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Abstract—The rapid growth and distribution of IT systems
increases their complexity and aggravates operation and main-
tenance. To sustain control over large sets of hosts and the
connecting networks, monitoring solutions are employed and con-
stantly enhanced. They collect diverse key performance indicators
(KPIs) (e.g. CPU utilization, allocated memory, etc.) and provide
detailed information about the system state. Predicting the future
progress of those KPIs allows ahead of time optimizations like
anomaly detection or predictive maintenance and can be defined
as a time series forecasting problem. Although, a variety of time
series forecasting methods exist, forecasting the progress of IT
system KPIs is very hard. First, KPI types like CPU utilization or
allocated memory are very different and hard to be modelled by
the same model. Second, system components are interconnected
and constantly changing due to soft- or firmware updates and
hardware modernization. Thus a frequent model retraining or
fine-tuning must be expected. Therefore, we propose a lightweight
solution for KPI series forecasting. It consists of a weighted
heterogeneous ensemble method composed of two models - a
neural network and a mean predictor. As ensemble method a
weighted summation is used, whereby a heuristic is employed
to set the weights. The modelling approach is evaluated on the
available FedCSIS 2020 challenge dataset and achieves an overall
R2 score of 0.10 on the preliminary 10% test data and 0.15 on
the complete test data. We publish our code on the following
github repository: https://github.com/citlab/fed_challenge

I. INTRODUCTION

I
T systems are rapidly evolving to meet the growing demand

for new applications and services in a variety of fields

like industry, medicine or autonomous transportation. This

entails an increasing number of interconnected devices, large

networks and growing data centres to provide the required

infrastructure. Although accelerating innovations and busi-

ness opportunities, this trend increases complexity and thus,

aggravates the operation and maintenance of these systems.

Operators are in need of assistance to be able to maintain

control over this complexity. Therefore, monitoring solutions

are implemented. They constantly collect system KPIs like

latency, throughput, or system resource utilization and provide

detailed information about the monitored IT system. One

particularly important aspect of system monitoring is the

prediction of future system load. Several efforts where made

to enable this ranging from linear regression [1], Bayesian

statistics [2] and neural networks [3].

A precise prediction of future system load enables ahead

of time decision making. An anomaly detection methods can

be employed to compare the difference between the predicted

and the actual state and raise alarms in case of unforeseen

deviations [4]. Furthermore, scheduling decision [5], network

routing and dimensioning [6], data centre cooling control [7]

or predictive maintenance [8] all benefit from precise system

load predictions.

The task of system load prediction can be formulated as a

time series forecasting problem but comes with specific chal-

lenges. First, different KPI types are highly non-uniform. CPU

utilization is usually very volatile, memory allocation is rarely

overlaid by noise and disk read and write operations expose

bursty patterns due to buffering resulting in flat sequences

with sporadic peaks. The concrete pattern of these series

depend of partly unknown external and a variety of internal

factors. There are temporal dependencies night- and daytime

hours or occasional events like Christmas days influencing the

system load. Also, the IT system itself is problematic from

modeling perspective due to their dynamic nature and high

uncertainty. Frequent soft- and firmware updates or hardware

modernization change system properties and usually require

model retraining or fine-tuning. This imposes the requirement

of frequent and fast model adaption.

Related work on time series forecasting is diverse and

ranges from traditional linear or non-linear regression [9],

stochastic methods [10], deep learning models [11] and en-

semble methods [12], [13]. Traditional regressive or statistical

models are often not able to capture the underlying complex

processes while neural networks or ensemble methods suffer

from high complexity and an accompanying high computa-

tional overhead.

Considering this, we present our solution for this years

FedCSIS 2020 challenge [14], which is a model for network

device workload prediction. It combines the overall average

of each KPI series with a prediction from a linear neural net-

work. Furthermore, we employed heuristics to tackle numer-

ical imprecision and enhance overall prediction performance.

Our solution achieved an overall R2 score of 0.105 on the

preliminary 10% test data and 0.15 on the complete test data.

