
RE4TinyOS: A Reverse Engineering Methodology

for the MDE of TinyOS Applications

Hussein M. Marah

International Computer Institute

Ege University, Izmir, Turkey

hussein.marah@gmail.com

Moharram Challenger

Department of Computer Science

Univeristy of Antwerp and Flanders Make, Belgium

moharram.challenger@uantwerpen.be

Geylani Kardas

International Computer Institute

Ege University, Izmir, Turkey

geylani.kardas@ege.edu.tr

Abstract—In this paper, we introduce a tool-supported reverse
engineering methodology, called RE4TinyOS to create or update
application models from TinyOS programs for the construction
of Wireless Sensor Networks. Integrating with an existing model-
driven engineering (MDE) environment, use of RE4TinyOS
enables the model-code synchronization where any modification
made in the TinyOS application code can be reflected into the
application model and vice versa. Conducted case studies exem-
plified this model-code synchronization as well as the capability
of creating application models completely from already existing
TinyOS applications without models, which is crucial to integrate
the implementations of the third party TinyOS applications into
the MDE processes. Evaluation results showed that RE4TinyOS
succeeded in the reverse engineering of all main parts of two
well-known TinyOS applications taken from the official TinyOS
Github repository and generated models were able to be visually
processed in the MDE environment for further modifications.

Keywords—Model-Driven Engineering, Reverse Engineering,
Wireless Sensor Network, TinyOS, RE4TinyOS.

I. INTRODUCTION

W IRELESS Sensor Networks (WSN) have gained sig-

nificant popularity and implemented in different areas

(e.g. health systems, field monitoring, transportation, military

applications and environmental sensing) to control both the

status of physical objects and the surrounding circumstances

like sound, pressure, vibration, light, temperature, and motion

according to the type of the sensors used in the network [1].

WSNs use low-power micro-controllers and devices due to the

power consumption constraints that must be adhered to.

One of the widely used operating systems for WSNs is

TinyOS [2]. TinyOS is an open-source operating system for

WSNs, developed in the University of California, Berkeley.

It is a lightweight and flexible operating system that offers

a set of services such as communication, timers, sensing,

storage and these services can be reusable to compose larger

applications. These features make TinyOS a reliable and

efficient system for programming, configuring and running

lower-power wireless devices [2][3]. However, especially the

requirement of managing the power constraints makes TinyOS

different from ordinary systems and hence building WSNs

with TinyOS can be a challenging and time-consuming task.

Moreover, the developers need to have deep knowledge and

skills in the special programming language of TinyOS, called

nesC to implement such systems [3]. Adoption to this language

may be difficult and again time-consuming for the program-

mers.

As successfully applied in many other domains, model-

driven engineering (MDE) can provide a convenient way of

developing TinyOS applications for WSNs by leveraging the

abstraction level before delving into programming with nesC.

Within this context, in our previous work [4], we introduced

the use of a domain-specific modeling language (DSML),

called DSML4TinyOS, for the MDE of TinyOS applications.

A metamodel for TinyOS was derived and a graphical mod-

eling syntax was formalized from this metamodel to lead

modeling TinyOS applications. nesC code of the modeled

applications can be automatically generated with the model-to-

code transformations again defined in DSML4TinyOS. How-

ever, this mechanism lacks the synchronization between a

TinyOS application model and the generated code when any

change is made in this code. Mostly, the auto-generated code

is modified to completely meet with the requirements of

the TinyOS application. Furthermore, the application may

evolve according to changing requirements in the future. After

the code modifications are performed, related changes will

make models at different levels asynchronous and inconsistent

[5]. Thus we need to propagate these changes to the other

models and ensure a proper model synchronization [6]. In

order to provide this synchronization which is missing in

the MDE of TinyOS applications, in this paper, we intro-

duce a tool-supported reverse engineering methodology, called

RE4TinyOS. RE4TinyOS enables retrieving TinyOS appli-

cation models from any existing nesC code. In addition to

support the reverse engineering of such applications, use of

RE4TinyOS also integrates with the current MDE process

brought by DSML4TinyOS language to construct a complete

model-driven roundtrip engineering [7] process for TinyOS

applications. As depicted in Figure 1, evolution of the TinyOS

models can be managed within this roundtrip MDE process

which is a combination of the forward and reverse engineering

of TinyOS models. TinyOS models can be created with using

DSML4TinyOS language and the corresponding TinyOS code

can be automatically generated. When this code is modified

and becomes TinyOS code', RE4TinyOS reverse engineering

methodology can be applied on this modified code to retrieve

the corresponding modified model (still an instance of TinyOS

metamodel) which properly reflects the changes in the appli-

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 741–750

DOI: 10.15439/2020F133

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 741

cation code.

