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Abstract—Particle-in-cell (PIC) simulations are focusing on the
individual trajectories of a very large number of particles in
self-consistent and external electric and magnetic fields; they are
widely used in the study of plasma jets, for example. The main
disadvantage of PIC simulations is the large simulation runtime,
which often requires a parallel implementation of the algorithm.
The current paper focuses on a PIC1d3v simulation algorithm
[1][2] and describes the successful implementation of a parallel
version of it on a multicore architecture, using OpenMP, with
very promising experimental and theoretical results.

I. INTRODUCTION

P
ARTICLE-IN-CELL (PIC) simulations are extremely use-

ful to model self-consistently plasma phenomena at ki-

netic scales [3][4]. Such kind of simulations focus on the

individual trajectories of a very large number of particles in

self-consistent and external electric and magnetic fields. One

class of important phenomena that can be modeled with PIC

simulations are the high-speed plasma jets observed within

Earth’s magnetosheath (see, for instance, [5] and references

therein). This topic is highly relevant for the geomagnetic envi-

ronment (e.g. [6][7]), but it is also of great importance in other

astrophysical and space science contexts, like, for instance,

the interaction of the planetary/magnetospheric plasmas with

solar and stellar winds or the propagation of astrophysical

relativistic jets (e.g.[8][9]). More generally, the topic of high-

speed jets is relevant to transport phenomena, kinetic processes

and discontinuities in collisionless magnetized plasmas.

The interaction of high-speed plasma jets with non-uniform

magnetic fields has been investigated over time with multiple

fluid and kinetic approaches (see, for instance, [10] for a

review on this topic). Nevertheless, the electromagnetic PIC

approach is the most suitable tool to address this issue since

it allows for the simultaneous investigation of key physical

effects as self-polarization, finite Larmor radius effects and

electromagnetic processes. Indeed, [11][12][13] used for the

first-time such kind of simulations in a 3D geometry to

investigate the interaction of high-speed plasma jets with non-

uniform magnetic fields in a simplified magnetopause-like

configuration typical for a northward interplanetary magnetic

field.

The electromagnetic PIC approach provides a fully kinetic

description of plasma by considering both self-consistent

electrostatic and electromagnetic effects at microscopic level.

The time-step and grid spacing used in electromagnetic PIC

simulations must fulfill very restrictive stability conditions in

order to avoid undesired numerical effects that could arise

due to the discretization of space and time [3]. Thus, the very

fine spatial and temporal resolution resolves even the smallest

scales, i.e. Debye length and plasma frequency, but also leads

to large simulation runtimes.

To surpass this limitation, parallelization is often used for

implementing PIC simulation algorithms, and parallel algo-

rithms for PIC simulations are present throughout the scientific

literature. The solution presented in [14] uses a distributed

memory model to simulate large scale systems. In their

approach, parallelism is achieved through geometrical domain

decomposition, each process being responsible for evolving its

own sub-domain. The authors of [15] have a similar approach

of domain decomposition, while investigating load-balancing

strategies for both distributed memory and shared memory

models.

Finally, the authors of [16] achieve parallelism by dividing

particles among threads according to their positions, on a

shared memory machine, while taking advantage of cache re-

usability. A hybrid approach is presented in [17], in which

the author uses MPI for communication between processes

and OpenMP to parallelize the loops inside the processes.

This way, the implementation takes advantage of the fact

that the processing nodes have a multi-core architecture.

To obtain better performance, in some approaches [18][19],

parallel implementations are optimized using techniques that

take advantage of the physical parallel machine characteristics.

In this paper, we use an explicit and relativistic 1d3v electro-

magnetic PIC algorithm developed for one-dimensional kinetic

simulation of fully-ionized collisionless magnetized plasmas.