The rest of the paper is structured as follows. Section II

provides a preliminary analysis of the problem and available

training data set. Section III introduces our solution for work-

load prediction. It includes a formal problem definition and

explains each element of our proposed method. An evaluation

is performed and results are presented in section IV. Finally

section V concludes our paper.
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II. NETWORK DEVICE WORKLOAD PREDICTION

This year FedCSIS 2020 challenge [14] was to predict the

future workload of network devices based on past workload

observations. More specifically, the workload of a set of

devices, referred to as hosts, were characterized by KPI series

such as CPU utilization, incoming and outgoing network traffic

or allocated main memory. The data were collected hourly

over a period of 3 months with sporadically missing samples.

Overall, 45 different KPIs were recorded from 3,716 hosts,

whereby the workload of individual hosts was described by

different KPI subsets. Each hourly KPI series sample consists

of seven aggregated measurements. These are the number

of collected samples, the mean and standard deviation, the

first, last, highest and lowest measurement. Out of the seven

aggregations only the mean value must be predicted, resulting

in a possibly multivariate input but univariate output.

The plots in Fig. 1 show four different KPI mean values

from six different hosts. Thereby, the series was split into

weekly windows from Monday until Sunday and arranged

by the hour of the week resulting in ten aggregated weekly

series for each plot. The dark line shows the mean value while

the light line visualizes the 0.95 confidence interval. It can

be observed that KPI series are highly non-uniform, which

indicates the major challenge when faced with forecasting the

expected future values of the KPIs.

III. LIGHTWEIGHT WORKLOAD PREDICTION MODEL

In this section we present our method for lightweight

workload prediction. Its concept and architecture were chosen

based on the previously described observations and analyses

in section II.

A. Preliminaries

We define the task of workload prediction as a time series

forecasting problem. A time series is an temporally ordered

sequence of values X = (Xt(·) ∈ R
d : t = 1, 2, . . . , T ),

where d is the dimensionality of each point. For Xa
b (·) =

(Xa(·), Xa+1(·), . . . , Xb(·)), we denote indices a and b with

a ≤ b and 0 ≤ a, b ≤ T as time series boundaries in order

to slice a given series X0
T (·) and acquire a subseries Xa

b (·).
The variable T defines the time stamp of the last sample of

the past observations. Additionally, we use the notion X(i) to

refer to a certain dimension i, with 1 ≤ i ≤ d. Furthermore,

meta information for each time series value Xt(·) are denoted

as Mt.

The problem of workload prediction is modelled as the

forecasting of a future univariate value XT+w(i), with w ≥ 1,

conditioned on a sequence of past values X0
T (·), and known

meta information about the future time stamp MT+w. There-

fore, the learning objective is to select a function h : RN 7→ R,

where N is the dimensionality of the input, that results in a

small generalization loss:

L =
1

|W|

∑

w∈W

L(h(X0
T (·),MT+w), XT+w(·)). (1)

Thereby, L is a bounded loss function and W is the set of

offsets defining all future time stamps to predict.

B. Lightweight Workload Prediction Model

The overall architecture of our method is depicted in Fig. 2.

A future time series value XT+w(i) should be predicted based

on the history X0
T (·) and its known meta information MT+w.

For the task of workload prediction, each time series X

represents an KPI. The respective dimensions of samples Xt(·)
are aggregated values of that KPI between time t−1 and t. Due

to their importance, we selectively define the mean and last

measurement as xt and x
(l)
t , where xt, x

(l)
t ∈ Xt(·). The mean

value of the sample xT+w ∈ XT+w(·) is the prediction target.

Since many workload series are seasonal, we additionally add

the encoded day of week and hour of day as meta information

MT+w. Subsequently, each model element is described in

detail.

Preprocessing. Initially, a rescaling of each value in the KPI

series X0
T (·) to a fixed upper bound d and a respectively linear

scale to the lower bound is performed. Furthermore, values

in X0
T (·) are expected to be sampled hourly. If samples are

missing, a linear interpolation is employed.

Feature Selection. Due to the additional overhead that is

introduced by automated feature selection methods, we choose

to select a fixed subset of features manually. The features are

selected depending on the model that they are forwarded to.