Fig. 1: Forward and reverse engineering for TinyOS applica-

tions

The remainder of the paper is organized as follows: Sec-

tion 2 discusses the related work in this area. RE4TinyOS

methodology and supporting parser and interpreter tools are

introduced in Section 3. The usability of the methodology is

demonstrated and evaluated in Section 4. Section 5 concludes

the paper.

II. RELATED WORK

In recent years, there is a significant interest of the researchers

to apply MDE and its techniques for WSN and IoT develop-

ment. The main goal of applying MDE approach is to facilitate

the task of developing, building and deploying different WSN

and IoT applications. Malavolta and Muccini [8] and Essaadi

et al. [9] present good overviews of applied MDE approaches

for this domain.

For example, ScatterClipse, a generative plugin-oriented

tool-chain, is proposed in [10] to develop WSN applications

running on the ScatterWeb sensor boards by using MDE.

The tool aims to automate and standardize the generation of

application system families for these sensor boards. Thang

and Geihs [11] address the problem of optimizing power

consumption and memory usage in the application design

process and introduces an approach that integrates Evolu-

tionary Algorithms with MDE where the system metamodels

are generated to select the optimal model according to some

performance criteria. Another modeling framework [12] allows

developers to model separately the WSN software architecture

and the features of the low-level hardware as well as the

physical environment of the nodes of a WSN. The framework

is capable of generating code from the created models which

can be used for specific purposes such as analysis.

The study in [13] brings an MDE approach for prototyping

and optimization of WSN applications while Veiset and Kris-

tensen [14] introduce the use of Coloured Petri Net models

for generating TinyOS protocol software. Likewise, the use of

a domain-specific language (DSL), called SenNet, for WSN

application development is proposed in [15] to prepare WSN

applications using multi-abstraction levels. Finally, Rodrigues

et al. [16] aim at facilitating the development tasks required for

Wireless Sensor and Actuator Network (WSAN) applications

via an MDA-based process. The proposed infrastructure is

composed of a platform-independent model (PIM), a platform-

specific model (PSM), and a transformation process which

allows modeling and generation of these applications.

The above mentioned studies provide various noteworthy

approaches both for modeling WSN applications in different

abstraction levels and code generation for WSN development,

mostly assisted with tools. Moreover, some of them specifi-

cally support the development of TinyOS applications within

the MDE perspective. However, none of them considers the

reflection of changes made after in the generated code to

the corresponding application models, i.e. an approach for

constructing the synchronization between WSN model and

code does not exist. We believe that RE4TinyOS reverse engi-

neering methodology, introduced in this paper, may contribute

to these efforts by filling this gap as well as supporting the

roundtrip engineering of TinyOS WSN applications within

a toolchain consists of both generating code from TinyOS

application models and retrieving models from the existing

codes automatically.

Taking into consideration of applying reverse engineering

in the context of MDE, various adoptions exist for different

domains as surveyed in [17]. Perhaps one of the most popular

approaches is MoDisco [18], which follows the MDE concepts

and techniques to represent the legacy software systems in a

different formalism by using reverse engineering. The infras-

tructure of MoDisco introduces generic components that can

be used in the model-driven reverse engineering process (e.g.,

generic metamodels, model navigation, model transformation

and model customization). Favre et al. [19] describe an oper-

ation for generating MDA models that combines the process

of static and dynamic analysis. Model recovery is illustrated

with the reverse engineering of Java code to get class and state

diagrams. Fruitful applications of model-driven reverse engi-

neering can also be seen in e.g. transforming legacy COBOL

code into models [20], model discovery from Java source code

to extract the business rules [21], generating GUI models of the

explicit layouts especially for Java Swing user interfaces [22],

restoring extended entity-relationship schema from NoSQL

property graph databases [23] and even achieving reusable

and evolvable model transformations [24]. However, reverse

engineering of WSN applications is not addressed again in all

these studies.

III. RE4TINYOS METHODOLOGY

Figure 2 represents the use of RE4TinyOS methodology for the

MDE-based reverse engineering of WSN applications running

on TinyOS. The figure gives a straightforward depiction of

how reverse engineering works according to MDE concepts

to convert the TinyOS code to a TinyOS model for any

application.

742 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 2: Overview of the proposed reverse engineering approach

TinyOS applications are written in a special programming

language, called nesC [25] for networked embedded systems.

The nesC programming model combines the features of C pro-

gramming language with the special needs in the WSN domain

such as event-driven execution and component-oriented design

[25]. In this study, we introduce the RE4TinyOS tool, which

is designed to read any TinyOS application code written in

nesC as the input and automatically generate the counterpart

domain model representing this TinyOS application.

To recognize the syntax and all the valid components (sym-

bols, characters and expressions) of a particular programming

language, a language recognizer or language interpreter is

needed to read the elements and differentiate them from other

normal statements of this language. The language recognizer is

used for different purposes like building a compiler or maybe

analyze parts of code to perform some operations [26] [27].

