
Evaluation of Open-Source Linear Algebra

Libraries targeting ARM and RISC-V Architectures

Christian Fibich, Stefan Tauner, Peter Rössler, Martin Horauer

Dept. of Electronic Engineering, University of Applied Sciences Technikum Wien

Höchstädtpl. 6, 1200 Vienna, Austria

{fibich, tauner, roessler, horauer}@technikum-wien.at

Abstract—Basic Linear Algebra Subprograms (BLAS) has
emerged as a de-facto standard interface for libraries providing
linear algebra functionality. The advent of powerful devices for
Internet of Things (IoT) nodes enables the reuse of existing BLAS
implementations in these systems. This calls for a discerning
evaluation of the properties of these libraries on embedded
processors.

This work benchmarks and discusses the performance and
memory consumption of a wide range of unmodified open-source
BLAS libraries. In comparison to related (but partly outdated)
publications this evaluation covers the largest set of open-
source BLAS libraries, considers memory consumption as well
and distinctively focuses on Linux-capable embedded platforms
(an ARM-based SoC that contains an SIMD accelerator and
one of the first commercial embedded systems based on the
emerging RISC-V architecture). Results show that especially for
matrix operations and larger problem sizes, optimized BLAS
implementations allow for significant performance gains when
compared to pure C implementations. Furthermore, the ARM
platform outperforms the RISC-V incarnation in our selection
of tests.

Index Terms—Embedded Systems, Basic Linear Algebra Sub-
programs, BLAS, Benchmarks, ARM, RISC-V

I. INTRODUCTION

EDGE computing – processing sensor data as close to

their origin as possible – is a paradigm to de-centralize

processing and storage in order to improve the scalability of

IoT applications. More potent embedded CPUs allow more

complex processing tasks, for example signal and image

processing operations as well as inference (and even training)

of neural networks. Vector or matrix operations are essential

building blocks of the digital algorithms that are at the core of

these applications. This raises the question whether it is viable

to re-use and adapt proven mathematical software libraries

written for server and desktop computers for embedded target

platforms.

Netlib, a repository for open-source mathematical software

run by AT&T, Bell Labs, University of Tennessee, and Oak

Ridge National Laboratory, both maintains the BLAS spec-

ification document [1] and provides a reference implemen-

This work has been supported by the Austrian Federal Ministry for Digital
and Economic Affairs (BM:DW) and the National Foundation for Research,
Technology and Development as related to the Josef Ressel Center “Innovative
Platforms for Electronic-Based Systems” (INES) managed by the Christian
Doppler Society (CDG).

We thank Kapsch TrafficCom AG for their support of this research.

tation of this specification1. BLAS essentially describes a

programming interface for three levels of algorithms: level 1

contains vector-vector operations, level 2 defines vector-matrix

operations, and level 3 specifies matrix-matrix operations all

for single- and double-precision real numbers, as well as for

single- and double-precision complex numbers. The reference

implementation itself does not contain optimized code – for

example, matrix-multiplication is implemented using a simple

iterative algorithm with three nested loops – it is, however,

widely used as a performance baseline for implementers

of optimized BLAS libraries. For example, implementations

taking advantage of Single Instruction Multiple Data (SIMD)

hardware extensions provided by modern CPUs as well as

GPUs via interfaces such as CUDA and OpenCL are common.

Since many modern embedded applications rely on al-

gorithms that mandate complex computations an evaluation

whether some BLAS implementations can be re-used under

resource constraints imposed by typical embedded platforms

seems in demand. Unlike the usual target systems for BLAS

libraries this work evaluates them on comparably small embed-

ded systems that display significantly divergent characteristics

due to architectural differences. For example, modern x86

CPUs can retire over 10 instructions per cycle per core under

ideal circumstances while running at a multi-GHz clock rate

and dozens of MB of caches. This is in stark contrast to

embedded CPUs, which are often still non-speculative in-

order architectures with sub-GHz frequencies. In particular,

in this paper we evaluate different implementations of the

BLAS specification targeting the ARM Cortex-A9 and RISC-

V RV64GCSU architectures, respectively. Both share some

similarities such as having RISC architectures, comparably

low clock frequencies and other attributes often found in

embedded systems. Both Instruction Set Architectures (ISAs)

support extensions leading to a wide variety of implementa-

tions. We chose two representative examples for our tests that

are described in more detail in Section IV.

Furthermore, it was the intention of the authors to present

a more comprehensive overview and evaluation of existing

open-source BLAS libraries, when compared to related work

that is discussed in Section II. In Section III, the scope of

this work – the evaluated libraries as well as the benchmark

applications and CPU architectures that constitute the basis of

1https://www.netlib.org/blas/, last visited on 2020-06-27

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 663–672

DOI: 10.15439/2020F145

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 663

these evaluations – is described. Section IV provides details

on the specific build and run-time environments as well as

employed metrics and measurement methodologies. Finally,

the results of the evaluations are discussed in Section V before

the paper concludes.

II. RELATED WORK

Due to its widespread use, libraries implementing the BLAS

specification have been compared in the past. For example, [2]

presents a wrapper for multiple BLAS library implementations

facilitating their interchangeable use along with an evaluation

by way of several benchmarks. Similar evaluations are pro-

vided by the BLIS framework presented in [3] targeting the

performance of several BLAS level 2 and 3 algorithms and

comparing them with an optimized ISO C implementation.

The code generator LGen generates computational kernels

for some BLAS operations with fixed-sized operands that are

optimized for different target architectures and thus improve

over generic implementations that employ varying operand

sizes, see [4]. This approach was refined in [5] where the

targets have been shifted to some high-end embedded proces-

sors.