Therefore, we define a filter F1 for the mean predictor and

a filter F2 for the neural network model (NN). The filter F1

includes only the mean values of X0
T (·). Filter F2 applies

two feature selection operations. First, out of the aggregated

values in the last available series sample, we pick the mean

and last value, i.e. xT , x
(l)
T ∈ XT (·). Second, motivated by

the seasonality of system load, we additionally use the mean

value of the same hour of the week as the prediction target of

previous k weeks.

The Models. The mean predictor calculates the overall

average over the filtered sample series F1(X
0
T (·)). As NN a

linear feed-forward neural network is used. It receives the pre-

processed and filtered data F2(X
0
T (·)), the meta-information

values MT+w and the output of the mean model. These are

combined to a flat input vector x. The learning objective is

to minimize the squared error loss between the prediction and

the mean value of xT+w ∈ XT+w(·):

L = (h(x)− xT+w)
2. (2)

The proposed NN architecture is a fanning out first hidden

layer. The subsequent layers are tampered, which works as

regularization. We use a dropout between the first and second

hidden layer as an additional regularization. A rectifier linear

unit (ReLU) activation is applied to the output value of the

network. The output of the mean model and NN model are

respectively denoted as o
(1)
T+w and o

(2)
T+w.
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Fig. 1. Example of four KPIs for six hosts. A great in-between and within KPI value diversity for the different hosts can be observed.
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Fig. 2. Overall solution architecture.

Ensemble Layer. To combine the predictions of the mean

model and the NN model, a weighted average over the model

outputs is calculated:

oT+w =
∑

o
(i)
T+w

∈{o
(1)
T+w

,o
(2)
T+w

}

wio
(i)
T+w,where

∑

i

wi = 1. (3)

The usage of two models is motivated by the non-uniformity

of KPI series. While the neural network is capable to predict

seasonal series fairly well, it fails to accurately predict constant

but noisy series. A simple average over all mean metrics of

a KPI resulted in good predictions for constant but noisy

series but resulted in bad predictions for seasonal series. By

combining both, we expect to achieve a generally better result.

IV. EVALUATION

Based on the provided dataset, the future progress of 10,000

KPI series must be predicted. Samples are sampled hourly.

This results in a sequence of 168 samples that have to be pre-

dicted for each series. In this section, we evaluate the proposed

method in terms of runtime and prediction performance.

A. Training and Parameterization

KPI series are diverse depending on the type and the host

from which they were collected. Therefore, we choose to train

individual models for each KPI series. The mean predictor

calculates an overall mean over all mean values from the

available three months of data.

Training of the NN requires the definition of a training set.

Therefore, a set of inputs and prediction targets are defined.

The target is always a specific mean value xtp ∈ Xtp(·)
at prediction target time stamp tp ≤ T . The hour of day

m1 ∈ {1, 2, . . . , 24} and day of week m2 ∈ {1, 2, . . . , 7}
are defined as meta information Mtp = {m1,m2}. This

KPI training series slice is defined as Xs
e (·) with e = tp −

((m2 − 1) ∗ 24 + m1) and s = e − 168 ∗ k, where 168
are the hours of one week, s ≥ 0 and k ≥ 1. Thereof,

the mean and last value from the last sample are selected

xe, x
l
e ∈ Xe(·). Further, respecting the seasonality of several

KPI series, the mean value of the same hour of the week as the

prediction target is added to the input. These can be accessed

via {xτ ∈ Xτ (·) : τ = tp − i ∗ 168, i = 1, 2, . . . , k}
To create the training data we set k = 2. For the rescaling,

we define d = 100. Training of the NN is done via backprop-

agatuion on the mean square error as optimization criterion

and Adam as the optimizer. We set the learning rate to 10e−3
and use dropout probability of 0.1.

B. Runtime Analysis

A preliminary runtime analysis is conducted where our

neural network is compared to a recurrent version of it. For the

recurrent network, we use long short term memory (LSTM)

instead of linear cells. We measure the training time per epoch

on a bare-metal machine with an Intel(R) Core(TM) i5-9600K

CPU @ 3.70GHz, 3x32 GB RAM and two Nvidia GeForce

RTX 2080 Titan GPUs whereof one was utilized during the

runtime measurement experiments. Ubuntu 18.04.3 LTS with

kernel version 5.3.0-51-generic is installed as OS and Python

version 3.6.7 and PyTorch version 1.4.0 are used to implement

the networks.

