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Abstract—Diet tracking via self-reports or manual taking of
meal photos might be difficult, time-consuming, and discourag-
ing, especially for children, which limits the potential of long-
term dietary assessment. We present the design and development
of a proof of concept of an automated and unobtrusive system
for diet tracking integrating: a) a social robot programmed to
automatically capture photos of food and motivate children, b)
a deep learning model based on Google Inception V3, applied
for the use case of image-based fruit recognition, c) a RESTful
microservice architecture deployed to deliver the model outcomes
to a platform aiming at childhood obesity prevention. We
illustrate the feasibility and virtue of this approach, towards the
development of the next-generation computer-assisted systems for
automated diet tracking.

I. INTRODUCTION

C
HILDHOOD obesity is a major public health challenge

which is associated with the risk of developing seri-

ous life-threatening diseases [1], [2]. In this context, new

computer-assisted technologies can provide useful means to

monitor and manage childhood obesity, as well as influence

health behaviour and lifestyle at early age [3], [4], [5].

Accurate and long-term diet tracking, is of great signifi-

cance in childhood obesity prevention [6]. In this direction,

computerised dietary assessment through food diaries and

self-reports is a common approach [7], [8]. However, major

problems in developed computerised tools are that they place

a significant burden to the user, suffer from recall bias issues,

and rely on technological literacy, often resulting to their

early abandonment [9], [10]. Therefore, more unobtrusive and

automated approaches are intensively required [11], especially

in children, which may have difficulties in articulating their

eating patterns.

In this work, we present the design and development of

a social robot-based platform for automated food recognition,

with the capability to further motivate children to adopt healthy

diet habits. The platform employs a deep learning approach for

fruit detection, based on camera images automatically captured

by a commercially available social robot. The outcomes of

the detection are delivered to a platform aiming at child-

hood obesity prevention, developed within the OCARIoT1

project, via a service-oriented architecture. Overall, this work

1https://ocariot.eu/

Fig. 1. Inception V3 (Source: https://cloud.google.com/tpu/docs/inception-
v3-advanced)

adopts and uniquely integrates enabling computer-assisted

information and communication technologies, such as social

robotics, deep learning and interoperable data communication

interfaces, towards demonstrating the feasibility, usefulness

and virtue of automated dietary assessment for the prevention

of childhood obesity.

II. METHODS

A. Fruit Recognition Model

In a first step, our aim was to train and validate a fruit

recognition model, based on the Google Inception V3 model

[12], which is pre-trained on the ImageNet database. The

Inception V3 model’s architecture is shown in Figure 1.

The fruit recognition model classifies images into one of

two classes—fruits and non-fruits. We gathered food images

from the following sources: ImageNet, Food-101 Data-set2,

UEC Food 256 data-set3 [13] and a data-set found in Zenodo4.

The image-sets were split into two classes (fruits and non-

fruits) and the pictures in the two classes were balanced. There

was a total of 53884 fruit and not-fruit images. The images

were cropped into 299x299 pixel chunks and horizontally

flipped in a stochastic manner. We split the data-set 80%-20%

stochastically.

Inception V3 is a Deep Convolutional Neural Network

(ConvNet) designed for classifying images. Google states

that the model has been shown to attain greater than 78.1%

accuracy on the ImageNet data-set. We extended the model

with the addition of the following layers:

• Average Pooling 2D with pool-size 8x8

2https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
3http://foodcam.mobi/dataset256.html
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Fig. 2. Social Robot setup

• Dropout = 0.4

• Flatten

• Dense layer with 1 node, l2 regularization=0.0005, Sig-

moid activation function, Xavier uniform initializer

The aim of these additions was to additionally train the

model as a fruit classifier. We trained the model using Stochas-

tic Gradient Descent, an optimisation algorithm with good

performance over large data-sets. We utilized the following

hyper-parameters:

• Initial Learning rate=0.01

• Momentum=0.9

• Decreased learning rate to 0.002 after epoch 15 and to

0.0004 at epoch 28

• Trained to binary cross-entropy loss 0.0018.

