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Abstract—The paper summarizes our efforts to develop a spike
timing neural network model of dynamic visual information pro-
cessing and decision making inspired by the available knowledge
about how the human brain performs this complicated task. It
consists of multiple layers with functionality corresponding to the
main visual information processing structures starting from the
early level of the visual system up to the areas responsible for
decision making based on accumulated sensory evidence as well
as the basal ganglia modulation due to the feedback from the
environment. In the present work, we investigated age-related
changes in the spike timing dependent plastic synapses of the
model as a result of reinforcement learning.

I. INTRODUCTION

F
OR centuries scientists were trying to discover the way

we learn how to behave in an unknown environment

without prior information about which the proper actions are.

Every day humans make a large number of decisions based

on sensory information as well as on previously accumulated

experience. In decision making based only on sensory informa-

tion the response is determined by the stimulus characteristics.

However, the pioneering work of Pavlov on conditional and

unconditional reflexes of living creatures revealed yet another

intriguing characteristics of the natural intelligence: the ability

to plane its future behaviour not only based on its current sen-

sory information but also on its past experience accumulated

via trial and error thus accounting for its past actions outcome

in similarly sensed environment. It gives rise to development

of theory of reinforcement learning starting with the seminal

work of [1] and their actor-critic architecture that was able

to learn from simple punish/reward feedback from the en-

vironment. It can be considered as one of the first artificial

systems possessing a kind of artificial intelligence. Parallel

to the research based on behavioral experiments neurologists

tried to discover the brain counterparts of sensory information

processing as well as of the reinforcement learning.

The visual system of human brain was probably the most

investigated by neurobiologists. The hierarchical processing
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structures starting from our light sensors - the eyes - through

optic nerve to visual cortex were well established. It also has

been shown that several brain areas like lateral intraparietal

area (LIP) accumulate evidence supporting the alternative

decisions ([2]) and transform eye sensory information in a

decision variable that directs action. Many models assume

that a choice is made when the accumulated evidence for

one of the sensory signals reaches a predefined value. It

has been shown (e.g.[3]) that the basal ganglia can modulate

this threshold level. Other studies (e. g. [4]) imply that the

basal ganglia could also modify the rate of sensory evidence

accumulation. These results suggest an important role of the

basal ganglia in perceptual decision making. Existing evidence

(e.g. [5], [6], [7]) suggests also a significant role of the

basal ganglia on learning by trial and error to acquire a

reward, i.e. reinforcement learning. The role of the basal

ganglia in reinforcement learning is related to the differential

responses of the dopaminergic neurons in one structure of

the basal ganglia (substantia nigra compacta) to unexpected

and predicted rewards and to the omission of an expected

reward. Recently, several modeling attempts (e.g.[8], [9]) try to

integrate these two functions of the basal ganglia - in decision

making processes and in reinforcement learning in a common

framework starting from the cortical input.

In contrast to these models, in previous work [10] we

developed a spike timing neural network model that includes

the major structures related to dynamic visual information

processing i.e. including the structures that provide the sensory

information for making a decision starting from the retinal

input. The parallel structure of the model was adopted from

[11] while the basal ganglia connectivity was adopted from

[12]. Main advances in our work in comparison to these two

previous works were as follows:

• While in [12] the model consisted of cellular network

structures whose neurons are modelled by firing rate

equations, in our model we used spike timing neurons

organized in layers with the same connectivity.

• In [12] dopamine signal is calculated as temporal differ-
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ence error that was directly exploited to adjust dopamine

synapses. In our model we have an additional layer

of neurons whose spiking activity was equivalent to

dopamine release into corresponding synapses having

spike timing dependent plasticity.

• In [12] the layer responsible for visual information

processing and generating sensory input to the basal

ganglia is simplified and in [11] it is completely missing

while our model includes multiple layers corresponding

to hierarchical brain structures performing dynamic visual

information processing.

• In contrast to [11] where lateral connections within

layers are limited, our model has much more elaborated

connectivity similar to that proposed in [12].

These characteristics of our model made it more realistic

and provide greater opportunities for understanding the pro-

cess of learning and decision making in human brain.

The model was implemented using NEST 2.12.0 simulator

[13].

Further attempts to improve our model were as follows:

• Enhanced connectivity of visual information processing

layers with multiple feedback connections and spike

timing dependent plasticity in its synapses reported in

[14].

• Enhanced feedback connectivity from basal ganglia back

to visual cortex.

