decreases to

zero, for both PC model and PCIterativeBestSensor heuristics.

Secondly, the observed average objective values of PCIter-

ativeBestSensor are higher than those of PC by up to 8%
for tested networks. Finally, as the size of the grid network

increases, for fixed k, the execution time gap between PCIt-

erativeBestSensor and PC increases significantly in favour of

the heuristics.

The PQ algorithms simulations lead to the following ob-

servations. Firstly, as the quality factor increases, the num-

ber of sensors increases on average, however, at a certain

point sensor usage becomes saturated, for both PQ model

and PQIterativeBestSensor heuristics. Secondly, in the worst

observed cases PQIterativeBestSensor required approximately

one sensor more than PQ to achieve the same quality. Finally,

as the size of the grid network increases, for fixed q, the

execution time gap between PQIterativeBestSensor and PQ

increases significantly in favour of the heuristics.

VI. CONCLUSIONS

As demonstrated for some medium-sized grid networks,

computation time is not high and qualifies both PC and PQ

models for practical applications. The models respond to the

challenges of the real DDoS problem. One challenge is that

an attack can be conducted from any network node. The

other is that sensors are expensive and placing them in all

network nodes is not possible in many cases. Sensors can be

placed dynamically based on perceived network indicators.

The models expose a highly desirable feature, such that

dislocation of relatively small number of sensors (proportional

to the number of protected nodes) can obtain a significant

quality. Both models lead to a trade-off between the number

of deployed sensors and the volume of uncontrolled flow.

Finally, for large networks, the execution time gap between

the two models and their corresponding heuristics increases

significantly in favour of the heuristics.

REFERENCES

[1] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDOS) flooding attacks,” IEEE

Communications Surveys and Tutorials, vol. 15, no. 4, pp. 2046–2069,
2013. doi: 10.1109/SURV.2013.031413.00127

[2] P. J. Criscuolo, “Distributed Denial of Service Trin00, Tribe Flood
Network, Tribe Flood Network 2000, And Stacheldraht, CIAC-2319,”
Department of Energy Computer Incident Advisory Capability (CIAC),

Lawrence Livermore National Laboratory, 2000.
[3] K. Wang, M. Du, S. Maharjan, and Y. Sun, “Strategic honeypot game

model for distributed denial of service attacks in the smart grid,” IEEE

Transactions on Smart Grid, vol. 8, no. 5, pp. 2474–2482, Sep. 2017.
doi: 10.1109/TSG.2017.2670144

[4] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to

Intrusion Detection. Addison-Wesley, 2007. ISBN 978-0321336323
[5] C. Cameron, C. Patsios, P. C. Taylor, and Z. Pourmirza, “Using

Self-Organizing Architectures to Mitigate the Impacts of Denial-
of-Service Attacks on Voltage Control Schemes,” IEEE Transac-

tions on Smart Grid, vol. 10, no. 3, pp. 3010–3019, 2019. doi:
10.1109/TSG.2018.2817046

[6] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Computer Communication Re-

view, vol. 34, no. 2, p. 39, 2004. doi: 10.1145/997150.997156. [Online].
Available: http://portal.acm.org/citation.cfm?doid=997150.997156

[7] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly,
“DDoS-shield: DDoS-resilient scheduling to counter application layer
attacks,” IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp.
26–39, 2009. doi: 10.1109/TNET.2008.926503

[8] S. B. Jeong, Y. Choi, and S. Kim, “An effective placement of detection
systems for distributed attack detection in large scale networks,” in
Information Security Applications, 5th International Workshop, WISA

2004, Jeju Island, Korea, August 23-25, 2004, Revised Selected Papers,
ser. Lecture Notes in Computer Science, C. H. Lim and M. Yung, Eds.,
vol. 3325. Springer, 2004. doi: 10.1007/978-3-540-31815-6 17 pp.
204–210. [Online]. Available: https://doi.org/10.1007/978-3-540-31815-
6 17

[9] M. H. Islam, K. Nadeem, and S. A. Khan, “Efficient placement of
sensors for detection against distributed denial of service attack,” 2008

International Conference on Innovations in Information Technology, IIT

2008, pp. 653–657, 2008. doi: 10.1109/INNOVATIONS.2008.4781681
[10] D. S. Altner, Ö. Ergun, and N. A. Uhan, “The maximum

flow network interdiction problem: Valid inequalities, integrality
gaps, and approximability,” Oper. Res. Lett., vol. 38, no. 1, pp.
33–38, 2010. doi: 10.1016/j.orl.2009.09.013. [Online]. Available:
https://doi.org/10.1016/j.orl.2009.09.013

[11] R. Wood, “Deterministic network interdiction,” Mathematical

and Computer Modelling, vol. 17, no. 2, pp. 1 – 18,
1993. doi: 10.1016/0895-7177(93)90236-R. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/089571779390236R

[12] M. Hemmati, J. Cole Smith, and M. T. Thai, “A cutting-plane
algorithm for solving a weighted influence interdiction problem,”
Computational Optimization and Applications, vol. 57, no. 1, pp. 71–
104, Jan. 2014. doi: 10.1007/s10589-013-9589-9. [Online]. Available:
https://doi.org/10.1007/s10589-013-9589-9

[13] J. Omer and A. Mucherino, “Referenced vertex ordering problem:
Theory, applications and solution methods,” Mar. 2020, working paper
or preprint. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
02509522

[14] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, p. 399–404, 1956. doi:
10.4153/CJM-1956-045-5

[15] T. Hu, “Multi-commodity network flows,” Operations Research, vol. 11,
no. 3, p. 344–360, 1963. doi: 10.1287/opre.11.3.344

[16] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and
M. Yannakakis, “The complexity of multiterminal cuts,” SIAM

Journal on Computing, vol. 23, no. 4, pp. 864–894, 1994. doi:
10.1137/S0097539792225297

[17] N. Garg, V. V. Vazirani, and M. Yannakakis, “Multiway cuts in directed
and node weighted graphs,” in Automata, Languages and Programming,

21st International Colloquium, ICALP94, Jerusalem, Israel, July 11-14,

1994, Proceedings, ser. Lecture Notes in Computer Science, S. Abite-
boul and E. Shamir, Eds., vol. 820. Springer, 1994. doi: 10.1007/3-
540-58201-0 92 pp. 487–498.

DARIUSZ NOGALSKI ET AL.: EXACT AND APPROXIMATION ALGORITHMS FOR SENSOR PLACEMENT AGAINST DDOS ATTACKS 301