Finally, BLASFEO (see also Section III-B) is a BLAS im-

plementation that is intended to enable executing optimization

algorithms on embedded targets. It is especially optimized

for widely used embedded application processors (e.g., ARM

Cortex-A7, -A9, -A15) as well as modern Intel and AMD

architectures (e.g., Intel Haswell, Sandy Bridge). In [6], the

authors compare their implementation to multiple other BLAS

libraries. BLASFEO provides its own API that is better suited

for small input sizes than standard BLAS as it reduces the

overhead of aligning the matrices for internal processing.

However, the standard BLAS API has been implemented

coequally to the native API and evaluated on Intel and ARM

microarchitectures [7].

TABLE I: An overview of BLAS Benchmarks

FlexiBLAS BLIS LGen BLASFEO This work

2013 2015 2015 2018 2020 2020
[2] [3] [4], [5] [6] [7]

ATLAS ✓ ✓ ✓ ✓

BLASFEO ✓ ✓ ✓

BLIS ✓ ✓ ✓

Eigen ✓ ✓ ✓

Intel MKL ✓ ✓ ✓ ✓ ✓

Ne10 ✓

Netlib ✓ ✓

OpenBLAS ✓ ✓ ✓ ✓ ✓

Performance ✓ ✓ ✓ ✓ ✓ ✓

RAM Footprint ✓ ✓

x86 ✓ ✓ ✓ ✓ ✓

ARM ✓ ✓ ✓ ✓

RISC-V ✓

An overview of related BLAS evaluations is shown in

Table I listing evaluated libraries, their scope, and the re-

spective target architectures. The last column depicts the

contribution of this work that focuses on embedded platforms,

in particular targeting ARM Cortex-A9 and RISC-V. The

focus on embedded systems ruled out Intel’s Math Kernel

Library (MKL) implementation that specifically targets x86

architectures. Instead, the performance of ARM’s Ne10 library

was included. Although this is not an implementation of the

BLAS specification, it has an overlapping scope. The treatment

of memory consumption of the libraries and the inclusion of

RISC-V sets this work apart from past publications.

In addition to academic literature, several authors of the

libraries evaluated in this work have published their own

benchmark results. ATLAS provides timing data for the

DGEMM (double precision generic matrix multiplication) BLAS

function (dimensions between 1000 and 2000) in various

library versions and CPU architectures (e.g., Intel, MIPS,

SPARC)2. The results, however, are provided for up to ATLAS

version 3.9.5, which is about 8 years old. The Eigen project

provides benchmark results of various level-2 and level-3

BLAS functions, as well as more complex functions such

as lower-upper factorization of matrices3. The results date

from 2011 and are compared to GotoBLAS (an OpenBLAS

predecessor), Intel MKL, and ATLAS 3.8.3. BLIS provides

the most recent results, dating from 2020. Results are pro-

vided for server- and workstation-class CPUs (i.e., 10s of

cores, ARM ThunderX2, Intel SkylakeX, Intel Haswell, AMD

EPYC). BLAS level 3 functions are evaluated against Eigen,

OpenBLAS, BLASFEO, and MKL. Different sets of results

are available for large4 and small matrices5.

Unlike the publications discussed above this work examines

BLAS libraries on comparably small embedded systems. Pre-

liminary results of this evaluation were published in [8]. This

work widens the scope of the analysis both by inclusion of

the RISC-V architecture and the very recent BLASFEO linear

algebra library. It is, to the best of our knowledge, the first

work that evaluates the performance of general-purpose linear

algebra libraries on the RISC-V architecture. Furthermore, it

extends previous work with a more in-depth analysis of per-

formance differences between the different libraries, especially

in the dot product, matrix multiplication, and neural network

benchmarks.

In the past 10+ years the use of linear algebra algorithms

on heterogeneous systems with potent GPUs have been in-

vestigated for High-Performance Computing (HPC). Due to

the limitations of the communication between host CPUs and

GPUs these implementations (e.g., ViennaCL, cuBLAS) often

use custom APIs.6 Similar considerations affect the use of

custom accelerators on programmable logic, which is often

2http://math-atlas.sourceforge.net/timing/, 2020-06-27
3https://eigen.tuxfamily.org/index.php?title=Benchmark, 2020-06-27
4https://github.com/flame/blis/blob/master/docs/Performance.md,

2020-06-27
5https://github.com/flame/blis/blob/master/docs/PerformanceSmall.md,

2020-06-27
6ViennaCL’s API is derived from the C++ Boost.uBLAS library that is

object-oriented and uses operator overloading. cuBLAS supports a BLAS-
compatible interface but it is deprecated and requires additional manually
initiated transfers, cf. https://docs.nvidia.com/cuda/cublas/index.html

664 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

facilitated by High-Level Synthesis (HLS).7 For these reasons

directly comparing the performance of BLAS libraries running

on other hardware than general-purpose CPUs is out of scope

of this paper.

III. SCOPE OF THE EVALUATION

A. Target Hardware

Unlike in high-performance computing the market for em-

bedded processors is less concentrated due to the wide variety

of applications. Nevertheless (or possibly because of that)

ARM has been the leading provider for embedded RISC

IP cores in the past few decades offering a wide range of

processors from tiny cores for microcontrollers to the base

for high-end smartphones with multiple gigabytes of memory.

Almost all of its recent CPUs (at least optionally) comprise

an FPU capable of SIMD operations called NEON. We focus

our work on the mid-range Cortex-A9 implementation of the

well-established and widely used ARMv7 architecture as one

of our targets.

