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Abstract—Reliable prediction of workload-related characteris-
tics of monitored devices is important and helpful for manage-
ment of infrastructure capacity. This paper presents 3 machine
learning models (shallow, deep, ensemble) with different complex-
ity for network device workload forecasting. The performance of
these models have been compared using the data provided in
FedCSIS’20 Challenge. The R

2 scores achieved from the cascade
Support Vector Regression (SVR) based shallow model, Long
short-term memory (LSTM) based deep model, and hierarchical
linear weighted ensemble model are 0.2506, 0.2831, and 0.3059,
respectively, and was ranked 3

rd place in the preliminary stage
of the challenges.

Index Terms—Workload forecasting, Recurrent Neural Net-
work (RNN), Long Short-Term Memory (LSTM), Support Vector
Regression (SVR), Hierarchical Linear Weighted Ensemble

I. INTRODUCTION

E
MCA Software is a Polish vendor of Energy Log server,

which is capable of collecting data from various log

sources and providing in-depth data analysis to its end-users.

The objective of the FedCSIS’20 challenge is to explore

reliable machine learning models to predict workload-related

characteristics of monitored devices, based on historical data

gathered from such devices, which is important for IT and

technical teams to manage the capacity of their infrastruc-

ture [1].

Workload forecasting models have been developed based

on machine learning methods in the literature. Future host

load was predicted using 9 features extracted from historical

workload values by using the Bayesian model in [2]. A

forecasting model by combining neuro-fuzzy and Bayesian

inference was developed for CPU workload forecasting in

[3]. In [4], a workload forecasting model has been developed

based on Artificial Neural Network (NN) and adaptive Dif-

ferential Evolution (DE). Workload was predicted by using

Autoregressive Integrated Moving Average (ARIMA) model in

[5]. To consider temporal dependencies in workload sequence

data, recently, Recurrent neural network (RNN) and its variant,

Long short-term memory (LSTM), have been employed in

workload forecasting and shown promising performance [8],

[6], [7].

To explore the performance of shallow, deep and ensemble

models and cater for FedCSIS’20 Challenge, we developed 3

network device workload forecasting models:

1) a cascade shallow model based on Support Vector Re-

gression (SVR);

2) a deep learning model based on LSTM;

3) a hierarchical linear weighted ensemble model.

The performance of these 3 models were compared using

the network device workload data provided in FedCSIS’20

Challenge. The hierarchical ensemble of LSTM achieved the

highest R2 score in the preliminary stage, while the cascade

SVR model was more robust to overfitting.

This paper is organized as follows. The FedCSIS’20 chal-

lenge is briefly introduced in Section II. The cascade shallow

model is presented in Section III, the LSTM based deep model

is given in Section IV, and the hierarchical linear ensemble

model is described in Section V. Section VI compares the

performance of the 3 models. Conclusions are given in Sec-

tion VII.

II. FEDCSIS 2020 CHALLENGE: NETWORK DEVICE

WORKLOAD PREDICTION

In this section, we briefly introduced the FedCSIS’20 Chal-

lenge titled as Network Device Workload Prediction [1]. The

task in this challenge is to predict future workload character-

istics of a number of monitored devices based on the given

historical data collected from these devices.

A. Data

The dataset provided in this challenge is in the format of a

.csv file, which holds a table of over forty-four million rows

and ten columns. The 10 columns include identifiers followed

by the mean, standard deviation, and a candlestick aggregation

of the corresponding values, as listed below:

• hostname: an ID of the device;

• series: a name of the considered characteristic;

• time window: a timestamp of the aggregation window;

• Mean: the mean of the values;

• SD: the standard deviation of the values;

• Open: a value of the first reading during the correspond-

ing hour;

• High: the maximum of values;

• Low: the minimum of values;

• Close: a value of the last reading during the correspond-

ing hour;

• Volume: the number of values.

B. Task

The data for each hostname-series pair can be arranged into

7 time series spanning over 80 days, which are values of mean,

SD, open, high, low, close, and volume. The participants of the
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challenge were required to forecast the mean of the workload

values in each of the next 168 hours after the end of the

training data for ten thousand hostname-series pairs selected

from these over twenty-four thousands pairs.