We used a multiple-crop (10-crop) strategy for classifying

unknown images, where we produced 5 crops for each image

to classify (upper left, upper right, lower left, lower right and

centre), as well as the flipped versions of these crops. We

classified each of these crops, for an image, and kept the

one with the maximum value of the dependant variable (thus

enabling us to identify a fruit in an image that also includes

other unrelated objects).

B. Integration with a Social Robot

We further integrated our food recognition model with a

commercially available social robot, aiming to apply the model

outcomes in real-life and automate the process of food image

recognition. The Anki Vector robot was adopted, which is

equipped with a 720p (1280X720 pixels) High Definition

camera and has additional interesting features, for example,

it is easy to carry, it shows an engaging personality, e.g.,

showing feelings of happiness, sadness, anger, etc., through

eye animations and movement with wheels, it can speak,

display text/images on its display, and it is programmable via

a Software Development Kit (SDK) which we have utilized.

We have developed an application that takes a picture using

the Vector’s built-in camera and passes it to the model for fruit

classification. Upon detection of a fruit, the robot responds

with speech, eye animations and movement, providing reward

Fig. 3. Platform UI

and motivation (e.g., “well done, fruits are good for your

health”, “congratulations for your choice”, etc.). We have used

a similar approach in our previous work with social robots

targeting childhood obesity [14].

To make the robot automatically move towards the food and

capture an image, we implemented a method in which the user

is required to place the robot’s cube, as a reference object,

in front of the food (Figure 2). The software we developed

makes the robot to search for the reference cube and positions

the robot towards facing the food, resulting overall to an

automated food image recognition process with the help of

a social robot, without requiring any significant manual effort

by the child.

C. Software Architecture

Regarding the software architecture, two applications have

been developed: An Angular application for the user interface

and a Django server that provides an API for the application

of the image recognition model and for controlling the robot.

Both Angular and Django come equipped with a command

line tool that can be used to quickly setup an application.

This facilitated the rapid implementation of our prototype.

Regarding the integration of the image recognition model

and the social robot, we adopted a REST microservice archi-

tecture, a new architectural style that structures an application

into a set of small, independently deployable microservices, as

opposed to traditional monolithic approaches. The microser-

vice (tagged ‘Food Tracking’) can store the pictures of the fruit

meals in a database in order to create a data-set that could be

used to update the image recognition model. When the robot

takes a picture of the fruit meal, the image recognition model

is applied in order to identify the presence of a healthy food

(certain varieties of fruit in this case). When the output of the

model is available, the image is sent to the backend software

and then the classification result and the image are correlated

to the user’s id. After the backend has received the image and

the result, the platform’s “dashboard” application is updated

and the user can browse an updated version of their profile.

III. RESULTS

We measured 99.68% accuracy on the validation set com-

prising a total of 10655 fruit and not-fruit images from the

12 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



Fig. 4. Fruit Recognizing Social Robot integrated to OCARIoT

Fig. 5. Recognized as fruit

Fig. 6. Not recognized as fruit

combined data-set mentioned in section II-A, which shows

that fruit recognition through images is an accurate method,

and it could potentially replace tedious self-reports or surveys

for fruit consumption.

The Angular and Django applications for controlling the

functionality of the social robot and utilising the fruit-

recognition model, were integrated within the OCARIoT soft-

ware platform for childhood obesity prevention. A demonstra-

tion of our integrated system is shown in a YouTube video5.

Figure 4 shows the architecture of the OCARIoT Platform with

the social robot application that recognizes fruits integrated. In

Figures 5 and 6 we show correct and incorrect classifications

on fruits from the integrated fruit-recognition social robot

5https://www.youtube.com/watch?v=ZSH-WW-rBjY

system. We have observed that the distance to the target fruit

is the most important indicator for classification accuracy. The

robot managed to identify fruits from a distance ∼ 20 cm. The

apple in Figure 6 was further from the threshold distance.