In stark contrast to ARM the RISC-V architecture is quite

young but has gained substantial interest from academia and

industry alike.8 One of the obvious reasons is that the use of its

ISA is royalty-free and thus a wide range of implementation

exists. However, as of summer 2020 the standardization of

the ISA has only frozen the most significant parts but some

specifications have not been finalized relevant to embedded

systems in general (e.g., the Bit Manipulation Extension9) and

this paper in particular (e.g., the Vector Extension10).

The ISA allows for a modular design by offering base

specifications for unprivileged and privileged execution envi-

ronments as well as standard (i.e., defined by the foundation)

and custom ISA extensions. Designers can thus build cores

tailored to the specific use cases. For example, a RISC-V core

developed in the PULP project contains a dot-product accel-

erator as a non-standard vector extension [9]. This accelerator

can calculate the dot product of two vectors comprising two

16-bit or four 8-bit integers.

B. Evaluated Libraries

This section provides a brief description of the distinctive

features of each library under investigation. The libraries were

evaluated in unmodified form, with the respective versions and

release dates indicated in Table II.

The aim of the ATLAS (Automatically Tuned Linear Alge-

bra Subprograms) project11 is to provide implementations that

are highly optimized for the particular target platform they will

be used on. For this purpose, ATLAS contains many different

variants of its kernels that suite best for particular properties of

the target (e.g., cache line size, vector accelerators). ATLAS’

7For example FBLAS (https://github.com/spcl/FBLAS) or Xilinx’
Vitis BLAS Library (https://www.xilinx.com/products/design-tools/vitis/
vitis-libraries/vitis-blas.htm

8https://riscv.org/members-at-a-glance/, 2020-06-27
9https://github.com/riscv/riscv-bitmanip, 2020-06-27
10https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc,

2020-06-27
11http://math-atlas.sourceforge.net, 2020-06-27

TABLE II: Summary of evaluated libraries

Library Version / Commit Release Date

ATLAS 3.10.3 2016-07-28
BLASFEO Commit d404e3471dbb 2019-10-23
BLIS Commit bc16ec7d1e2a 2019-09-23
Eigen Commit 8e409c71423f 2019-09-27
Ne10 Commit 1f059a764d0e 2018-11-15
Netlib BLAS Commit b5dd8d4016f7 2019-09-12
OpenBLAS Commit 2beaa82c0508 2019-10-09

build process is carried out on the actual target, requiring a

C compiler on the target platform. During the build process,

the kernel variants delivering the highest performance are

determined empirically. Further details on the basic principles

of this optimization and the ATLAS project can be found

in [10]. In the results section of this work, the version of

ATLAS built with default settings is referred to as “ATLAS”.

The “ATLAS-Neon” version was built with disabled IEEE-754

compatibility options, potentially allowing better tuning to the

NEON vector processor in ARM CPUs. While newer unstable

releases of ATLAS are available, the most recent stable release

of ATLAS was evaluated in this work.

OpenBLAS12 is widely-used optimized implementation of

the BLAS specification. Details on the especially optimized

matrix-multiplication kernels part of OpenBLAS and its pre-

decessor GotoBLAS can be found in [11]. OpenBLAS is

implemented in C, but provides assembly implementations

of performance-critical kernels for several CPU architectures

and accelerators. Architectures for which such kernels exist

include MIPS, ARMv6/v7/v8, x86, and Power8/9. However,

the low-level kernels for ARMv7 relevant to this work only

make use of the VFPv3 instruction set, and do not include

specific support for the NEON SIMD engine.

BLASFEO [6] is a fairly new linear algebra library13. It

aims at improving performance at small vector and matrix

sizes (between 10s and 100s per dimension). The authors

motivate this goal with optimization algorithms calculated on

embedded devices themselves. BLASFEO consists of three

independent implementations of linear algebra functionality:

Wrapper which is a custom interface to standard BLAS

libraries such as Netlib BLAS, Reference which is imple-

mented in ANSI C and serves as a reference that is easily

portable to new architectures, and High-Performance. The

High-Performance version provides kernel implementations in

assembly optimized for various architectures and common ac-

celerators (e.g., SSE3, AVX, AVX2 available in x86 CPUs and

VFPv3/VFPv4, NEON, and NEON2 found in ARM CPUs).

To allow for maximum efficiency many assembler routines

are inlined, which can be further enforced at compile time.

BLASFEO uses an internal, aligned format for storing matrices

and vectors, and an API that differs from BLAS. The latter

difference is especially relevant to matrix multiplication: While

BLAS provides the xGEMM functions that allow transposing

12https://www.openblas.net, 2020-06-27
13https://github.com/giaf/blasfeo, 2020-06-27

CHRISTIAN FIBICH ET AL.: EVALUATION OF OPEN-SOURCE LINEAR ALGEBRA LIBRARIES TARGETING ARM AND RISC-V ARCHITECTURES 665

either of the two input matrices to be multiplied via function

parameters, BLASFEO offers different functions for each of

these cases called blasfeo_sgemm_{nn|nt|tn|tt}().

However, the authors have also implemented a standard-

conforming interface (denoted CBLAS hereinafter) that covers

most but not all BLAS functions [7]. As a consequence,

BLASFEO was evaluated only in the SDOT and SGEMM

benchmark by using its native and CBLAS API, respectively.

Another BLAS library investigated in this work is

BLIS [3]14. A main motivation for the originators of BLIS was

to provide portability to new architectures but also to accelera-

tors. This is done by using a set of target-specific kernels which

implement the BLAS routines. A generic implementation ex-

ists by relying on compiler optimizations. Furthermore, ports

are available for ARMv7 or ARMv8 architectures, Intel or

Power7 as well as others. The ARMv7a port provides kernels

for both single-precision as well as double-precision floating-

point matrix multiplications utilizing NEON SIMD intrinsics.

As a special feature, checks for errors related to, e.g., buffer

sizes or matrix and vector dimensions are performed by BLIS.