Parsing is the process of syntax analysis and breaks down the

syntax of the language into smaller structures of symbol strings

conforming to the formal rules and the grammar that govern

the language. Also, parsers or syntax analyzers provide the

identification of the languages. Since our aim is to retrieve the

model of the WSN application from its program code, parsing

is an essential process to identify and analyze the input TinyOS

code.

We followed a two-step method to create the environment

required to the reverse engineering of TinyOS applications.

The first step is to design the parser, called TinyOS parser,

that can read any TinyOS code, and by parsing the input, we

can obtain the useful or desired parts of the TinyOS code

in order to use them to build the model. The second step

is implementing this parser design as a Java application that

can read any TinyOS application code and extract the main

elements and components from the code and hence build the

TinyOS model.

In this study, ANTLR was chosen to build the TinyOS

parser. ANTLR (ANother Tool for Language Recognition) is

a well-known computer-based language recognition tool, or

more specifically a parser generator [28] [26] [27].

During a parser design, writing the grammar is a very

crucial phase. It is the phase where the parser designers write

the rules (Lexer and Parser rules) depending on analyzing

the target system for their domains which in our case is the

TinyOS system (i.e., the rules are written according to what

type of input that will be parsed and what are the important

information and parts are needed to be extracted). The next

listing (Coding 1) includes a small fragment from the parser

rules we created by using ANTLR. In this parser implementa-

tion, more than 300 lines of grammar were prepared besides

the lexer rules.

Coding 1: Excerpts from TinyOS parser rules

compilationUnit

: (includeDeclarationModule* componentDeclaration)?

(includeDeclarationConfiguration*

componentDeclaration EOF) ;

→֒

→֒

includeDeclarationModule

: '#' INCLUDE qualifiedName ;

includeDeclarationConfiguration

: '#' INCLUDE qualifiedName ;

qualifiedName

: singleLine ;

componentDeclaration

: moduleDeclaration

| configurationDeclaration ;

//This part is for the module file

moduleDeclaration

: moduleSignature moduleImplementation ;

moduleSignature

: MODULE moduleName '('? ')'? moduleSignatureBody

;→֒

moduleName

: singleLine ;

moduleSignatureBody

: '{' usesOrProvides* '}' ;

usesOrProvides

: usesState

| providesState ;

usesState

: USES INTERFACE usesInterfaceDescription* ';'

| USES '{' (INTERFACE usesInterfaceDescription

';')* '}' ;→֒

providesState

: PROVIDES INTERFACE providesInterfaceDescription*

';'→֒

| PROVIDES '{' (INTERFACE

providesInterfaceDescription ';')* '}' ;→֒

The above excerpts show the general structure of the

written parser rules. For instance, the line that starts with

“compilationUnit”, is considered as the start point of the

whole parsing process. It states that two options exists; the

first for the model and the second for the configuration that

ends with “EOF” condition. The “componentDeclaration” line

includes two main parts which are “moduleDeclaration” and

“configurationDeclaration” respectively. The separator charac-

ter ‘❘’ declares that when the parsing process starts it has two

options, module or configuration as they are the two main

files of any TinyOS application. “moduleDeclaration” contains

the details of the declaration. It has two parts which are

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 743

“moduleSignature” and “moduleImplementation” respectively.

It is worth indicating that these two parts are not separated by

the ‘❘’ character, which means that any module should have

both signature and implementation.

Since our aim is to build models by parsing TinyOS

programs, the metamodel for TinyOS, which we previously

introduced in [4], was considered as the main reference

model and the TinyOS Parser was written and designed with

consistency to the TinyOS metamodel.

The next step after creating the TinyOS Parser is using

this parser and benefiting from its features. ANTLR has the

property to transform or, in more specific words, generate

codes from ANTLR-based parsers to several commonly-used

programming languages like Java, Python, JavaScript, Go,

C++ and Swift [27]. In our case, the target language is Java.

An overview of the constructed TinyOS parser is shown in

Figure 3.

Fig. 3: Parsing process for TinyOS applications

As depicted in the previous figure, our TinyOS Parser is

taking the produced tokens from the Lexer and constructs a

data structure known as Abstract Syntax Tree (AST) for the

parsed TinyOS code. The created AST here records how the

input structure and the components have been recognized by

the TinyOS Parser. By default, the runtime library in ANTLR

provides a mechanism for walking through the constructed

AST and this operation is called a tree-walking. In our

approach, the primary provided parse-tree-walker mechanism

called “Parse-Tree Listener” [27] was used to walk the built

tree of the TinyOS applications. Finally, the “Parse-Tree

Listener” is integrated and implemented in a Java application-

specific code which reads TinyOS programs (nesC codes) as

input and calls every node in the constructed tree of the parsed

TinyOS code by providing a subclass for every TinyOS Parser

grammar that enables the application to enter and exit from

every triggered node in order to obtain and extract the required

information to build theTinyOS model from the code.