The present paper summarizes our model structure and

connectivity and investigates age-related changes of its dy-

namic synapses induced by age-specific external reinforce-

ment. It is organized as follows: Section II briefly describes

the model structure; next simulation experiment with moving

dot stimulus and external age-related reinforcement signal

was presented and achieved after training values of spike

timing dependent plastic (STDP) synapses were presented and

commented; the paper finishes with concluding remarks and

directions for future work.

II. MODEL STRUCTURE

Based on the available data about human brain structures

playing role in visual motion information processing and

decision making, as well as their connectivity, the hierarchical

model proposed in [15] consists of two basic substructures:

related to visual information perception and sensory-based

decision making and the basal ganglia and their function on

the perceptual decision via external reinforcement.

Each layer consists of neurons positioned in a regular two-

dimensional grid. The receptive field (area of neurons from a

given layer that are connected to a given neuron from the same

or neighbour layer) of each individual neuron depends on the

function of the layer it belongs to as well as on its position

inside the layer. The neurons’ dynamical models as well as

intra- and inter-layer connectivity are described in consecutive

subsections.

A. Visual information perception and sensory-based decision

The structure of perceptual layers up to LIP area involved

in the sensory-based decision making reported in [15], [16],

[17] is shown in Fig. 1. It consists of the following lay-

ers: Retinal ganglion cells (RGC); Lateral geniculate nucleus

(LGN); Thalamic reticulate nucleus (TRN) and Interneurons

(IN); Primary visual cortex (V1);Middle temporal (MT) area;

Medial superior temporal (MST) area and Lateral intraparietal

cortex (LIP).

Following the commonly accepted models from [18], [19],

the reaction of retinal ganglion cells to luminosity changes was

simulated by a spatiotemporal filter whose spatial component

has circular shape modelled by a difference of two Gaussians

and the temporal component has a bi-phasic profile determined

by difference of two Gamma functions. The continuous signal

generated by convolution of this spatiotemporal kernel with the

visual stimuli (images falling on the retina) is the electrical

output current of retinal cells. Each retinal ganglion cell

generates input current and is connected to its corresponding

LGN neuron.

The structure of LGN layer is the same as that of the

retinal layer. We have two layers of retinal cells and their

corresponding LGN neurons, having identical positions of "on-

center off-surround" (ON) and "off-center on-surround" (OFF)

cells placed in reverse order. Their positions are relative to the

visual scene. For the LGN neurons we used the proposed in

[20] model whose parameters were determined from in-vivo

experiments. This layer sends forward signals to the next layer

(V1) and receives excitatory feedback from it directly as well

as via inhibitory connections through interneurons and TRN.

The structure of thalamic relay that prepossesses the feed-

back from the visual cortex (V1) to LGN has structure adopted

from [21] as shown on Fig. 1. The interneurons receive

excitatory inputs from both retinal neurons (feedforward) and

primary visual cortex (feedback) and send inhibitory signal to

their corresponding LGN neuron. The TRN neurons mediate

excitatory feedback from visual cortex and send another in-

hibitory input to the corresponding LGN neurons. Since we

have a TRN and an interneuron attached to each LGN neuron,

their positions coincide on the LGN grid of neuron positions.

For simplicity, in our model the feedback connectivity from

V1 was the same as the feedforward connectivity from LGN

to V1. In [16] the presence and strength of such feedback

connectivity on the spiking activity of the primary visual

cortex was investigated by simulations. It was demonstrated

that it has modulatory effect on the selectivity of V1 neurons.

As in [19], the neurons in V1 layer are separated into four

groups - two exciting and two inhibiting populations connected

via corresponding excitatory and inhibitory intra-layer (lateral)

connections. According to [19] and [18] the ratio of exiting to

inhibiting neurons should be 4/1. All neurons are positioned at

the same two-dimensional space and the inhibiting neurons are

dispersed among bigger groups of exciting neurons. Since the

neurons in V1 layer are orientation sensitive, they have elon-

gated receptive fields defined by a Gabor probability function
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Fig. 1. Model of dynamic sensory information processing. Each box represents a two-dimensional layer of neurons. The color of connections corresponds to
their type, i.e. red for excitatory and blue for inhibitory ones.

with orientation and phase parameters like in [22]. The 2D

maps containing the neurons’ orientations and phases at cor-

responding 2D grid of the V1 layer should have typical for the

mammalian brain "pinwheel-structure". Among the proposed

approaches for artificial design of such a structure, that of [23]

is relatively new and easily implemented one. That is why we

used it to design V1 orientation and phase maps of our model

([17]). The absolute values of lateral connection weights in V1

are determined on the basis of neuronal Gabor correlations

with respect to their positions, phases and orientations. The

sign of a connection weight depends on whether it is excitatory

(positive) or inhibitory (negative). Besides, as in [19], neurons

from inhibitory populations connect preferentially to neurons

having a receptive field phase difference of about 180◦. In

our model, we defined the spatial frequencies and standard

deviations of the Gabor filters for lateral connection weights

so as to obtain approximately circular receptive fields for all

neurons in the layer.