However, according to the description of the test suite15,

these checks may result in performance degradation, and for

this reason all the error checks have been disabled for our

benchmark evaluations.

The last library that has been considered for our bench-

marks is Ne1016 which includes functions for generic linear

algebra but also for signal processing or image processing.

Three versions of the Ne10 library are provided: a portable

implementation using plain C, another implementation that

makes use of NEON intrinsics, and finally, an implementation

based on ARM assembly code. However, no BLAS interface

is provided by Ne10. Furthermore, operations like generic

matrix multiplication or generic dot product are not provided

and therefore, the Ne10 vector multiplication kernel has been

used to implement this kind of calculations for our work.

Since the optimized version of Ne10 (based on ARM assembly

implementations) was benchmarked, only results for ARM are

available.

C. Benchmark Applications

Our first synthetic benchmark application is the dot product

of two vectors which is an example for an often used linear

algebra operation. It can be expressed by a BLAS level 1 op-

eration called [DS]DOT. Since the dot product of two vectors

can be implemented as a Multiply and Accumulate (MAC)

operation it can be assumed that this operation is perfectly

suited to transformations such as automatic vectorization or

utilization of SIMD facilities. Our implementation performs a

calculation of the dot product of two randomly selected values

for a given number of iterations. The time required for each

calculation is measured and at the end the mean value per

14https://github.com/flame/blis, 2020-06-27
15https://github.com/flame/blis/blob/

c665eb9b888ec7e41bd0a28c4c8ac4094d0a01b5/docs/Testsuite.md,
2020-06-27

16https://github.com/projectNe10/Ne10, 2020-06-27

SDOT function call is calculated. The vector length varies from

4 to 150017. Note, that a generic dot product operation does not

exist in the ARM Ne10 library and thus, vector multiplication

plus iterative addition of the results are used in our Ne10

implementation.

The next synthetic benchmark application is matrix mul-

tiplication which is also an example for an often used lin-

ear algebra operation. It can be implemented by the BLAS

level 3 operation [DS]GEMM. Our implementation performs

a calculation of the product of two randomly selected square

matrices for a given number of iterations and measures an

average of the runtime. The dimensions of the square matrix

used for our benchmark range from 4x4 to 1500x1500. Since

a matrix multiplication operation does not exist in the ARM

Ne10 library, vector operations have been used instead, for the

Ne10 implementation.

Our final synthetic benchmark application is LINPACK-

PC which is a C implementation of benchmarks for linear

algebra operations provided by Netlib18. A number of BLAS

operations such as [DS]DOT, [DS]SCAL (scaling a vector by

a constant) or I[DS]AMAX (calculating the maximum element

of a vector) are used by the LINPACK-PC benchmarks,

operating on matrices or vectors with a maximum dimension

of 200 to 201 elements. The performance of a series of

operations is measured and are reported in units of MFLOPS.

To verify that our results hold in real-world applications too

we employ a benchmark in the field of Artificial Neural Net-

works (ANNs). In detail, we made use of KANN19, which is

a C-based framework for constructing and training of artificial

neural networks. Through the CBLAS interface KANN makes

use of the BLAS operations SAXPY (vector addition) and

SGEMM. Two out of the existing sample applications provided

with KANN are used for our benchmarks: (1) RNN is basically

a Recurrent Neural Network (RNN) using 64 neurons trained

to add integer numbers, and (2) MNIST-MLP implements a

MLP (Multi-Layer Perceptron) with 64 neurons to process data

from the MNIST (Modified National Institute of Standards and

Technology) database of handwritten digits. For both ANN

benchmarks the training time as well as the interference time

has been evaluated.

IV. EXPERIMENTAL SETUP

A. ARM Cortex-A9 on Cyclone V SoC Development Board

An Intel/Altera Cyclone V SoC Development Kit20 was

used as an ARM-based embedded platform. This board con-

tains a Cyclone V SoC FPGA that implements a hard-wired

dual-core ARM Cortex-A9 CPU besides the programmable

logic fabric. The usage of an FPGA board was motivated by

the fact to generate BLAS accelerators by means of HLS as

17200k iterations are performed for vector dimensions 4–64, 100k iterations
for 100–500 and 50k for dimensions 1000–1500

18https://www.netlib.org/benchmark/linpack-pc.c, 2020-06-27
19https://github.com/attractivechaos/kann, 2020-06-27
20https://www.intel.com/content/www/us/en/programmable/products/

boards and kits/dev-kits/altera/kit-cyclone-v-soc.html, 2020-06-27

666 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

future research work while for this work the device manufac-

turer’s Golden Hardware Reference Design21 was used. The

ARM core implements a 32 KiB L1 data cache, a 32 KiB L1

instruction cache as well as a shared L2 cache (512 KiB).

A VFPv3 floating-point unit and a NEON SIMD engine

are also integrated on-chip [12] while the board comes with

peripherals such as 1 GiB of external DDR3-1600 memory, a

GBit Ethernet PHY and an SD card slot to boot a Yocto Linux

(using a 3.9.0 kernel).

B. RV64GCSU on SiFive Unleashed Board

The second target is one of the first commercially available

64-bit RISC-V development boards featuring four RV64GCSU

cores in the SiFive Freedom U540 SoC and has 8 GiB DDR4-

2400 RAM on board. The ISA specification RV64GCSU is

shorthand for RV64IMAFDCSU which stands for 64-bit reg-

isters, compressed multiplication, atomic, single- and double-

precision floating-point instructions with support for supervi-

sor and user mode in the RISC-V ISA standard. The HiFive

Unleashed22 does also feature Ethernet and boots from a

(micro) SD card like the Cyclone V board. The cores in the

U540 are based on SiFive’s U54 with 32 KiB L1 cache for data

and instructions, respectively, and share a common 2 MiB L2

cache. The manufacturer-provided buildroot Linux with a 4.15

kernel was used.