This approach considers simulation geometries having a single

dimension in the configuration space and all three dimensions

in the velocity space. Such an algorithm can be used to

study, for instance, the formation, structure and evolution of

one-dimensional tangential discontinuities, a topic of great

importance for understanding the physics of high-speed jets in

space plasmas (e.g. [20][21]). Given the sequential algorithm,

we describe how we developed its parallel version, while

discussing the parallelization strategy. To the best of our

knowledge, no other parallelization of the discussed algorithm

can be found in the literature.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 381–385

DOI: 10.15439/2020F130

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 381



Algorithm 1 Algorithm PIC1d3v

Begin s i m u l a t i o n

/ / read i n p u t p a r a m e t e r s

0 . r e a d (m, np , nt , . . . ) ;

/ / i n i t i a l i z e da ta

1 . i n i t ( . . . ) ;

/ / e x e c u t e main loop

f o r i =1 t o n t do

Begin

/ / h a l f −advance o f m a g n e t i c f i e l d

2 . b f i e l d ( . . . ) ;

/ / push p a r t i c l e s ( one t ime−s t e p )

3 . mover ( . . . ) ;

/ / h a l f −advance o f m a g n e t i c f i e l d

4 . b f i e l d ( . . . ) ;

/ / c u r r e n t d e n s i t y c o m p u t a t i o n

5 . c u r r e n t ( . . . ) ;

/ / f u l l −advance o f e l e c t r i c f i e l d

6 . e f i e l d ( . . . ) ;

/ / a p p l y p e r i o d i c i t y f o r p a r t i c l e s

7 . p e r i o d ( . . . ) ;

/ / compute e ne r g y d e n s i t y

8 . e n e r g y ( . . . ) ;

/ / w r i t e da ta t o f i l e s ( o p t i o n a l )

9 . w r i t e _ f i l e s ( . . . ) ;

End l oop

End s i m u l a t i o n

The rest of this paper is organized as follows. Section

II describes the sequential PIC1d3v algorithm. Section III

describes the parallelization strategy, by first analyzing the

execution time of each step and investigating the formula

for the overall speedup. Section IV presents the experimental

results. Section V concludes the paper.

II. THE PIC1D3V ALGORITHM

The PIC1d3v algorithm that we are focusing on is based

on the proposed algorithm from [1][2] and raises a series of

challenges that will be detailed below, following the pseu-

docode of the algorithm, step by step. (see Algorithm 1 below).

Moreover, the flow of the simulation is visually described in

Fig. 1.

Step 0– Read input parameters

During this step of the simulation the parameters are read

from the input file. The most important parameters, those who

control the size of the simulation are:

1) m – the number of cells; particles are distributed

randomly across these cells at the beginning of the

simulation.

2) np – the number of particles, meaning that np electrons

and np ions are used in the simulation.

3) nt – the number of iterations; the main loop is executed

nt times.

For the range of problems studied in our research group,

concrete values for m range from 1, 000 to 10, 000 cells,

values for np range from 100, 000 to 1, 000, 000 particles

and the values for nt range from 1 to 10, 000, 000, but

technically these values could be increased if needed. Let us

focus a bit on the largest possible simulation consisting of

10, 000, 000 iterations for 1, 000, 000 particles spread across

10, 000 cells. The internal memory requirements for such a

simulation are not difficult to fulfill for a common serial

computer available today in any research lab. However, the

execution time required for such a simulation (for a common

serial computer) is impressive: approximately 450 days (that

is 1.267 years)! The main goal of this paper, as stated above,

is to reduce this execution time as much as possible, using

a multicore CPU architecture, which is very commonplace

nowadays.

Step 1 – Initialize data

During this step of the simulation the position, velocity,

fields, currents and energy data is initialized.

Steps 2 to 9 – The main loop

The main focus of the algorithm is the main loop, which is

also clearly the most time consuming part, and therefore the

focus of the parallel optimization. We will shortly describe

each step of the main loop below.

Steps 2 and 4 – Half-advance of the magnetic field

In these steps, the components of the magnetic field (ac-

cording to Faraday’s law) are computed, at a given time, by

knowing their values at the previous time-step. At each step,

the magnetic field advances only for a half time-step.