The next (MT) layer is the major motion information

processing structure and it has identical structure to V1 layer.

The lateral connections are designed in the same way while

the connections from V1 cells depend on the angle between

orientation preferences of each pair of cells according to [24].

The orientation and phase maps of this layer were generated

in the same way as in the case of V1 layer.

The following Medial Superior Temporal Area (MST) was

modeled like in [25] by two layers sensitive to expansion

and contraction movement patterns that occur during the self-

motion of the observer . Each MST cell has assigned con-

traction/expansion pattern template having circular shape and

focal point at MT layer. Following [25], the MST neurons have

on-center receptive fields. Each MST neuron collects inputs

from MT cells corresponding to its pattern template. Both

layers have intra- and interlayer excitatory/inhibitory recurrent

connections between cells having similar/different sensitivity

(see Fig. 1). These lateral connections are determined based on

neurons’ positions and template similarities. All neurons have

Gaussian receptive fields. Connections within expansion/con-

traction layers are excitatory or inhibitory in dependence on

their focal points’ similarity. Connections between expansion

and contraction layers are all inhibitory and depend both on

similarities of their positions and focal points.

LIP area is the last layer of perceptual part of the model

that is responsible for making decisions based on accumu-

lated sensory evidence. Since our model aims to decide

whether the expansion center of moving dot stimulus is left or

right from the stimulus center, in [15] we proposed a task-

dependent design of excitatory/inhibitory connections from

MST expansion/contraction layers to the two LIP sub-regions

whose increased firing rate corresponds to either of two motor

responses - eye movement to the left or right. Both LIP areas

are connected via excitatory connections to neurons in MST

expansion layer having template focal points (left or right)

corresponding to their motor responses (left or right). The rest

of neurons are connected via inhibitory connections. There are

also lateral inhibitory connections between both groups of LIP

neurons.

B. Basal Ganglia

In order to modulate LIP decisions using external rein-

forcement signal, its output (considered as processed and

accumulated sensory information) was further fed into a group

of subcortical nuclei - Basal ganglia (BG). These include

Striatum, Globus Pallidus externa (GPe), Subthalamic Nucleus
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(STN), Substantia Nigra pars reticulata (SNr) and Substantia

Nigra pars compacta (SNc) [12], [11]. The structure of BG

in our model, shown on Fig. 2 combines ideas from both

[12] and [11].We excluded the internal segment of the Globus

Pallidis (GPi) from the model as it is an output of the Basal

ganglia to the thalamus, while we are interested in the effects

of BG activity on eye movement control. For this reason,

we considered only the other output structure of the Basal

ganglia - the SNr as it projects to the superior colliculus (SC),

a structure controlling saccade generation.

Like in [12], our model incorporates layers of Striatum,

GPe/STN structure and SNr. However, it consists of two

parallel structures, receiving inputs from the left and right

saccade selecting LIP areas respectively. These two channels

(left and right) are connected via mutually inhibiting connec-

tions through their GPe areas like in [11]. Additionally, in

contrast to [12], our model has a complete 2D layer of neurons

producing dopamine neuromodulator (SNc) and dopamine-

dependent synapses.

Striatum is divided into two sub-areas depending on the

type of dopamine receptors they express (D1 and D2 on

Fig. 2). Both are modelled as 2D layers of integrate and

fire (IAF) neurons whose lateral connections have short-range

excitation and long-range inhibition characteristics like in [12].

These two sub-areas form the inputs to the direct and indirect

pathways that process signals through the basal ganglia. The

cortical input (coming from the LIP layer) has dopaminergic

synapses whose weights were randomly initialized and they

are dynamically changed in dependence on the spiking activity

of SNc area (considered as dopamine secreting structure).