C. Build Environment

Our build environment for the libraries under investigation,

Section III-B, was as follows (see Section V for additional

notes):

• As compilers, gcc and gfortran from the GNU Com-

piler Collection (GCC) version 8.3.0 (from Debian 10) for

ARM (armhf Hard-Float Application Binary Interface

(ABI)) and 64-bit RISC-V, were used

• GCC’s -O3 flag was used to specify the desired level of

optimization. This flag enables, for example, automatic

vectorization and loop peeling.

• Moreover, -ffast-math has been used to allow spe-

cific non-IEEE754-compliant optimizations in order to

fully exploit the ARM Neon engine

• All libraries, including libc, have been linked statically.

• Since some of the libraries described in Section III-B

provide multi-code/multi-thread support while others do

not (NETLIB or Ne10, for instance) only single-threaded

versions were benchmarked to allow a fair comparison

between the libraries. Results may be of interest for

single-core systems.

During the ATLAS build flow, the build system adapts the

kernels used to the target platform. This requires the build

flow to be executed on the target platform itself, requiring a

full toolchain installation. To enable benchmarking ATLAS on

ARM, the GNU C compiler (Version 7.2.0) was built using

21https://rocketboards.org/foswiki/Documentation/GSRDGhrd, 2020-06-27
22https://www.sifive.com/boards/hifive-unleashed, 2020-06-27

crosstool-NG23 with hard-float ABI and support for ARM

NEON.

D. Measurement Mechanics

Both, the ARM and RISC-V based CPU were configured

to run at 800 MHz to allow for direct comparability. However,

the raw memory bandwidth available to the RISC-V SoC is

50% higher in theory. Performance and memory measurements

were taken using facilities provided by the target system:

• The POSIX facility clock_gettime() was used to

measure the time spent in the respective core BLAS

functions of the synthetic dot product benchmark and

the matrix multiplication benchmark. A timestamp was

taken from the system-wide clock (via untampered

CLOCK_REALTIME) before and after each call of the

respective BLAS function. These times were accumulated

and divided by the number of invocations in order to

determine the average time per call.

• The LINPACK-PC library has a built-in mechanism to

determine its performance in terms of Million Floating

Point Operations per Second (MFLOPS) utilizing the ISO

C clock() facility.

• The total execution time of the respective binaries was

used as a performance metric in the KANN benchmarks.

In the RNN inference and training case, as well as the

MLP training case, the runtimes lie in the range of several

minutes. Execution time of the executables was measured

using GNU time.

• The memory footprint of the libraries has been de-

termined over a snapshot of the application’s Res-

ident Set Size (RSS). This was done with Linux’

/proc/<PID>/smaps interface that provides infor-

mation about all memory mappings of a process. To

capture realistic values including potential internal mem-

ories within the libraries these snapshots are taken with

swapping disabled between the two middle iterations of

the whole benchmark.

Since the smaps interface is not provided by the RISC-

V Linux kernel, only results for the ARM platform can

be shown here (anyway, the CPU architecture should

only have minor influence on the memory footprint).

In order to avoid interference between the necessary

instrumentation with the performance results, this was

done using purpose-built executables for every library.

V. RESULTS & DISCUSSION

A. Fundamental Metrics: SDOT & SGEMM

In Figures 1 and 2 the performance results obtained from the

single-precision dot product are shown. The results are split

into smaller vector sizes (3-10, Figures 1a and 2a) and larger

vector sizes (10-1500, Figures 1b and 2b) to retain readability

at both ends of the evaluated spectrum of vector sizes. Figure 3

depicts the results of the matrix multiplication benchmarks.

The y-axes of these figures are scaled to reflect the number

23https://crosstool-ng.github.io, 2020-06-27

CHRISTIAN FIBICH ET AL.: EVALUATION OF OPEN-SOURCE LINEAR ALGEBRA LIBRARIES TARGETING ARM AND RISC-V ARCHITECTURES 667

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 3 4 5 7 8 9

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Vector Size

OpenBLAS
Atlas-Neon

Atlas
Eigen
Netlib
Ne10
BLIS

BLASFEO

(a) Vector Sizes 3–10

 0

 50

 100

 150

 200

 250

 300

 16 32 64 100 200 300 500 1000

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Vector Size

OpenBLAS
Atlas-Neon

Atlas
Eigen
Netlib
Ne10
BLIS

BLASFEO

(b) Vector Sizes 10–1500

Fig. 1: SDOT performance in multiplications calculated per second on ARM platform

 2

 4

 6

 8

 10

 12

 3 4 5 7 8 9

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Vector Size

OpenBLAS
Eigen
Netlib

BLIS
BLASFEO

(a) Vector Sizes 3–10

 0

 20

 40

 60

 80

 100

 120

 16 32 64 100 200 300 500 1000

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Vector Size

OpenBLAS
Eigen
Netlib

BLIS
BLASFEO

(b) Vector Sizes 10–1500

Fig. 2: SDOT performance in multiplications calculated per second on RISC-V platform

of floating-point multiplications processed per second (i.e., a

higher number corresponds to better performance). Since the

number of multiplications is the determining factor this scaling

allows for sharp discrimination between results. This metric

was obtained by multiplying the number of SDOT/SGEMM calls

per second with the respective multiplications per call (n for

SDOT and n
3 + 2n2 for SGEMM where n is the dimension of

the input data).