The Express Gateway, an open source API Gateway which

is based on the Express.js framework, is used to redirect

the client’s requests to the respective microservices through

URL routing. The RabbitMQ message broker is adopted in

order to manage the message queues maintained between

the microservices, thereby facilitating their communication

(for example the food tracking microservice can use account

information derived from the account microservice through

RabbitMQ). RabbitMQ is an open source broker which allows

transport-level security, through the use of the Advanced

Message Queuing Protocol (AMQP), and fast communication

over the Transmission Control Protocol (TCP).

In order for the robot apps to be executed successfully,

the robot must be connected (via WiFi) to the same network

with the computer executing the robot SDK. Both the robot’s

application and the Tensorflow model can be accessed by an

API built using the Django web framework.

IV. DISCUSSION

We presented the design and development of platform for

automated diet tracking based on a programmable social robot,

the application of a deep learning model for fruit recognition,

and the integration of the model outcomes with a comput-

erised system targeting childhood obesity prevention, through

a REST microservice architecture. Our platform constitutes

a proof-of-concept, demonstrating the integration of different

enabling technologies, towards the development of the next-

generation computer-assisted systems for automated diet as-

sessment, which are also capable to motivate individuals to

be more engaged with the acquisition of healthy diet habits.

Through taking advantage of the programmable robot’s in-built

capabilities such as a camera, text-to-speech synthesis and
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eye animations, the predictive capabilities of deep learning,

as well as an architecture which allows extensibility and

interoperability with other software components, our aim was

to develop a novel unobtrusive system requiring minimal user

interactions.

The system developed could be particularly useful for chil-

dren, which may face difficulties in self-reporting diet informa-

tion due to issues related to recall or tedious repetitive user-to-

system interactions. Furthermore, child interaction with other

computerised systems such as mobile phone devices, would be

likely to require parental consent, a good knowledge of using

mobile apps, as well as manual taking of photos which may be

of low quality. In this context, our system differentiates from

previously systems which have been examined [15], [16], [17],

and shows the high potential of the application of significantly

more engaging and automated systems. In particular, social

robot-assisted systems have been demonstrated to be highly

attractive to children and useful [18], [19], which has been a

motivation for following this approach.

Our future work involves the recognition of different cate-

gories of food through social robot-captured images, which

would enable a more holistic approach in accurate dietary

assessment. Furthermore, the addition of speech recognition

in the system would enable dialogue interactions between

the robot and the child, which could facilitate motivation of

children to acquire healthy diet habits or improve system

certainty (e.g., the social robot could ask the child about

a meal in the case of robot’s low certainty in detecting a

specific food in an image, and receive a verbal response).

Moreover, the longitudinal collection of all captured diet

information would reinforce personalised data analytics, which

could indicate behaviours requiring guidance and attention,

or revealing potential risks. The deployment of computational

models and decision support systems has shown promise in

this direction [20]. Finally, a study with children should be

conducted, enabling the evaluation of the platform in real-

world scenarios, e.g. at home, or within educational sessions at

school settings. Furthermore this will allow us to measure the

real-world accuracy of the model on a set of images captured

by the social robot in practical usage scenarios.

In conclusion, we regard social robots as valuable agents

that can support humans in engagement with healthy be-

haviours. To this end, the work presented in this paper is a

step towards automated dietary support of children by social

robots.

ACKNOWLEDGEMENTS

The study was supported by the European Union‘s HORI-

ZON 2020 Programme (2014-2020), under ID no 777082,

and from the Brazilian Ministry of Science, Technology and

Innovation through Rede Nacional de Ensino e Pesquisa (RNP)

under OCARIoT

REFERENCES

[1] M. Shields, M. S. Tremblay, S. Connor Gorber, and I. Janssen, “Abdom-
inal obesity and cardiovascular disease risk factors within body mass
index categories.,” Heal. reports, vol. 23, no. 2, pp. 7–15, Jun. 2012.