The NEST simulator offers dopaminergic synapse model from

[26]. Since our model includes also anti-dopamine synapses

(from LIP to D2 sub-area of the Striatum) whose dynamics has

to be opposite to that of dopaminergic ones, we’ve modified

the model from [26] by converting the amplitudes A+ and

A− of the dopamine eligibility trace dynamics from positive

to negative.

The Globus Pallidus externa (GPe) and Subtalamic Nucleus

(STN) pairs consists of 2D grid of pairs of neurons connected

one-to-one via glutamatergic (excitatory) and GABAergic (in-

hibitory) connections as shown on Fig. 2. The GPe layer has

also lateral connections having negative center and positive

surround shape as in [12]. The structure receives inhibitory

input from the second part of the Striatum (D2) via GPe

and sends its output through STN via dopamine-dependent

synapses to SNr (so called indirect pathway from Striatum to

the BG output layer).

SNr was modelled by a 2D layer having short-range exci-

tatory and long-range inhibitory lateral connections like both

Striatum layers. Its input comes from both D1 layer of the

Striatum (direct pathway) and GPe/STN structure (undirect

pathway) via dopamine dependent synapses. SNr generates BG

output to the motor-reaction controlling structure (SC).

SNc is considered as the brain area producing the neuro-

modulator dopamine in dependence on external motivation

(reinforcement) input signal. In contrast to [12], where the

dopamine level is calculated using temporal difference error,

here we incorporated another 2D layer of neurons. The input

to SNc, coming from D1 area of the Striatum, was considered

as the value function estimation like in [12]. Thus in order

to "produce" the dopamine (temporal difference error) at the

output of SNc, we set its inputs to be the value function for

two consecutive time steps and the reinforcement signal as

follows:

V (t) = D1(t) (1)

δ(t) = r(t) + γV (t+ 1)− V (t) (2)

SNc = F (δ(t)) (3)

i.e. the dopamine release from the SNc is a function F of

the temporal difference error δ as in [5]. Here reinforcement

signal r(t) is external input current to the neurons in the SNc

area (rleft and rright respectively) and the value function V is

associated with spiking activity in the D1 part of the Striatum.

The discount factor γ was set to 0.9.

Since the SNc has the role of the critic within the model,

its input connections from the Striatum were modelled as

dopamine dependent synapses too.

Finally, the motor controlling structure SC was modelled

by 2D layer of neurons receiving inputs directly from the LIP

area (decision according to accumulated sensory information)

as well as from the external reinforcement modulated output

of BG (via SNr).

The overall model connectivity is also enhanced by exci-

tatory feedback connections from SC to their corresponding

D1 and D2 areas of the Stratum as well as to LIP areas

following recently reported findings [27], [28], [29]. Moreover

we introduced mutually inhibiting connections between the

two SC groups.

III. SIMULATION RESULTS AND DISCUSSION

The overall model structure was implemented in NEST [13]

simulator. For the neurons in LGN layer conductance-based

leaky integrate-and-fire neuron model as in [20] was adopted.

For the rest of neurons leaky integrate-and-fire (IAF) model

with exponential shaped post-synaptic currents according to

[30] was used.

The adjustable parameters in presented simulation are the

strengths of dopaminergic synapses that vary in dependence on

spiking activity of both SNc layers as well as STDP synapses

of the visual perception sub-structure. The reinforcement in-

puts rleft and rright are both teaching signals that control the

dopamine level. In contrast to our preliminary investigations,

where both reinforcement signals were constant generating

currents of both SNc structures, here they were proportional to

the difference between desired SC activity (generating current

as in [14]).

The experiments with human test subjects separated into

three age groups: 12 young persons (19-34 years old), 11

middle age (36-52 years old) and 12 elderly people (57-84

years old) were conducted and mean reaction time of each
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Fig. 2. Basal ganglia structure (in blue). It receives inputs from the decision-making area based on sensory information (LIP) as well as from the dopamine
releasing area (SNc) and generates activity biasing saccades generation via SC.

Fig. 3. Stimuli example.

age group was estimated [31]. The visual stimulation consists

of projection of moving dot patterns on a computer screen.

The test subjects are asked to indicate perceived expansion

center that is left or right from the screen center as shown

on Fig. 3. Details about experimental set-up were reported in

[15].