On ARM the widely-used OpenBLAS library performs

well in both test cases. In the SDOT benchmark (Figure 1),

OpenBLAS and Eigen are the fastest libraries, with effects

getting increasingly noticeable with vectors longer than 100

elements. Especially at small vector lengths, BLIS falls far

behind the other evaluated libraries. In the SGEMM benchmark

(Figure 3a), OpenBLAS and ATLAS are clearly outperformed

by BLASFEO, especially by small to medium dimensions but

also at bigger ones (by about 25% at dimension 1500). The

dip of BLASFEO’s performance relative to the other libraries’

that is visible for the largest matrices is probably because not

all the data fits into the last level of cache and BLASFEO’s

lack of cache blocking. Similar results have been shown by

its authors [6]. The performance of Eigen and BLIS is once

again worse at smaller matrix sizes.

On RISC-V the situation for SDOT (Figure 2) is very

different – almost inverse to that on ARM. The Netlib

implementation shows the best results for all vector sizes,

beating OpenBLAS and BLASFEO by almost a factor of 3

and 2 respectively, although the latter are the best-performing

libraries in most of our other benchmarks no matter the

architecture. BLIS is trailing the field at small vector sizes

but performs relatively well for bigger vectors with multiple

hundreds of elements where it becomes the second fastest

library unlike in other benchmarks.

SGEMM on RISC-V (Figure 3b) looks similar to ARM at a

much lower absolute performance level. Even the decreasing

performance of BLASFEO starting at about dimension 500 is

clearly visible. The most notable difference is that OpenBLAS

is faster than BLASFEO for all matrices greater than 16×16.

In addition to the absolute performance, different efficiency

peaks of the evaluated libraries can be observed in the SGEMM

benchmark results. The implementations of Netlib and Ne10

are most efficient at small matrix sizes, while the more

optimized libraries OpenBLAS, ATLAS, Eigen, BLIS and

BLASFEO are most efficient at sizes between 16 and 32.

B. Memory Usage

Figure 4 shows the memory consumption of the benchmark

executables (statically linked with each BLAS library, respec-

668 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

 0

 200

 400

 600

 800

 1000

 4 8 16 32 100 500 1000

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Square Matrix Dimension

OpenBLAS
Atlas-Neon

Atlas
Eigen

Netlib
Ne10

BLIS
BLASFEO

(a) ARM platform

 0

 50

 100

 150

 200

 250

 4 8 16 32 100 500 1000

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Square Matrix Dimension

OpenBLAS
Eigen

Netlib
BLIS

BLASFEO

(b) RISC-V platform

Fig. 3: SGEMM performance in multiplications per second

tively) on the ARM platform. This data is provided for the

smallest input size of the dot product and matrix multiplication

benchmarks in order to assess the base memory consumption

of each library. It subsumes both memory allocated for the

input/output vectors/matrices and the library’s own memory

consumption (e.g., for buffers and other internal variables).

As matrix dimensions grow larger, their size begins to dom-

inate the application’s memory consumption. This has been

observed in the SGEMM benchmark starting with matrices of

dimensions 200 × 200 and larger24. It can be seen that the

memory consumption of the optimized ATLAS, BLASFEO

and OpenBLAS libraries lies close to the NETLIB reference

implementation, while Eigen and BLIS consumption is con-

siderably higher.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

OpenBLAS ATLAS ATLAS-
Neon

Eigen Netlib BLIS ne10 BLASFEO

R
S
S
 [

k
B

]

SDOT (n=4)
SGEMM (n=4)

Fig. 4: Total application memory usage (RSS) on ARM

C. LINPACK

The results obtained by integrating the evaluated libraries

into the LINPACK-PC benchmark are shown in Figure 5.

LINPACK-PC calculates an MFLOPS metric from the number

of iterations of its core algorithm completed in a set period of

time. As Ne10 and ATLAS could not be benchmarked on the

RISC-V platform, no bars for RISC-V are shown here. The

results denoted by LINPACK-* show the performance of the

plain-C implementations of the used linear algebra operations

24Three single-precision 200 × 200 matrices (A, B, and C for SGEMM)
consume 3× 200× 200× 4 Byte = 480 kB, more than each libraries’ base
memory consumption.

that are provided by LINPACK-PC itself. The “Unroll” results

were obtained from the same C source code that is provided

in unrolled form by LINPACK. The former, however, was

compiled with GCC’s -O3 optimizations turned on while

the latter was compiled using GCC’s -ffast compiler flag.

LINPACK-ffast denotes a variant of the C code that has

not been unrolled, but compiled with -ffast optimizations

turned on.

These optimizations improve the performance of the stan-

dard C implementation even beyond the evaluated BLAS

libraries on the ARM platform. In these cases, the entire

program is available to the compiler as C source, and does not

contain calls to an external library, which might enable more

extensive optimization. On the RISC-V platform in contrast,

there seems to be no benefit attached to these optimizations.

Furthermore, the BLAS libraries cannot even improve on the

performance of the basic LINPACK implementation, reaching

only about 72–97% of its throughput.