Since the Eclipse Modeling Framework (EMF) uses the

XML Metadata Interchange (XMI) standard to express models

by mapping their corresponding information and write all this

information into the XMI file extension, this standard was

utilized to build the TinyOS models inside the developed

Java application. The Java application could extract all the

required and important information from the input files (nesC

code) and convert this information into a TinyOS model, i.e.

XMI file containing a representation of the TinyOS application

according to the TinyOS metamodel.

Above described processes of using TinyOS parser and the

Java application are combined together to create the TinyOS

Interpreter executed by the RE4TinyOS tool (Figure 4).

Fig. 4: TinyOS Interpreter structure

The generated XMI files containing the model representa-

tions of the input TinyOS applications can be opened inside the

DSML4TinyOS modeling tool without any human interven-

tion. Hence, these model instances conforming to the TinyOS

metamodel, can be visually seen and ready for modifications

if needed.

DSML4TinyOS is a tool-supported DSML which facilitates

the development of TinyOS applications according to MDE

principles and techniques. The tool enables TinyOS developers

to develop applications from scratch by visually modelling

these applications and generate code as the final artefact.

DSML4TinyOS uses the TinyOS metamodel introduced in [4]

as the abstract syntax. It has an EMF-based graphical syntax

and the graphical modeling environment required for creating

DSML4TinyOS models according to DSML4TinyOS syntax

and semantics definitions. DSML4TinyOS modeling environ-

ment (see Figure 5) was built on the widely used Sirius plat-

form. Table 1 lists the graphical notations used for the concrete

syntax of the DSML4TinyOS language. TinyOS application

models can be created by simply adding the language elements

from the menu of the DSML4TinyOS tool. Implementation of

the modeled applications can be automatically achieved via the

code generation. DSML4TinyOS benefits from the features of

Acceleo code generator to parse instance TinyOS models and

create the templates of the implementation files.

As mentioned above, TinyOS application models, conform-

ing to the TinyOS metamodel, are stored as XMI files and they

can be modified inside the DSML4TinyOS tool by adding

or removing components. These changes are automatically

reflected into the corresponding application code again by the

tool. Similarly, the TinyOS application models retrieved by

the RE4TinyOS interpreter from the existing implementations

can also be shown and processed again inside DSML4TinyOS

tool. Hence, the synchronization of the system model and the

744 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Table. 1: DSML4TinyOS concrete syntax notations

existing implementation is realized in case of any modification

made on the model or the code.

Fig. 5: DSML4TinyOS graphical modeling environment

To summarize, by applying the RE4TinyOS methodology,

the software model of an existing TinyOS application can

be achieved automatically. For this purpose, a developer only

needs to give the code file of the related TinyOS application

as the input for our RE4TinyOS tool. The built-in interpreter

generates the corresponding model. This model is XMI se-

rialized and can be opened and visually edited inside the

DSML4TinyOS tool. If needed, any change made in the model

is reflected into the code without any developer intervention.

IV. CASE STUDIES

In order to demonstrate and evaluate the usability of

RE4TinyOS methodology and its tool, a multi-case evaluation

study has been performed. The first case study exempli-

fies how the synchronization between TinyOS models and

the corresponding code can be provided with the use of

both DSML4TinyOS and RE4TinyOS tools together within

a model-driven roundtrip engineering process. The remain-

ing two case studies consider the usability of RE4TinyOS

methodology within the scope of the reverse engineering of

already existing TinyOS applications publicly available from

the official TinyOS repository in Github.

A. Supporting model - code synchronization

This section discusses the MDE of an application for a

TinyOS mote, which displays the light emitting diodes (LEDs)

on this mote when needed. The application, simply called

MyProgram for the demonstration purposes, uses the “Boot”

interface, executes the event “Boot.booted()” and calls the

three LEDs via commands. In the “Boot.booted()” event, the

command “AllLedBlink.startPeriodic(1000)” will be called.

This command initializes a timer that gives interrupts for every

1000 milliseconds. Also, the application displays a counter

on the three LEDs of the mote. It uses the timer interface

“Timer<TMilli>as AllLedBlink” and executes the second

event by firing the timer in the event “AllLedBlink.fired()”.

Inside this event, the three commands are called. The event

will call the command “Leds.led0On()”, “Leds.led1On()”, and

“Leds.led0On()” one by one corresponding to each “Counter”

value.

The Above described TinyOS application was modeled

graphically with using DSML4TinyOS and nesC code of this

application was automatically generated.