Step 3 – Push particles over one time-step

This step of the algorithm computes the electric and mag-

netic fields in the actual position of each particle. Then, it

moves the particle to its new position after one time-step and

recomputes its velocity.

Step 5 – Current density computation

At this step, current density is computed for particles,

while applying periodic boundary conditions and a smoothing

procedure.

Step 6 – Full-advance of the electric field

This step of the algorithm computes the components of the

electric field from Ampere’s law, at a given time, by knowing

their values at the previous time-step.

Step 7 – Apply periodicity for particles

This step of the algorithm applies periodicity for each

particle.

Step 8 – Compute energy density

This step of the algorithm computes the energy density of

the system and does not interfere with the simulation. This

step is used for diagnosis purposes throughout the simulation.

Step 9 – Write data to files (optional) For each iteration,

computed data can be saved in binary output files, if interme-

diate data is required by the user.

III. PARALLEL IMPLEMENTATION OF THE PIC1D3V

ALGORITHM

When considering a parallel implementation, the first ques-

tion that needs to be addressed refers to the targeted parallel
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hardware architecture (multicore, GPU, cluster, etc.). For the

purpose of our simulation needs we considered a multicore

architecture as our target, so the natural choice for the software

platform, given that our serial implementation was done in

C/C++, was OpenMP.

With regard to the parallelization strategy/methodology, a

closer look at Fig. 1 and Algorithm 1 reveals data depen-

dencies among the steps of the sequential algorithm (e.g. to

compute the electric field we need to compute the magnetic

field and the currents first) which prevent loop iterations to

be executed in parallel; so the only hope that remains is to

concentrate our efforts on parallelizing the individual steps,

with a focus on the main loop. We will discuss below the

parallel approach taken for each step of the main loop of the

algorithm.

A. Parallelization analysis

In order to compute the speedup of the main loop, as each

step of the computation could be inherently sequential or

maybe have some degree of parallelism, we need to apply

Amdahl’s law. Amdahl’s law fits perfectly our scenario of

having a fixed size problem that we want to solve in as little

time as possible (also, processors have the same architecture,

frequency, cache size, etc.). Therefore, we need to know the

fractions of the computation, each fraction corresponding to

one step of the main loop (in order to be able to apply

Amdahl’s law). We have to compute f2 to f9, the fractions

of the total sequential execution time spent by each step

of the main loop. To do so, we need to measure the total

sequential execution time of the main loop (denoted as tloop)

and the sequential execution time for each step of the loop:

t2, t3, ..., t9. We then compute:

fi =
ti

tloop
, for i = 2, 9. (1)

In the following, we analyze each step of the main loop,

in the maximal simulation scenario (m = 10.000, np =

1.000.000), in order to identify the hotspots and the bottle-

necks. We then concentrate on parallelizing the hotspots, as

this will give us the highest overall speedup. We also provide

concrete values for each fraction of the main loop, in this

scenario, so that we can identify the most significant steps

and concentrate the parallelization efforts there. The concrete

values for each fraction mentioned below are taken from Table

I below, to illustrate the impact of each step of the algorithm.

Steps 2 and 4 – Half-advance of the magnetic field

These steps account (each) for f2 = f4 = 0.01% of the

execution time of the main loop, due to the fact that it mainly

consists of a single “for" loop of m iterations. We did not

parallelize these steps because the overhead induced by the

parallelization (thread creation and management, synchroniza-

tion) would only lead to a slowdown instead of a speedup of

the execution.

Step 3 – Push particles over one time-step

This step accounts for f3 = 74.83% of the execution time

of the main loop, and we were able to parallelize this step with

the help of the “parallel for” directives. No data dependencies

were detected so the parallelization was straightforward.

Step 5 – Current density computation

This step accounts for f5 = 8.39% of the execution time

of the main loop. Unfortunately this step requires a lot of

synchronization among threads, so only minor parts of it were

parallelizable. The “parallel for” directive was used where

possible.

