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Abstract—Public transport plays an important role in our live.
It is very important to have a reliable service. Up to 1000 km,
trains and buses play the main role in the public transport. The
number of the people and which kind of transport they prefer
is important information for transport operators. In this paper
is proposed algorithm for transport modeling and passenger
flow, based on Ant Colony Optimization method. The problem is
described as multi-objective optimization problem. There are two
optimization purposes: minimal transportation time and minimal
price. Some fuzzy element is included. When the price is in a
predefined interval it is considered the same. Similar for the
starting traveling time. The aim is to show how many passengers
will prefer train and how many will prefer buses according their
preferences, the price or the time.

I. INTRODUCTION

C
OMFORTABLE transportation from one town to another

one is very important. It exists different ways of trans-

portation. The cheaper transport is a railway (excluding the

super-fast with velocity more than 200 km/h), but the trains

are slower. Buses and fast trains are more expensive, but faster.

All this need to be taken in to account, when a transportation

model is prepared. In this paper the transportation problem

is defined as an optimization problem. It is a multi-objective

problem with two objective functions: total time and total price

of all passengers. The goal is to minimize the both objective

functions. The two objective functions are antithetic, the faster

transportation is expensive and the cheaper transportation is

slower. Thus when one of the objective functions decreases,

the other increases. The problem is multi-objective, therefore is

received set of nondominated solutions instead of one optimal

solution. The set of solutions is analyzed and the final decision,

which solution is optimal accordingly with some additional

constraints. The solutions of our problem shows how many

passenger will use the train and how many will use bus and

fast train.

The oldest public transport, among those that are still in

use, is the railroads. Nowdays the main concurrencies of the

trains are buses, especially in the regions with highways. Thus

the models, which can analyze the passenger flow and its

preferences, are important for transportation planning. In our

model we include some fuzzy element, thus we try to make

it more realistic and close to human thinking.

Various transportation models can be found in the literature

[2]. The importance of every of the models depends of its

functions. One of the models are concentrated on scheduling

[1]. Other models are focused on simulation to analyse the

level of utilization of different types of transportation [13].

The model in [10] aims to optimize the transportation network

design. In [5] is modeled freeway traffic flow. When a network

of freeway is is given , their model can predict the traffic flow

with high accuracy. Our model is focused on modeling the

passenger flow according their preferences. The fuzzification

of the model makes it more realistic, more close to the human

thinking. When the price or the time is in some predetermined

interval we accept it as the same. The problem shows the

distribution of the passenger flow and how it changes when

the timetable or type of the vehicles are changed.

The problem is difficult in computational point of view

and cannot be solved with traditional numerical methods with

reasonable computational resources. It is more appropriate to

apply some metaheuristic method on this kind of problems.

We apply ant colony optimization algorithm. The model is

tested on real problem, the passenger flow between Sofia and

Varna, one of the longest destinations in Bulgaria.

The rest of the paper is organized as follows. In section 2

is given an ant colony optimization algorithm. In section 3 the

transportation problem is formulated and an ACO algorithm

which solves it is proposed. Experimental results are shown

and analyzed in Section 4. In section 5 are drawn some

concluding remarks and possibilities for future work.

II. ANT COLONY OPTIMIZATION METHOD

The considered optimization problem (see Section III) is

NP-hard, and therefore we consider the use of a meta-

heuristic search for its solution. Therefore is impractical to be

applied some traditional numerical method. Hereof we apply

Ant Colony Optimization (ACO) algorithm, one of the best

metaheuristics.

The behavior of ants in nature has inspired the creation of

this method. Ants put on the ground chemical substance called

pheromone, which help them to return to their nest when they

look for a food. The ants smell the pheromone and follow the

path with a highest pheromone concentration. Thus they find

shorter path between the nest and the source of the food.

The ACO algorithm uses a colony of artificial ants that

behave as cooperating agents, like ants in the nature. With the

help of the pheromone they try to construct better solutions

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 237–240

DOI: 10.15439/2020F15

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 237



and to optimize them. The problem is represented by a graph

and the solution is represented by a path in the graph or by

tree in the graph. The graph representation is crucial for the

good algorithm performance.