Coding 2: nesC Module code auto-generated from the original

application model

#include "Timer.h"

module MyProgramC @safe(){

uses interface Leds;

uses interface Boot;

uses interface Timer<TMilli> as AllLedBlink;

}

implementation {

uint8_t counter =0;

event void Boot.booted() {

/* Turn the three leds on */

call Leds.led0On();

call Leds.led1On();

call Leds.led2On();

/* call the timer every 1000 milliseconds */

call AllLedBlink.startPeriodic(1000);

}

event void AllLedBlink.fired() {

counter++;

if (counter & 0x1) {

call Leds.led0On(); }

else { call Leds.led0Off();}

if (counter & 0x2) {

call Leds.led1On();}

else { call Leds.led1Off();}

if (counter & 0x4) {

call Leds.led2On(); }

else { call Leds.led2Off();}

}

}

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 745

Coding 3: nesC Configuration code auto-generated from the

original application model

#include "Timer.h"

configuration MyProgramAppC {

}

implementation {

components MyProgramC;

components MainC;

components LedsC;

components new TimerMilliC() as AllLedTimer;

MyProgramC.Boot -> MainC;

MyProgramC.AllLedBlink -> AllLedTimer;

MyProgramC.Leds -> LedsC;

}

The previous two listings include the code fragment gener-

ated from this model for the module part (Coding 2) and the

configuration part (Coding 3) of the TinyOS application. Also,

the Figure 6 shows the model of the MyProgram application

(as a DSML4TinyOS instance), the instance model represents

the two parts of code ’Module’ and ’Configuration’ for the

application in a single model.

When any change made in the application code, these

can be reflected to the corresponding model with using the

RE4TinyOS tool. Now, let us suppose that a developer wants

to modify the above program with adding three new timers and

a task. In the modified application, every interface will blink

just one specific led: “Timer<TMilli>as RedLedBlink” will

blink the red led, “Timer<TMilli>as GreenLedBlink” will

blink the green led and “Timer<TMilli>as YellowLedBlink”

will blink the yellow led respectively. Hence, every event will

be triggered independently: “RedLedBlink.fired()” will trigger

the red led timer, “GreenLedBlink.fired()” will trigger the

green led timer and “YellowLedBlink.fired()” will trigger the

yellow led timer. Inside “Boot.booted()” event, a ”for loop”

with including an ”if statement” is added to the code to test

the counter, call one of the timers that will be fired and call

the command to turn on the LED. Also, a new task is added

and it will be called in “Boot.booted()” event. Following code

listings (Coding 4 and Coding 5) include the modified versions

of the module and configuration components of our TinyOS

program in which the added / changed parts are highlighted

in cyan color.

Coding 4: Modified nesC Module code of the application

#include "Timer.h"

#include "printf.h"

module MyProgramC @safe() {

uses interface Leds;

uses interface Boot;

uses interface Timer <TMilli> as AllLedBlink;

uses interface Timer <TMilli> as RedLedBlink;

uses interface Timer <TMilli> as GreenLedBlink;

uses interface Timer <TMilli> as YellowLedBlink;

}

implementation {

uint8_t counter;

task void printTask() {

printf("Print task\n");}

event void Boot.booted() {

for (counter = 0; counter <= 31; counter++) {

if (counter == 10) {

call RedLedBlink.startOneShot(counter);}

else if (counter == 20) {

call GreenLedBlink.startOneShot(counter);}

else if (counter == 30) {

call YellowLedBlink.startOneShot(counter);}

else { printf("It will not blink any led\n");}

}

call AllLedBlink.startPeriodic(50);

dbg("MyProgramC", "Application booted.\n");

post printTask();

}

event void AllLedBlink.fired() {

call Leds.led0On();

call Leds.led1On();

call Leds.led2On(); }

event void RedLedBlink.fired() {

printf("Blink the red led\n");

call Leds.led0Toggle();}

event void GreenLedBlink.fired() {

printf("Blink the green led\n");

call Leds.led1Toggle();}

event void YellowLedBlink.fired() {

printf("Blink the yellow led\n");

call Leds.led2Toggle();}

}

Coding 5: Modified nesC Configuration code of the application

#include "Timer.h"

#include "printf.h"

configuration MyProgramAppC {}

implementation {

components MyProgramC, MainC, LedsC;

components new TimerMilliC() as AllLedTimer;

components new TimerMilliC() as RedLedTimer;

components new TimerMilliC() as GreenLedTimer;

components new TimerMilliC() as YellowLedTimer;

MyProgramC.Boot - > MainC;

MyProgramC.AllLedBlink - > AllLedTimer;

MyProgramC.RedLedBlink - > RedLedTimer;

MyProgramC.GreenLedBlink - > GreenLedTimer;

MyProgramC.YellowLedBlink - > YellowLedTimer;

MyProgramC.Leds - > LedsC;

}

To propagate above code modifications to the model of the

application, RE4TinyOS tool was used. New version of the

program was given as input to the RE4TinyOS and the tool

successfully produced the serialized file for the model. This

model was opened in the DSML4TinyOS modeling environ-

ment (see Figure 7) and it was examined that RE4TinyOS

746 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 6: Graphical model of the original TinyOS application

Fig. 7: Graphical model of the modified TinyOS application

maintained the synchronization between the model and the

code by automatically inserting new model elements and

changing existing elements (e.g. “Boot.booted()” event was

changed due to its new function implementation). As can

also be seen from figure 7, the modifications were seamlessly

integrated into the modified and new model with preserving

the unchanged model components.