Step 6 – Full-advance of the electric field

This step accounts for f6 = 0.04% of the execution time of

the main loop, due to the fact that it mainly consists of a single

"for" loop of m iterations. We did not parallelize this step

because the overhead induced by the parallelization (thread

creation and management, synchronization) would only lead

to a slowdown instead of a speedup of the execution.

Step 7 – Apply periodicity for particles

This step accounts for f7 = 0.54% of the execution time of

the main loop; although it accounts for a very small fraction

of the main loop, it has an embarrassingly parallel structure,

being in fact just one loop controlled by the np parameter, so

we used a “parallel for” directive to parallelize it.

Step 8 – Compute energy density

This step accounts for f8 = 16.170% of the execution time

of the main loop, and we were able to parallelize this step with

the help of the “parallel for” directives. No data dependencies

were detected so the parallelization was straightforward.

Step 9 – Write data to files (optional)

This step is optional so we will ignore it for now, espe-

cially since it represents I/O time and therefore it cannot be

improved by parallelism. However, experiments performed at

the maximum size of the simulation show that the impact of

this step is negligible.

B. Computing the speedup

Given that we know the fractions of the main loop, f2 to

f8, and assuming that we can compute (for a certain scenario,

on a certain architecture, with a certain number of processors)

the maximum speedup for each fraction, s2 to s8, then the

overall speedup for the main loop is given by the following

formula, derived from Amdahl’s law:

sloop =
1

∑
8

i=2

fi
si

(2)

One can notice that for steps 2, 4 and 6 of the main loop,

the speedup is 1, since these are the serial fractions of the

loop; on the other hand, all the other fractions will have

a speedup larger than 1, but we expect different speedups

for different steps, due to different degrees of parallelization

that are possible for each of them. If we take a look at

the initialization steps (steps 0 and 1), we notice that step

1 is inherently sequential but step 2 has some potential for

parallelization; let us assign fractions f0 and f1 to these steps

too, and also the speedups s0 = 1 and s1 > 1 (s1 will be
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determined experimentally). Then the total speedup in this

scenario is, by a similar formula:

stot =
1

f0
s0

+
f1
s1

+
floop
sloop

(3)

The problem however is that these fractions are not constant,

they depend upon the parameter nt; let us consider first

nt = 1, then we can measure t01, t11 and tloop1 respectively,

the execution time for the first two steps and the loop, with

one execution of the main loop (nt = 1). The corresponding

fractions are then:

f01 =
t01

t01 + t11 + tloop1
(4)

f11 =
t11

t01 + t11 + tloop1
(5)

floop1 =
tloop1

t01 + t11 + tloop1
(6)

and in general for nt iterations of the main loop, we have:

f0nt =
t01

t01 + t11 + nt ∗ tloop1
(7)

f1nt =
t11

t01 + t11 + nt ∗ tloop1
(8)

floopnt =
nt ∗ tloop1

t01 + t11 + nt ∗ tloop1
(9)

Therefore, to compute the respective fractions, we only need

to measure the execution time of one iteration of the main

loop, which is feasible in practice and quite fast; based on

that, considering the impact of the initialization steps, we can

compute the total speedup of the algorithm as:

stot =
1

f0nt

s0
+

f1nt

s1
+

floopnt

sloop

(10)

We may notice that if the parameter nt grows, the impact of

the initialization steps, as expected, becomes more and more

negligible, as floopnt approaches 1 and thus stot approaches

sloop.

IV. EXPERIMENTS AND RESULTS ANALYSIS

We performed a series of experiments on a multicore (quad

core) computer server (Intel R©Core2TM Quad CPU - Q8400

@ 2.66GHz processor, 8GB RAM).