Ants start from random nodes of the graph and try to

construct feasible solutions. When all ants construct their

solution the pheromone values are updated. Ants compute a

set of feasible moves and select the best one, according to the

transition probability rule. The transition probability pij , to

choose the node j when the current node is i, is based on the

heuristic information ηij and on the pheromone level τij of the

move, where i, j = 1, . . . , n. α and β shows the importance

of the pheromone and the heuristic information respectively.

pij =
ταij η

β
ij∑

k∈{allowed}

ταik η
β
ik

(1)

The construction of the heuristic information function de-

pends highly of the solved problem. It is appropriate combi-

nation of problem parameters and is very important for ants’

management. An ant selects the move with highest probability.

The initial pheromone is set to a small positive value τ0 and

then ants update this value after completing the construction

stage [3], [6], [7]. The search stops when pij = 0 for all values

of i and j, which means that it is impossible to include new

node in the current partial solution.

The pheromone trail update rule is given by:

τij ← ρτij +∆τij , (2)

where ∆τij is a new added pheromone and it depends of the

quality of achieved solution.

The pheromone is decreased with a parameter ρ ∈ [0, 1].
This parameter models evaporation in the nature and decreases

the influence of old information in the search process. After

that, a new pheromone is included. It is proportional to the

quality of the solution (value of the fitness function). Several

variants of ACO algorithm exist. The main difference is the

pheromone updating.

Multi-Objective Optimization (MOP) begins in the nine-

teenth century in the work of Edgeworth and Pareto in

economics [11]. The optimal solution for MOP is not a single

solution as for mono-objective optimization problems, but a set

of solutions defined as Pareto optimal solutions. A solution is

Pareto optimal if it is not possible to improve a given objective

without deteriorating at least another one. The main goal of

the resolution of a multi-objective problem is to obtain the

Pareto optimal set and consequently the Pareto front. One

solution dominates another if minimum one of its components

is better than the same component of other solutions and

other components are not worse. The Pareto front is the set

of non dominated solutions related to the solved problem.

After that, the users decide which solution from the Pareto

front to use according additional constraints, related with their

specific application. When metaheuristics are applied, the goal

becomes to obtain solutions close to the Pareto front.

III. PROBLEM FORMULATION

Various problems arise in the area of long-distance pas-

senger transport with a different kind of transport. One of

the problem is optimal scheduling [9], others concern the

optimal management of the passenger flow [12]. In some

developments, it is involved only one type of vehicle [4]. The

common is that all they are difficult in computational point of

view.

Our problem concerns passengers traveling in a same di-

rection, covered with several different types of vehicles, trains

and buses and every one of them can have different price and

speed. The problem is how passengers will be allocated to

different vehicles Let the first stop be station A and the last

stop be station B. There are two kinds of vehicles, trains and

buses, which travel between station A and station B. Every

vehicle has its set of stations where it stops, only the first

station and the terminus are common for all vehicles. Some

of the stations can be common for some of the vehicles. Let

the set of all stations is S = {s1, . . . , sn} and on every station

si, i = 1, . . . , n−1, n is the number of stations, at every time

slot there are number of passengers which want to travel to

station sj , j = i+1, . . . , n. Every vehicle travel with different

speed and the price to travel from station si to station sj can

be different. We fix a parameters k1 and k2. They are used

for calculation of the time and price intervals respectively. If

a passenger have in mind to start his travel at time t he will

chose a vehicle in the interval (t− k1, t+ k1). If a passenger

have in mind to pay for his travel price P he can pay price

from the interval (P, P + P ∗ k2/100). Thus, we include in

our model some fuzzy element with an aim it to become more

realistic.

The input data of our problem are set of stations S, starting

time of every vehicle from the first station, time for every

vehicle to go from station si to station sj , the capacity of

every vehicle, the price for every vehicle to travel from one

station to another one, number of passengers which want to

travel from one station to another one at every moment. Our

algorithm calculates how many passengers will get on every

of the vehicles on station si to station sj at every time slot.

There are two objectives, the total price of all tickets, Equation

3, and the total travel time, Equation 4. If some vehicle does

not stop on some station, we put the travel time and the price

to this destination to be 0.

TP =

M∑

i=1

pi (3)

where TP is the total price, M is the number of passengers,

pi is the price, payed by the passenger i.

TT =
M∑

i=1

Ti (4)

where TT is the total time, M is the number of passengers,

Ti is the traveling time of passenger i.
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TABLE I: Algorithm parameters

ρ 0.5

α 1

β 1

τ0 0.5

number of ants 10

number of iterations 100

The output is the number of passengers in every vehicle in

every station and the values of the two objective functions.