In current investigation we simulated our model presenting

as input moving dot stimuli with expansion center to the left

of the screen center. As in [14] we’ve created training signals

as generating currents Ileft and Iright for the left and right LIP

neurons respectively as follows:

Ileft/right = Aleft/right/(1 + exp(kleft/rightt)) (4)

Amplitude Aleft/right defines maximal input current (in

pA) while kleft/right determines settling time of the expo-

nent that corresponds to the mean reaction time determined

TABLE I
MEAN AND VARIANCE OF WEIGHTS OF CONNECTIONS FROM MSTE TO

LEFT LIP IN CASE OF REINFORCEMENT SIGNAL CORRESPONDING TO

PERCEPTUAL DECISION (LEFT).

Group exc. mean exc. var inh. mean inh. var

Young 3.63096 2.17431 -5.82932 5.95606

Middle 3.63059 2.17837 -5.82684 5.95684

Elderly 3.62601 2.17272 -5.83082 5.95357

TABLE II
MEAN AND VARIANCE OF WEIGHTS OF CONNECTIONS FROM MSTE TO

RIGHT LIP IN CASE OF REINFORCEMENT SIGNAL CORRESPONDING TO

PERCEPTUAL DECISION (LEFT).

Group exc. mean exc. var inh. mean inh. var

Young 5.18551 5.03905 -5.68507 5.79413

Middle 5.21042 5.07128 -5.68448 5.79909

Elderly 5.19587 4.67182 -5.70433 5.81697

from experiments for each age group. For all three age

groups amplitude values were the same: Aleft = 200 and

Aright = 100. In order to achieve approximately the settling

time determined from experimental data, parameter kleft/right
has different values for three age groups (Y - young, M -

middle, O - old) with opposite signs for left and right case

of stimulus respectively as follows: kYleft/right = −/ + 0.02;

kMleft/right = −/+ 0.01; kOleft/right = −/+ 0.005.

We monitored the changes in STDP synapses of the model.

Tables I - IV show the mean values and variances of con-

nection weights between MSTe and LIP layers, while the
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TABLE III
MEAN AND VARIANCE OF WEIGHTS OF CONNECTIONS FROM MSTE TO

LEFT LIP IN CASE OF REINFORCEMENT SIGNAL OPPOSITE TO

PERCEPTUAL DECISION (LEFT).

Group exc. mean exc. var inh. mean inh. var

Young 5.90917 5.82209 -5.83044 5.95340

Middle 5.90917 5.82209 -5.82591 5.96218

Elderly 5.90917 5.82209 -5.83086 5.95266

TABLE IV
MEAN AND VARIANCE OF WEIGHTS OF CONNECTIONS FROM MSTE TO

RIGHT LIP IN CASE OF REINFORCEMENT SIGNAL OPPOSITE TO

PERCEPTUAL DECISION (LEFT).

Group exc. mean exc. var inh. mean inh. var

Young 3.64700 2.18479 -5.95241 6.15924

Middle 3.64970 2.18400 -5.95241 6.15924

Elderly 3.64957 2.18176 -5.95241 6.15924

Tables V - VIII show the mean values and variances of

connection weights between four sub-structures within LGN

(ON1, ON2, OFF1, and OFF2) and TRN obtained using

external reinforcement signal for the three age groups with

correct and reverse amplitude respectively. We did not observe

changes in the inhibitory connections from MSTc area to both

LIP left and right layers.

In case of reinforcement signal corresponding to percep-

tual decision both Tables I and II demonstrate tendency of

decreased excitatiory connectivity and increased inhibitory

connectivity with aging for both LIP areas. At the same

time obtained excitatory connections are stronger and with

bigger variance for the right LIP area (that corresponds to

suppressed by reinforcement decision) while inhibitory con-

nections achieved a little bit higher absolute values for the

correct (left) LIP area.

In the case of reinforcement signal opposite to the percep-

tual decision Table III shows that excitatory connections to the

suppressed by training left LIP area increase in comparison

to previous case but remain the same for the three age

groups while the absolute values of the inhibitory connections

increased slightly with aging. Table IV demonstrates that

when the reinforcement signal favors the right LIP area the

excitatory connectivity increased with aging but has lower

mean values and less variability than in the previous case.

The inhibitory connections however remain the same for three

age groups and achieved a little bit higher absolute values and

variance.

These results might be explained with task-related connec-

tivity between MST and LIP areas in our model. Since the

excitatory connections are allowed only from MSTe templates

to the corresponding to their focal points LIP areas and

the rest of connections remain inhibitory, the reinforcement

corresponding to perceptual decision increases inhibition from

MSTe areas related to the wrong decision to both LIP areas

while the opposite reinforcement tries to revert the strength

of excitatory connections towards the one opposite to the

TABLE V
MEAN OF WEIGHTS OF CONNECTIONS FROM LGN TO TRN IN CASE OF

REINFORCEMENT SIGNAL CORRESPONDING TO PERCEPTUAL DECISION

(LEFT).