B. Integrating already existing implementations into modeling

Although the previous case study shows how RE4TinyOs

tool enables retrieving TinyOS application models from the

code and updating the model when the code is modified,

we also need to evaluate the capability of creating appli-

cation models completely from already existing code which

is crucial to integrate the implementations of the third party

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 747

applications into the MDE processes. In here, already existing

code means the application was not previously designed and

implemented with using DSML4TinyOS and RE4TinyOS tool

chain. Hence, it does not own an application model to be used

as an input for further system developments. For the purpose

of evaluating this capability of RE4TinyOS, we considered

the reverse engineering of two existing TinyOS applications

which are well-known and publicly available from the official

TinyOS repository in Github. In the following, first these two

applications and the generated models are introduced briefly,

then the qualitative assessment results are discussed.

1) AntiTheft WSN: AntiTheft is an application for detecting

thefts, that uses various aspects of TinyOS and its services.

AntiTheft application can detect a theft by monitoring two

events:

1) The change in the light level: It assumes that a stolen

mote will be situated in a dark place.

2) The change in the acceleration rate: When thieves steal

anything, they usually move too fast and run.

So, the application will report the theft by:

• Alerting via turning on the light (e.g. a red LED)

• Also making a beep sound

• Reporting to the other nodes within the range by broad-

casting messages, and nodes will also turn on their red

LEDs.

• Reporting to a central node using a multi-hop routing

algorithm.

The complete nesC code of the AntiTheft application,

accessed from TinyOS Github repository [29], was given

as input to RE4TinyOS tool and the serialized model file

was generated. When this file was opened in DSML4TinyOS

modeling environment, the graphical model of the application

was shown successfully (see figure 8). Parts of the TinyOS

application including components, interfaces, commands, and

events are now represented in DSML4TinyOS notation as the

result of the applied reverse engineering methodology.

2) Sense WSN: The Sense is another application also

available in the main TinyOS Github repository. As its name

denotes, it is a simple sensing application that periodically

samples data from the sensors by initializing a timer which will

signal a ”read event” and displays the bits of the sampled read-

ings on the LEDs of the nodes. Similar to AntiTheft applica-

tion, the complete code of the Sense application achieved from

the Github repository [30] was processed by RE4TinyOS tool

and the model of the application was generated without any

error. Figure 9 shows this model opened in the DSML4TinyOS

modeling environment.

C. Discussion

First case study, conducted for the MDE of a TinyOS

LED display application, demonstrated the use of RE4TinyOS

methodology and its tool to support the model-code synchro-

nization where the application model is kept up-to-date in each

modification made in the application code. The case study

also exemplified the use of DSML4TinyOS and RE4TinyOS

tool chain leading the roundtrip engineering of the TinyOs

applications.

The remaining case studies enabled the assessment of

the proposed reverse engineering methodology brought by

RE4TinyOS especially for the already existing TinyOS appli-

cations which were not previously designed and implemented

with using DSML4TinyOS and/or RE4TinyOS tools. More-

over, the fact that the code of these applications are publicly

available in TinyOS Github and written by other developers,

contributed to the objectiveness of the performed evaluation.

When the complete code of both Anti-Theft and Sense

applications, which are ready to be executed, was given as

input to RE4TinyOS, the embedded parser of the RE4TinyOS

was able to automatically generate serialized versions of

the TinyOS software models of these applications, and the

produced models were processed and successfully opened in

the DSML4TinyOS IDE. This also confirms that, if needed,

RE4TinyOS tool can also be used independently from the

MDE tool chain, i.e. the TinyOS application that will be

processed by the RE4TinyOS tool could be previously im-

plemented via using any other method and environment. The

developers can achieve software models of these existing ap-

plications. Furthermore, it is straightforward to visually work

on these recovered models at a higher level of abstraction,

make modifications on them and then reflect these changes to

the exact implementations.