C. Evaluatoin

The solutions were assessed by the R2 measure. The

forecasts of each time series are compared to ground truth

values and assessed using the R2 score that is defined as:

R2(f, y) = 1−
RSS(f, y)

TSS(y)
. (1)

RSS is the residual sum of squares of forecasts and TSS is

the total sum of squares, given as

RSS =
∑

i

(yi − fi)
2,

TSS =
∑

i

(yi −
1

N

∑

i

yi)
2,

(2)

where yi and fi are the ground truth and their prediction,

respectively, and N is length of the time series. The score

of a submitted solution is the average R2 value over all time

series from the test set.

The preliminary scores of the submitted solutions were eval-

uated externally and published on the challenge leaderboard

computed on a small subset (10%) of the test time series

that are fixed for all participants. The final evaluation will

be published after completion of the competition using all of

the test time series.

III. SHALLOW MODEL

Support Vector machine (SVM) was proposed by Vladimir

Vapnik and his co-workers based on the statistical learning

theory (or VC theory) [9], [10], [11], [12], [13], [14], [15],

[16], [17]. The SVM has shown competitive generalization

ability over many existing machine learning models in a

number of fields, e.g. optical character recognition (OCR),

object recognition, time series prediction, etc. [13], [18], [19],

[20], [21]. The Support Vector Regression (SVR) is a powerful

regression approach and successfully applied in numerous

applications [22], [23], [24], [25]. In this work, a cascade

shallow model has been developed based on the SVR with the

Radial basis function kernel (RBF) for workload prediction.

Although 7 types of hourly aggregated workload values

were provided in the challenge, only the hourly mean of the

data was used in our method. The data were organized in

a matrix, in which each row represents the time series of

a hostname-series pair and each column stores the mean of

workloads in one hour. The data were standardized to have

zero mean and unit standard deviation, which is essential to

non-linear machine learning models.

One difficulty in this challenge is arising from the fact

that the devices considered in the data were not uniform and

some of the devices were a part of the same system and it is

likely that their workloads were highly correlated and cross-

dependent [1]. To increase the diversity of training, the cascade

Fig. 1. Structure of the cascade SVR model and composition of its input
and output.

SVR-based models are trained on the following two parts of

the data provided:

• training set 1: the 10k time series involved in testing;

• training set 2: the time series selected from the other

14k sequences based on the following rules: having less

missing values and closer to the 10k testing sequences.

Instead of using all data in over 80 days, only the values in

the last 2 weeks, i.e. 336 average hourly values, were used in

training.

The cascade shallow model is composed of a series of

connected single SVR models denoted as hourly models, each

of which was trained to predict the mean of workloads in

one hour. Let SV Rt represent an hourly model predicting the

mean workloads in the tth hour, where t ∈ [1, 168]. The input

features to SV Rt can be the values in all of the hours before

t. Assuming weekly periodic property of workloads, we took

only the values from the previous 168 hours. Therefore, the

feature length of an hourly model is 168.

In the cascade shallow model, there are a series connected

hourly models that are trained one by one. The outputs from

the previous hourly models will be used as partial inputs to

all subsequent models. Fig. 1 illustrates the structure of the

cascade SVR model and the composition of its input and

output. In this way, the latter model can be adapted based

on the predictions from its previous models, which conforms

to the cognition that the previous values are correlated to the

latter ones.

The hyper-parameters of the non-linear SVR models with

RBF kernel were set as follows.

ǫ in the ǫ-insensitive loss function was set to be an estimate

of a tenth of the standard deviation using the inter-quartile

range of the response variable y, expressed as:

ǫ = iqr(y)/13.49, (3)

where iqr(y) is the inter-quartile range of y.

The parameter C controls the trade off between training

error and model complexity, which was set to be an estimate
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of the standard deviation of the response variable, expressed

as:

C = iqr(y)/1.349. (4)

γ is a free parameter used in the radial kernel. The radial

basis function kernel, or RBF kernel on two samples xi and

xj is defined as

K(xi, xj) = exp(−γ||xi − xj ||
2). (5)

The value of γ was optimized by the heuristic procedure using

sub-sampling [26].

IV. DEEP LEARNING MODEL

Considering temporal dependencies in workload sequence

data, a workload forecasting model based on LSTM, a spe-

cial kind of RNN, has been developed. The RNNs, derived

from feedforward neural network, use memory to process

sequence signals, which exhibit temporal dynamic behavior by

connecting nodes to form a directed graph along a temporal

sequence [27], [28], [29]. The LSTM, proposed by Hochreiter

and Schmidhuber in 1997, unlike standard feedforward neural

networks, has feedback connections, which allows the LSTM

to process not only single data point, e.g. image, but also an

entire sequence of data, e.g. speech or video [28], [30].