Group ON1 ON2 OFF1 OFF2

Young -0.99001 -0.97580 -0.86800 -0.85067

Middle -0.99126 -0.97732 -0.86824 -0.85042

Elderly -0.98803 -0.97743 -0.86915 -0.85175

TABLE VI
VARIANCE OF WEIGHTS OF CONNECTIONS FROM LGN TO TRN IN CASE

OF REINFORCEMENT SIGNAL CORRESPONDING TO PERCEPTUAL DECISION

(LEFT).

Group ON1 ON2 OFF1 OFF2

Young 0.00518 0.00444 0.00619 0.00796

Middle 0.00514 0.00463 0.00625 0.00798

Elderly 0.00528 0.00437 0.00640 0.00795

perception decision.

Concerning the deep thalamic relay, in [14] we observed

that only inhibitory feedback connections to LGN from TRN

structure are subject to some changes so here we monitored

only their changes. In contrast however to our previous results

from STDP training of perceptual part of the model reported in

[14], changes in case of reinforcement training reported here

became visible after single presentation of teaching signal.

In case of reinforcement signal corresponding to perceptual

decision (Tables V and VI) we observe slight decrease of

inhibition with aging in connections only to first LGN layer

having ON receptive fields (ON1) and slight increase for the

rest of LGN layers (ON2, OFF1, and OFF2).

In case of reinforcement opposite to the perceptual decision

(Tables VII and VIII) we observed a tendency towards a

decrease of inhibitory connectivity with aging to all LGN

layers. Achieved in this case connection weights however

are a little bit smaller in comparison with previous case of

reinforcement training.

TABLE VII
MEAN OF WEIGHTS OF CONNECTIONS FROM LGN TO TRN IN CASE OF

REINFORCEMENT SIGNAL OPPOSITE TO PERCEPTUAL DECISION (LEFT).

Group ON1 ON2 OFF1 OFF2

Young -0.99001 -0.97830 -0.87068 -0.85187

Middle -0.98981 -0.97705 -0.87082 -0.84828

Elderly -0.98722 -0.97753 -0.86884 -0.84816

TABLE VIII
VARIANCE OF WEIGHTS OF CONNECTIONS FROM LGN TO TRN IN CASE

OF REINFORCEMENT SIGNAL OPPOSITE TO PERCEPTUAL DECISION (LEFT).

Group ON1 ON2 OFF1 OFF2

Young 0.00500 0.00440 0.00636 0.00835

Middle 0.00493 0.00458 0.00633 0.00766

Elderly 0.00522 0.00441 0.00663 0.00757
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The aging however increased the variances of connections

to ON1 and OFF1 and decreased those of connections to ON2

and OFF2 in both considered cases of reinforcement signal.

In summary, the ageing effects in thalamic relay demon-

strated predominantly increased inhibition in case of rein-

forcement signal corresponding to perceptual decision and

decreased inhibition for the opposite reinforcement training.

This might be explained by the fact that the reinforcement

signal suppressing the perceptual decision tries to invert the

overall model perceptual attitude while the reinforcement

signal corresponding to the perceptual decision leads to age-

related differentiating in this structure positioned deep in the

perceptual part of the model.

IV. CONCLUSIONS

The model, presented here incorporates all basic structures

in the human brain responsible for decision making based

on dynamic visual information in tasks with eye movement

response starting from the visual information encoding, pre-

processing, information extraction and accumulation and sac-

cade generation biased by subcortical structures (BG) in the

presence of external reinforcement.

The adjustment of the model parameters in the dynamic

(dopamine and STDP) synapses by feeding reinforcement

signal reflecting specific characteristics of the human perfor-

mance provides further insight into the complicate interactions

between different brain structures and their modification in the

process of learning, acting and aging.

A future application of our model will be to investigate

by simulations the behaviour of the brain structures involved

in visual information processing and decision making in case

of deterioration in any of its layers, i.e. to perform in-sillico

modelling of brain lesions or other degenerative brain pro-

cesses. Comparison of such simulated behaviour with patients’

performance in visual tasks can support early and noninvasive

diagnosis of some deceases of human brain.
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