 0

 50

 100

 150

 200

 250

 300

B
LIS

LIN
PAC

K

LIN
PAC

K (U
nrolled)

N
e10

ATLA
S

ATLA
S-N

eon

O
penB

LA
S

Eigen

LIN
PAC

K-ff
ast

N
etlib

LIN
PAC

K-ff
ast (U

nroll)

[M
F
L
O

P
S
]

ARM
RISC-V

Fig. 5: Averaged LINPACK performance

D. Neural Networks

Figure 6 shows the speedup of the inference and training of

two types of neural networks (MLP and RNN) relative to the C

implementation provided by the KANN project itself (denoted

as “KANN” in the graphs). For the training cases on the ARM

platform, all evaluated libraries lead to a performance gain,

CHRISTIAN FIBICH ET AL.: EVALUATION OF OPEN-SOURCE LINEAR ALGEBRA LIBRARIES TARGETING ARM AND RISC-V ARCHITECTURES 669

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

KANN OpenBLAS ATLAS ATLAS-
Neon

Eigen Netlib BLIS

S
p
e
e
d
u
p

re
la

ti
v
e
 t

o
 C

 i
m

p
le

m
e
n
ta

ti
o
n

ARM

 0

 0.5

 1

 1.5

 2

 2.5

 3

KANN OpenBLAS Eigen Netlib BLIS

S
p
e
e
d
u
p

re
la

ti
v
e
 t

o
 C

 i
m

p
le

m
e
n
ta

ti
o
n

RISC-V
RNN Training
MLP Training

RNN Inference
MLP Inference

Fig. 6: Speedup of KANN benchmark relative to plain C implementation

 0

 200

 400

 600

 800

 1000

 1200

KANN OpenBLAS

E
x
e
c
u
ti

o
n
 t

im
e
 [

s
]

SAXPY (All Dimensions)
SGEMM (64x64x64)

SGEMM (784x64x64)
SGEMM (Others)

(a) Training

 0

 20

 40

 60

 80

 100

 120

 140

KANN OpenBLAS

E
x
e
c
u
ti

o
n
 t

im
e
 [

s
]

SAXPY (All Dimensions)
SGEMM (64x64x1)

SGEMM (784x64x1)
SGEMM (Others)

(b) Inference

Fig. 7: Distribution of execution times of BLAS functions in

KANN benchmark on ARM platform

even Netlib’s reference implementation. To a lesser extent this

is even true when training the neural networks on RISC-V

although all libraries show significantly worse relative results.

The inference case behaves quite differently to the training

as some libraries even lead to a slowdown of the application.

Figure 7 depicts a plausible explanation. It compares the

plain C implementation (“KANN”) to the fastest BLAS li-

brary implementation (OpenBLAS) regarding their cumulative

execution time spent in BLAS functions when running on

the ARM platform. For this purpose, the BLAS wrapper

used by KANN was instrumented. The execution times of

the MLP and RNN benchmarks for each BLAS function

and dimension were summed up. This execution time is

subdivided into calls to SAXPY of all dimensions, the two most

prominent dimensions of SGEMM, and all other dimensions of

SGEMM. In both training and inference, SGEMM accounts for

the overwhelming majority of execution time spent in BLAS

functions. In the inference case (Figure 7b), the two most

prominent SGEMM operations act upon matrices where at least

one dimension is 1. In these cases, OpenBLAS takes about

10% longer than the C implementation (supposably due to the

overhead of the API). In contrast, the most prominent SGEMM

operations in the training case (Figure 7a) act on significantly

larger matrices, where OpenBLAS clearly outperforms the

C implementation. BLIS is slower than all other libraries

in the inference benchmarks, which may correlate with the

lower performance at smaller matrix dimensions in the matrix

multiplication benchmarks (see Figure 3a), and overall lower

vector performance (see Figure 1).

E. BLASFEO

Since BLASFEO is still in active development only the

basic SDOT and SGEMM benchmarks were tested as explained

in Section III-B. Instead of a broad application field we

evaluated different build and execution options provided by

BLASFEO:

• A generic C implementation allows using BLASFEO

even if no architecture-specific optimizations are avail-

able. We used this option to build the library for RISC-

V where this is the case. For comparison two versions

based on this option were created on ARM: One uses

all available compiler optimizations (notably the use of

NEON for SIMD instructions) and one uses the VFPU

but without exploiting NEON (no-NEON in the respective

figures).

• Two optimized builds exploiting BLASFEO’s assembler

implementations and native API were generated. While

one (opt) reflects the default configuration of the library

for supported architectures, the other one (opt-full) in-

creases the amount of inlined assembly routines thus

avoiding some function calls.

• Additionally, we evaluate the use of BLASFEO via its

CBLAS-compatible API.

The results depicted in Figure 8 clearly show that the effort

of manual optimization despite advancements in compilers still

pays off. In the SDOT benchmark all versions including the

one running on the RISC-V platform are within 10% for very

small vector lengths (i.e. ≤ 10). At vector sizes of about 16–

32 four groups begin to form. The generic implementation on

RISC-V is clearly the slowest contender reaching only about

25% of the speed of the fastest solution for the largest vector

size of 1500 elements. The second group consisting of the

two compiler-optimized ARM implementations are able to get

about twice as fast as the RISC-V library. Their almost equal

result shows that GCC was not able to exploit NEON in the

DOT application.

The two assembler implementations with the native BLAS-

FEO API that form the third group calculate slightly over

670 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

 0

 50

 100

 150

 200

 250

 3 4 8 16 24 32 64 100 500 1000

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Vector Size

RISCV: generic
ARM: no-NEON

ARM: generic
ARM: opt

ARM: opt-full
ARM: opt-full CBLAS

(a) Million multiplications calculated per second by SDOT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 4 8 16 32 100 500 1000

1
0

6
 M

u
lt

ip
li
c
a
ti

o
n
s
/s

Square Matrix Dimension

RISCV: generic
ARM: no-NEON

ARM: generic
ARM: opt

ARM: opt-full
ARM: opt-full CBLAS

(b) Million multiplications calculated per second by SGEMM

Fig. 8: Comparison of different build options of the BLASFEO library

200 million multiplications per second for very large vectors.

These two variants perform almost the same in this benchmark

as well as in SGEMM (cf. Figure 8b). Most interestingly though

is the result of the CBLAS-enabled implementation that beats

all others by well over 20%.