The LSTM version requires significantly more time for

training than the network with linear cells. In comparison,

the runtime increases by a factor of ten. The mean training

runtime per epoch of the linear version is 2.37 seconds per

epoch with a standard deviation of 0.03 and 0.95 confidence

interval of [2.38, 2.37]. For the network version with LSTM

cells a training time per epoch of 25.72 seconds per epoch

is measured with a standard deviation of 0.18 and 0.95
confidence interval of [25.74, 2.70]. Having six training epochs

per series and a total number of 10, 000 series means a total

required training time of 39.5 hours for the linear cells and

17.9 days when using LSTM cells.

Although recurrent neural network architectures especially

with LSTM cells are reported to perform well on sequential

data prediction tasks [15], our runtime analysis shows that

the required training time is very high and considered as

infeasible.
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TABLE I
R

2 SCORES OF BEST THREE SUBMISSIONS TOGETHER WITH THE

BASELINE.

baseline 1st 2nd Ours

Preliminary test set (10%) 0.2267 0.1888 0.1841 0.1053

Complete test set (100%) 0.2295 0.163 0.1515 0.1501

C. Prediction Results

The performance of the proposed workload prediction

method is evaluated against the withheld test set by submitting

the solution via the official FedCSIS 2020 challenge submis-

sion system. The submissions are scored by the R2 score

defined as

R2 = 1−

∑
t(xt − ot)

2

∑
t(xt − x)2

, (4)

where xt ∈ Xt(·) and x as the overall average over all

mean samples. Based on our observation several KPI series

are mainly constant with sporadic deviations, resulting in a

very small normalization value (denominator of in Eq. 4).

This results in high division values and thus, low R2 scores

even for small deviations of the predicted values. These values

had a negative impact on the overall R2 score. Furthermore,

several KPI series can be described as the noise around a

baseline. This motivates us to implement a heuristic to choose

an adaptive weighting of the model outputs. First, the neural

network is trained. Second, the last available week is used as

a prediction target and the data before that week as input.

Since this last week was explicitly trained on, we assume

precise prediction results, i.e. R2 score close to 1. If the neural

network output resulted in a lower score than the output of the

average predictor, we set the weight for the average predictor

to 1.0 and the neural network weight to 0.0. Otherwise, the

both weights were set to 0.5.

Finally, the prediction of the submission is done based on

the k last available weeks in the training data set. The R2

scores of the best three submissions are listed in TABLE I.

None of the submitted results is able to achieve the specified

baseline. Two submissions achieved a better R2 score than our

solution with 0.1888 and 0.1841 on the preliminary 10% of

test data and 0.163 and 0.1515 on the complete test dataset.

With our proposed lightweight model, we achieve an R2 score

of 0.1053 on the preliminary 10% test data and 0.1501 on the

complete test dataset. We did not carry out any attempts to

optimize for the 10% preliminary test data since it was not

clear whether it is a general representation of the complete test

dataset. Therefore, it is interesting to observe that our solution

is the only one achieving a better score on the complete dataset

than on the preliminary 10%.

V. CONCLUSION

We tackle the given challenge of network device workload

prediction based on KPI data with a lightweight model that

ensembles the predictions of a neural network and a mean

predictor. The ensemble is done by a weighted summation.

A heuristic is used to selectively set the weights for each

model prediction. The lightweight nature of the method allows

training individual models for each KPI series respecting the

diverse nature of different KPI types and host. Furthermore,

frequent retraining is feasible with the proposed solution.

We provide a runtime analysis between LSTM cells and

linear cells showing revealing the usage of LSTM cells as

infeasible. We evaluate our solution against the FedCSIS

2020 challenge dataset. The experiment results show that

the lightweight approach predicts future KPI values with an

overall R2 score of 0.105 on the preliminary 10% test data

and 0.15 on the complete test data.

For future work, we see further experimentation with differ-

ent network types like convolutional neural networks or atten-

tion mechanisms as promising. Furthermore, the learning of

the summation weights when aggregating mean predictor and

neural network outputs are sources for potential optimization.
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