It is NP-hard multi-objective optimization problem, there-

fore we chose a metaheuristic method to solve it, in particular

ACO.

The model is prepared to solve the problem for one direc-

tion. It can be applied to model and optimize transportation

network direction by direction. One of the important points of

the ACO algorithm is representation of the problem by graph.

In our case the time is divided to time periods, N × 24 time

periods correspond to 60/N minutes, thus 2 × 24 = 48 time

periods, correspond to 30 minutes. Every station is represented

by set of N × 24 nodes, showing different time moments

in which a vehicle stops on this station. The pheromone is

deposited on the nodes of the graph. The ants start to construct

their solutions from the first station. If the number of the

passengers from this station is P, the ants chose a random

number P1 from the interval [0,min{P,C1}] and assign this

number to the first vehicle as a number of passengers. To

the next vehicle the interval is decreased with P1. C1 is the

capacity of the vehicle. The number of all passengers getting

vehicle in some time moment is maximal possible. If there is

only one vehicle at this moment the maximal possible number

of passengers gets on this vehicle. We model the number of

the passengers for the next stations by applying probabilistic

rule called transition probability. Our heuristic information is

a sum of the reciprocal values of the two objective functions.

IV. EXPERIMENTAL RESULTS

We have programmed our ACO algorithm in C program-

ming language. After several experiments the algorithm pa-

rameters are set as it is shown in a Table I

We test our algorithm on one real problem, destination Sofia

Varna. The starting station is Sofia, Bulgarian capital and the

terminus is Varna the maritime capital of the country. The

distance between the first and the last station is about 450

km. There are 5 trains and 23 buses which travel from Sofia

to Varna, but they move with different speed, the prices are

different and they stop on different stations between Sofia and

Varna. There are not data available on passenger numbers

therefore we approximate them, taking in to account the

population of every one of the towns where some of the

vehicles stops. 5 trains and 23 buses, with different speed and

price travel between them every day. The stations can differ

for different vehicles.

The Table II and Table III shows achieved solutions by

two variant of ACO algorithm, deterministic and fuzzy re-

spectively. The results in Table II are from our previous work

TABLE II: Experimental results Sofia Varna, deterministic

No Price Time Train

1 51843 25840 1951

2 51797 25842 1952

3 51579 25862 1978

4 51571 25869 1979

5 51563 25870 1980

TABLE III: Experimental results Sofia Varna, fuzzy

No Price Time Train

1 51821 25856 1961

2 51775 25864 1963

3 51565 25873 1991

4 51560 25880 1995

5 51549 25882 1998

[8] where we apply the deterministic variant of the algorithm.

10 ants are used and the algorithm is run 100 iterations. In a

both cases there are 5 nondominated solutions. In every row

are shown the travel price of hall passengers, the travel time

of hall passengers and the sum of the passengers used train.

In the both tables can be seen that the solutions with more

passengers in the train have more traveling time and less price.

The number of passengers used train or respectively bus is

changed if on the same station on the same time there is more

than one transportation possibility for deterministic case. In

deterministic case the difference in number of passengers in

the train comes from long destinations. In fuzzy variant of the

algorithm we observe that the number of the passengers in the

train is more than in the buss comparing with deterministic

case. When the price between the bus and train is similar in

a short destination in the fuzzy case it is perceived as the

same, it is the same for the time, and the passengers chose

bus or train with the same probability. In deterministic case

even the small difference is perceived as a different and the

vehicle with less price has high probability to be chosen by

the passengers which prefer cheaper transportation. Thus we

can explain why in the fuzzy case more passengers chose the

train than in deterministic one.

V. CONCLUSION

Transportation is a very important branch of economics

and our everyday life. The different kinds of transportation

propose different services. Ones are faster, others are cheaper.

The passenger decision depends on his preferences. In this

paper we propose a model of the flow of passengers taking

into account the two main criteria that guide the passengers

in their choice, traveling time and traveling price. Thus the

problem is defined as multi-objective optimization problem

with two objective functions. A fuzzy variant of the model is

proposed. When the prices or times are in a predefined interval,

they are considered equal. Thus the model becomes closer to

human thinking and, from there, more realistic. The proposed

model can help for transport analysis of existing transport. It

can predict the change of passenger flow when some vehicle

is included or excluded and when the timetable is changed.
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Thus the transportation can be optimized and to become close

to the people’s needs. In a future we can include additional

elements in the model like other preferences of the passengers.
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