The results for SGEMM in Figure 8b are more refined. For

4×4 matrices the performance differences are relatively small

showing well-working compiler optimizations. For bigger ma-

trices, however, the hand-optimized implementations are by

far superior (up to a factor of 6 for very large matrices). The

CBLAS curve might be attributable to the API overhead that

diminishes with bigger dimensions (and becomes negligible

at about dimension 1000). In this benchmark the RISC-V

implementation is able to almost match the compiler-optimized

ARM versions. With smaller matrices the ARM versions are

slightly better, also showing a small drawback when NEON

is not used.

VI. CONCLUSION

In this work, a selection of linear algebra libraries providing

the BLAS interface is evaluated. Compared to related work

(which is, as explained in Section II, at least partly outdated)

our evaluation covers the largest set of open-source BLAS

libraries (see Table I), considers (unlike existing evaluations)

memory consumption as well focuses on embedded platforms

(to the best of our knowledge, it is the first work that evaluates

the performance of general-purpose linear algebra libraries

on the RISC-V architecture). Based on the results of these

evaluations, as presented in Section V, we draw the following

conclusions:

It can be seen from the LINPACK and the inference case

in the KANN benchmark, that in some applications a plain C

implementation may perform better (or at least as good) as an

optimized linear algebra library. The compiler may be able to

automatically optimize these applications to an extent that no

significant additional performance can be gained by a hand-

optimized implementation of the core mathematical opera-

tions. If, however, the application is more complex or uses core

algorithms that cannot yet be automatically vectorized by the

compiler, using optimized libraries can increase throughput.

This can be seen in the matrix multiplication benchmark and

in the training case in the KANN benchmark, both profiting

from fast matrix-matrix multiplication offered by optimized

BLAS libraries.

While in some cases a simple C implementation in combina-

tion with an optimizing compiler might suffice, BLAS offers

a standardized interface to linear algebra functionality. This

facilitates prototyping and modularization, allowing to replace

the performance-critical parts of an application if required. In

most of the benchmarks, the optimized BLAS libraries perform

either better or comparable to a C implementation, thereby

outweighing the slight performance advantage of non-standard

C implementations.

From the results on the relatively new RISC-V target one

can easily motivate further work on ISA extensions (similar

to PULP’s [9] and the proposed standard Vector Extension)

since absolute performance levels are only a fraction of

ARM’s. They also show that generic improvements in libraries

are possibly nullified by increased overhead or unanticipated

working conditions and that architecture-specific optimizations

are necessary to consistently improve results over straightfor-

ward implementations.

While performance is in most cases the distinctive metric

to select computing libraries such as the ones described here,

the aspect of power consumption is of similar importance

to many embedded systems that often run on battery power

and/or have to comply to strict thermal limits. In future work

these potential contradictory properties should be commonly

evaluated.

REFERENCES

[1] BLAST Forum, “Basic Linear Algebra Subprograms Technical
Forum Standard,” https://netlib.org/blas/blast-forum/blas-report.pdf,
2020-06-27, University of Tennessee, Knoxville, Tennessee, Tech. Rep.,
2001.

[2] M. Koehler and J. Saak, “FlexiBLAS - a flexible BLAS library with run-
time exchangeable backends,” https://www.netlib.org/lapack/lawnspdf/
lawn284.pdf, 2020-06-27, LAPACK Working Notes, Tech. Rep., 2013.

[3] F. G. Van Zee and R. A. Van de Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Transactions on Mathematical

Software, vol. 41, no. 3, pp. 1–33, 2015. doi: 10.1145/2764454

CHRISTIAN FIBICH ET AL.: EVALUATION OF OPEN-SOURCE LINEAR ALGEBRA LIBRARIES TARGETING ARM AND RISC-V ARCHITECTURES 671

[4] D. G. Spampinato and M. Püschel, “A basic linear algebra com-
piler,” in Proceedings of Annual IEEE/ACM International Sympo-

sium on Code Generation and Optimization, ser. CGO ’14. New
York, NY, USA: Association for Computing Machinery, 2014. doi:
10.1145/2544137.2544155 p. 23–32.

[5] N. Kyrtatas and D. G. Spampinato, “A Basic Linear Algebra Compiler
for Embedded Processors,” 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), pp. 1054–1059, 2015. doi: 10.3929/ethz-
a-010144458

[6] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl, “BLAS-
FEO: Basic linear algebra subroutines for embedded optimization,” ACM

Trans. Math. Softw., vol. 44, no. 4, pp. 42:1–42:30, Jul. 2018. doi:
10.1145/3210754

[7] G. Frison, T. Sartor, A. Zanelli, and M. Diehl, “The BLAS API of BLAS-
FEO: Optimizing performance for small matrices,” ACM Transactions on

Mathematical Software, vol. 46, no. 2, May 2020. doi: 10.1145/3378671
[8] C. Fibich, S. Tauner, P. Rössler, M. Horauer, M. Krapfenbauer, M. Lin-

auer, M. Matschnig, and H. Taucher, “Evaluation of open-source linear

algebra libraries in embedded applications,” in 2019 8th Mediter-

ranean Conference on Embedded Computing (MECO), June 2019. doi:
10.1109/MECO.2019.8760041 pp. 1–6.

[9] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-
V core with DSP extensions for scalable IoT endpoint devices,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, Oct. 2017. doi: 10.1109/TVLSI.2017.2654506

[10] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1, pp. 3–35, 2001. doi: 10.1016/S0167-8191(00)00087-9

[11] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Transactions on Mathematical Software, vol. 34,
no. 3, pp. 12:1–12:25, May 2008. doi: 10.1145/1356052.1356053

[12] Altera Corporation, “cv 5v4: Cyclone V Hard Processor System
Technical Reference Manual,” https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv 5v4.pdf,
2020-06-27, July 2018.

672 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