Finally, it is worth indicating that RE4TinyOS succeeded

in retrieving the models for all main parts of AntiTheft and

Sense applications, including “event”, “task”, “component”,

“interface”, “Command”, “Helper-function”, and “Wiring”

(see figures 8 and 9). Although, block structures of the

application events were also retrieved, internal specifications

of some of these events could not be fully represented in the

output model since corresponding meta-entities and relations

are missing in the TinyOS metamodel currently used by the

RE4TinyOS parser. However, these unconverted specifications

were still kept as annotations inside the serialized model and

when any changes made to the model in the visual editor, these

specifications were automatically integrated with the new code

generated from the modified model.

V. CONCLUSION

A reverse engineering methodology and its tool, both called

RE4TinyOS, have been introduced in this paper. RE4TinyOS

enables retrieving the application models from TinyOS pro-

grams written in nesC, which paves the way for using these

models inside an MDE toolchain. Hence, any modification

made in the application code can be reflected into the appli-

cation model and vice versa. Conducted case studies showed

that both model-code synchronization and the integration of

existing TinyOS applications which do not have system models

previously, into the proposed MDE are possible with using

RE4TinyOS. However, the achieved results also showed that

some of the internal TinyOS event specifications of these exist-

ing applications can not be represented in the newly generated

models since corresponding meta-entities are missing in the

748 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 8: Graphical model of the AntiTheft application

Fig. 9: Graphical model of the Sense application

current TinyOS metamodel used by the RE4TinyOS parser. In

our future work, we aim at first extending this metamodel to

cover all event internals while keeping the abstraction level

and then improving the parser features with the utilization of

this new metamodel.

ACKNOWLEDGMENT

Hussein Marah would like to thank Turkish government

for Turkiye Scholarships (YTB) program. This research was

partially supported by Flanders Make, a Flemish strategic

research center for the manufacturing industry.

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 749

REFERENCES

[1] M. A. Matin and M. Islam, “Overview of wireless sensor network,”
Wireless Sensor Networks-Technology and Protocols, pp. 1–3, 2012.

[2] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS:
An operating system for sensor networks,” in Ambient Intelligence,
W. Weber, J. M. Rabaey, and E. Aarts, Eds. Springer Berlin Heidelberg,
2005, pp. 115–148. doi: https://doi.org/10.1007/3-540-27139-2 7

[3] P. Levis and D. Gay, TinyOS Programming. Cambridge University
Press, 2009.

[4] H. M. Marah, R. Eslampanah, and M. Challenger, “DSML4TinyOS:
Code Generation for Wireless Devices,” in ACM/IEEE 21st Interna-

tional Conference on Model Driven Engineering Languages and Sys-

tems (MODELS), Model-Driven Engineering for the Internet-of-Things

(MDE4IoT), 2018, pp. 509–514.
[5] T. Hettel, M. Lawley, and K. Raymond, “Model synchronisation: Def-

initions for round-trip engineering,” in Theory and Practice of Model

Transformations, ser. Lecture Notes in Computer Science, A. Vallecillo,
J. Gray, and A. Pierantonio, Eds. Springer Berlin Heidelberg, 2008,
pp. 31–45.

[6] H. Giese and R. Wagner, “From model transformation to incremental
bidirectional model synchronization,” Software & Systems Modeling,
vol. 8, no. 1, pp. 21–43, 2009. doi: 10.1007/s10270-008-0089-9

[7] L. Favre, Model Driven Architecture for Reverse Engineering Technolo-

gies: Strategic Directions and System Evolution. Engineering Science
Reference, 2010, google-Books-ID: e4RLuAAACAAJ.

[8] I. Malavolta and H. Muccini, “A study on MDE approaches
for engineering wireless sensor networks,” in 2014 40th

EUROMICRO Conference on Software Engineering and Advanced

Applications, 2014, pp. 149–157, ISSN: 2376-9505. doi:
https://doi.org/10.1109/SEAA.2014.61

[9] F. Essaadi, Y. Ben Maissa, and M. Dahchour, “MDE-based languages
for wireless sensor networks modeling: A systematic mapping study,”
in Advances in Ubiquitous Networking 2, ser. Lecture Notes in
Electrical Engineering, R. El-Azouzi, D. S. Menasche, E. Sabir,
F. De Pellegrini, and M. Benjillali, Eds. Springer, 2017, pp. 331–346.
doi: https://doi.org/10.1007/978-981-10-1627-1 26

[10] M. A. Saad, E. Fehr, N. Kamenzky, and J. Schiller, “ScatterClipse:
A model-driven tool-chain for developing, testing, and prototyping
wireless sensor networks,” in 2008 IEEE International Symposium

on Parallel and Distributed Processing with Applications, 2008, pp.
871–885, ISSN: 2158-9208. doi: https://doi.org/10.1109/ISPA.2008.22

[11] N. X. Thang and K. Geihs, “Model-driven development with
optimization of non-functional constraints in sensor network,” in
Proceedings of the 2010 ICSE Workshop on Software Engineering for