Similarly to the cascade SVR model, the average hourly

workload values were used to train the LSTM model. The

data given in the challenge were separated into two parts, one

was used for training the LSTM networks, and the other for

the purpose of validation in order to prevent overfitting:

• training set: the 10k time series involved in testing;

• validation set: the time series selected from the other

14k sequences based on the following rules: having less

missing values and closer to the 10k testing sequences.

The data were standardized to have zero mean and unit

standard deviation.

Due to the limited computation resource available for train-

ing sophisticated deep networks with multiple layers, just the

data in the last 4-8 weeks were used in training and validation.

The length of the input sequence was dependant on the size

of the network, which was fixed in one LSTM network.

The LSTM model was trained with sequence-input-sequence-

output mode. The LSTM models have multiple LSTM-layers

ranging from 2-5. Each layer has different number of hidden

neurons, ranging from 128-640.

V. HIERARCHICAL LINEAR WEIGHTED ENSEMBLE

In machine learning, ensemble of multiple independently

trained models is expected to perform better than any base

model by combining the advantage of base models and diluting

their self-errors. In our ensemble model, the base models were

linearly combined with different weights to yield final output,

where the weights were estimated by linear regression. Note

that only the deep models were used as base models since

they gave highest preliminary scores. The dataset employed to

train the linear regression models is the same as that used to

train the cascade SVR model. A set of weights were trained

Fig. 2. Flowchart of hierarchical linear weighted ensemble.

for each of the 168 hours on the predictions from the base

models, based on which the final output was generated.

When we observed the public scores of the solutions from

the individual base models and the weights generated from the

linear regression, it was found that some solutions with high

scores got very low weights indicating that the importance

of these solutions has been weakened, partially due to the

variation of the given and unknown data. To address this

issue, a hierarchical linear regression that combined various

individual models in different stages has been developed. An

example structure is shown in Fig. 2, where there are 3

linear regression stages, having B1, B2, and B3 base models,

respectively. The B1 base models are firstly linearly combined,

the output of which is then combined with the additional B2

base models, and similarly, the output from the second stage is

then combined with the other B3 base models to yield the final

output. The base models are arranged in ascending order of

their public scores, e.g. the score of the model indexed B2+1

is higher than those of the models indexed from B1+1 to B2,

by which the models with higher scores are combined in later

stages so that the high-scored models are likely to have more

priority in combination.

VI. EXPERIMENT RESULTS

In this section, the performance of these 3 models is

compared by using the data provided in the challenge.
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A. Results of SVR models

When the cascade shallow model was trained on partial of

the given data, e.g. the training set 2, the preliminary R2 score

was 0.2153. This was increased to 0.2506 if both training sets

were used.

B. Results from LSTM networks

We have trained various LSTM models using different

network structures. The performance was rather different. The

highest preliminary R2 score was 0.2831, which was achieved

from a LSTM network having 3 LSTM layers each with 336

hidden neurons.

C. Results for Linear weighted ensemble

The preliminary R2 score from the hierarchical linear

weighted ensemble model was 0.2990 when trained on partial

data, i.e. training set 1, while it was increased to 0.3059 when

the LSTM network was trained on both training sets.

D. Discussion

Although the preliminary R2 score, which was assessed

based on 10% of the testing data, from the cascade SVR

model is lower than those from both single and ensemble of

LSTM models, its final score evaluated on the full testing set

is 0.2365 that is higher than the baseline and published top

score being 0.2295 and 0.1630, respectively. This indicates

that the cascade shallow model is robust to overfitting. Both

single and ensemble of LSTM can achieve higher preliminary

R2 score while they are likely to fall into overfitting. This

implies that suitable implementation of shallow models can

outperform deep models.

VII. CONCLUSIONS

This paper addresses forecasting workloads of network

devices from historical sequence data. Three machine learn-

ing models, which are cascade SVR-based shallow model,

LSTM-based deep model, and hierarchical linear weighted

ensemble model, have been developed and verified using the

data provided in the FedCSIS’20 Challenge. The preliminary

evaluation on R2 scores achieved from the shallow, deep and

ensemble models are 0.2506, 0.2831, and 0.3059, respectively.

Both the single and ensemble of LSTM models achieved much

higher preliminary scores than the SVR model, while the SVR

is more robust to overfitting.
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