[2] I. Vucenik and J. P. Stains, “Obesity and cancer risk: evidence, mecha-
nisms, and recommendations,” Ann. N. Y. Acad. Sci., vol. 1271, no. 1,
pp. 37–43, Oct. 2012, doi: 10.1111/j.1749-6632.2012.06750.x.

[3] E. B. Tate et al., “mHealth approaches to child obesity prevention:
successes, unique challenges, and next directions.,” Transl. Behav. Med.,
vol. 3, no. 4, pp. 406–415, Dec. 2013, doi: 10.1007/s13142-013-0222-3.

[4] A. J. Smith, A. Skow, J. Bodurtha, and S. Kinra, “Health Information
Technology in Screening and Treatment of Child Obesity: A Systematic
Review,” Pediatrics, vol. 131, no. 3, pp. e894–e902, Mar. 2013, doi:
10.1542/peds.2012-2011.

[5] P. W. C. Lau, E. Y. Lau, D. P. Wong, and L. Ransdell, “A Sys-
tematic review of information and communication technology-based
interventions for promoting physical activity behavior change in children
and adolescents,” J. Med. Internet Res., vol. 13, no. 3, 2011, doi:
10.2196/jmir.1533.

[6] E. P. Abril, “Tracking Myself: Assessing the Contribution of Mo-
bile Technologies for Self-Trackers of Weight, Diet, or Exercise,”
J. Health Commun., vol. 21, no. 6, pp. 638–646, Jun. 2016, doi:
10.1080/10810730.2016.1153756.

[7] A. G. Arens-Volland, L. Spassova, and T. Bohn, “Promising approaches
of computer-supported dietary assessment and management-Current
research status and available applications.,” Int. J. Med. Inform., vol. 84,
no. 12, pp. 997–1008, Dec. 2015, doi: 10.1016/j.ijmedinf.2015.08.006.

[8] A. H. Andrew, G. Borriello, and J. Fogarty, “Simplifying mo-
bile phone food diaries,” in Proceedings of the 2013 7th Interna-
tional Conference on Pervasive Computing Technologies for Health-
care and Workshops, PervasiveHealth 2013, 2013, pp. 260–263, doi:
10.4108/icst.pervasivehealth.2013.252101.

[9] S. M. Schembre et al., “Mobile Ecological Momentary Diet Assessment
Methods for Behavioral Research: Systematic Review.,” JMIR mHealth
uHealth, vol. 6, no. 11, p. e11170, Nov. 2018, doi: 10.2196/11170.

[10] D. Lupton, “‘I Just Want It to Be Done, Done, Done!’ Food Tracking
Apps, Affects, and Agential Capacities,” Multimodal Technol. Interact.,
vol. 2, no. 2, p. 29, May 2018, doi: 10.3390/mti2020029.

[11] T. Prioleau, E. Moore Ii, and M. Ghovanloo, “Unobtrusive and
Wearable Systems for Automatic Dietary Monitoring.,” IEEE Trans.
Biomed. Eng., vol. 64, no. 9, pp. 2075–2089, Sep. 2017, doi:
10.1109/TBME.2016.2631246.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
2016, pp. 2818-2826, doi: 10.1109/CVPR.2016.308.

[13] Kawano Y., Yanai K. (2015) Automatic Expansion of a Food Image
Dataset Leveraging Existing Categories with Domain Adaptation. In:
Agapito L., Bronstein M., Rother C. (eds) Computer Vision - ECCV
2014 Workshops. ECCV 2014. Lecture Notes in Computer Science, vol
8927. Springer, Cham

[14] A. Triantafyllidis, A. Alexiadis, D. Elmas, K. Votis, D. Tzovaras, A
social robot-based platform for prevention of childhood obesity, in:
Proc. - 2019 IEEE 19th Int. Conf. Bioinforma. Bioeng. BIBE 2019,
Institute of Electrical and Electronics Engineers Inc., 2019: pp. 914–917.
doi:10.1109/BIBE.2019.00171.

[15] A. Myers et al., “Im2Calories: towards an automated mobile vision food
diary,” 2015, 10.1109/ICCV.2015.146.
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