Sensor Network Applications, ser. SESENA ’10. ACM, 2010, pp.
61–65. doi: https://doi.org/10.1145/1809111.1809128

[12] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda,
and H. Muccini, “A model-driven engineering framework for
architecting and analysing wireless sensor networks,” in Proceedings of

the Third International Workshop on Software Engineering for Sensor

Network Applications, ser. SESENA ’12. IEEE Press, 2012, pp. 1–7.
doi: https://doi.org/10.1109/SESENA.2012.6225729

[13] R. Shimizu, K. Tei, Y. Fukazawa, and S. Honiden, “Model driven
development for rapid prototyping and optimization of wireless sensor
network applications,” in Proceedings of the 2Nd Workshop on Software

Engineering for Sensor Network Applications, ser. SESENA ’11. ACM,
2011, pp. 31–36. doi: https://doi.org/10.1145/1988051.1988058

[14] V. Veiset and L. M. Kristensen, “Transforming platform independent
CPN models into code for the TinyOS platform: A case study of the
RPL protocol,” in PNSE+ModPE, 2013.

[15] A. Salman, “Reducing complexity in developing wireless sensor network
systems using model-driven development,” phdthesis, University of
Salford, 2017. doi: http://usir.salford.ac.uk/44127/

[16] T. Rodrigues, F. C. Delicato, T. Batista, P. F. Pires, and L. Pirmez,
“An approach based on the domain perspective to develop WSAN
applications,” Software & Systems Modeling, vol. 16, no. 4, pp. 949–977,
2017. doi: 10.1007/s10270-015-0498-5

[17] C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-driven reverse
engineering approaches: A systematic literature review,” IEEE Access,
vol. 5, pp. 14 516–14 542, 2017. doi: 10.1109/ACCESS.2017.2733518

[18] H. Brunelire, J. Cabot, G. Dup, and F. Madiot, “MoDisco: A
model driven reverse engineering framework,” Information and Soft-

ware Technology, vol. 56, no. 8, pp. 1012–1032, 2014. doi:
10.1016/j.infsof.2014.04.007

[19] L. Favre, L. Martinez, and C. Pereira, “MDA-based reverse
engineering of object oriented code,” in Enterprise, Business-Process

and Information Systems Modeling, ser. Lecture Notes in Business
Information Processing, T. Halpin, J. Krogstie, S. Nurcan, E. Proper,
R. Schmidt, P. Soffer, and R. Ukor, Eds. Springer, 2009, pp. 251–263.
doi: https://doi.org/10.1007/978-3-642-01862-6 21

[20] F. Barbier, S. Eveillard, K. Youbi, O. Guitton, A. Perrier, and E. Cariou,
“Model-driven reverse engineering of cobol-based applications,” in
Information Systems Transformation. Elsevier, 2010, pp. 283–299.

[21] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet,
“A model driven reverse engineering framework for extracting
business rules out of a java application,” in Rules on the Web:

Research and Applications, ser. Lecture Notes in Computer Science,
A. Bikakis and A. Giurca, Eds. Springer, 2012, pp. 17–31. doi:
https://doi.org/10.1007/978-3-642-32689-9 3

[22] . Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina, “Model-
driven reverse engineering of legacy graphical user interfaces,” Auto-

mated Software Engineering, vol. 21, no. 2, pp. 147–186, 2014. doi:
10.1007/s10515-013-0130-2

[23] I. Comyn-Wattiau and J. Akoka, “Model driven reverse engineering of
NoSQL property graph databases: The case of neo4j,” in 2017 IEEE

International Conference on Big Data (Big Data), 2017, pp. 453–458.
doi: https://doi.org/10.1109/BigData.2017.8257957

[24] J. Snchez Cuadrado, E. Guerra, and J. de Lara, “Reverse engineering
of model transformations for reusability,” in Theory and Practice

of Model Transformations, ser. Lecture Notes in Computer Science,
D. Di Ruscio and D. Varr, Eds. Springer International Publishing,
2014, pp. 186–201. doi: https://doi.org/10.1007/978-3-319-08789-4 14

[25] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” Acm Sigplan Notices, vol. 38, no. 5, pp. 1–11, 2003.

[26] T. Parr and K. Fisher, “LL(*): The foundation of the ANTLR parser
generator,” in Proceedings of the 32Nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’11.
ACM, 2011, pp. 425–436, event-place: San Jose, California, USA. doi:
https://doi.org/10.1145/1993498.1993548

[27] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[28] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[29] TinyOS Github Repository, “Tinyos antitheft application,” 2013. doi:
https://github.com/tinyos/tinyos-main/tree/master/apps/AntiTheft

[30] TinyoS Github Repository, “Tinyos sense application,” 2013. doi:
https://github.com/tinyos/tinyos-main/tree/master/apps/Sense

750 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