First, we tested the limits of the simulation with regards to

the size of the problem, and we encountered no problems and

no limitations whatsoever, the only limit being the execution

time, which grows in direct proportion with the growth of

the nt parameter. To estimate the achievable speedup we

performed a test with the following parameters (maximum size

simulation scenario): m = 10, 000; np = 1, 000, 000; nt = 10.

We computed the average execution time for each step of

the main loop both for the serial execution (1 processor, 1

thread) and the parallel execution with the maximum number

of processors (4 processors, 4 threads).

Thus, we could compute the speedups for each of the

parallelized steps, and we obtained the results presented in

Table I. Following equation (2), we compute the main loop

speedup as:

sloop =
1

0.377496
= 2.649 (11)

One can notice that the computed formula matches exactly

the value from the lower right corner of Table 1, so the

theoretical prediction perfectly matches the experimental re-

sult; the impact of the serial fractions of the problem is

concentrated in step 5 (current) and we were able to obtain

an overall speedup for the main loop of 2.649 on a quad

core computer. Considering that the impact of the initialization

steps is negligible for a very large number of iterations, we

may conclude that the overall speedup is approximately equal

to the loop speedup:

stot ≈ sloop = 2.649 (12)

Since the number of processors used for the parallel execution

was n = 4, we can also compute the overall efficiency as:

etot =
stot

n
=

stot

4
= 66.23% (13)

A simple computation shows that this will reduce the execution

time of the maximal simulation from 450 days to 170 days

on the tested architecture. However, the number of cores

can be increased even further and thus, with no changes to

the implementation the execution time will be reduced even

further. Another advantage of this approach is that we know in

advance how much time the parallel simulation will take, so

we can decide to launch it or not, perhaps adjust the setup (e.g.

increase the number of cores, decrease the umber of iterations,

etc.), and then we can re-compute the speedup and so on.

An important issue that we considered is the precision of

the obtained results, given the fact that the algorithm uses a lot

of floating point computations, and it is well known that even

addition is not associative in floating point arithmetic. Thus

we performed a series of experiments where we measured the

maximal difference between the serial values and the parallel

values, and the experiments showed that parallelization did

not have a significant impact on the final and the intermediary

results. The maximal difference was of order 10−9, which is

acceptable for the considered PIC simulation scenarios.

V. CONCLUSION

PIC simulations play an important role when simulating the

individual trajectories of a very large number of particles in

self-consistent and external electric and magnetic fields. We

used here an explicit and relativistic 1d3v electromagnetic PIC

algorithm developed for one-dimensional kinetic simulation of

fully-ionized collisionless magnetized plasmas.

Starting from a PIC1d3v serial algorithm whose execution,

for the largest simulation scenario) takes over a year, we were
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TABLE I
EXECUTION TIMES, FRACTIONS AND SPEEDUPS FOR THE MAIN LOOP

Step no. (name) Serial time (ms) Fraction(%) Parallel time (ms) Speedup

2 (bfield) 0.57 0.0147 0.57 1.000

3 (mover) 2904.26 74.8314 868.60 3.344

4 (bfield) 0.56 0.0144 0.56 1.000

5 (current) 325.68 8.3915 305.64 1.066

6 (efield) 1.58 0.0407 1.58 1.000

7 (period) 20.77 0.5352 10.04 2.069

8 (energy) 627.65 16.1721 278.10 2.257

LOOP 3881.07 100 1465.09 2.649

able to significantly reduce the execution time by using a mul-

ticore CPU architecture, which is common place nowadays,

and the clever use of the OpenMP directives, with a minimal

modification of the original serial C/C++ code.

We performed a thorough analysis of the sequential algo-

rithm and identified each step, each fraction of the problem,

each dependency, computed the speedup for each fraction and

finally computed the overall speedup, which shows promising

results and enables even more speedups to be obtained on a

multicore architecture with more cores, with no changes to the

parallel code. Based on the promising results of the PIC1d3v

parallel simulation presented here, we plan to move to a full

PIC3d parallel simulation, following the same fundamental

ideas presented in this paper.
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