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Abstract—In this paper, the algorithm for finding a Hamil-
tonian cycle in an intuitionistic fuzzy graph (IFG) is proposed,
based on the theories of intuitionistic fuzzy sets (IFSs) and of
index matrices (IMs). The aim of the paper is to extend the
algorithm to find a fuzzy Hamiltonian cycle (FHC) in an IFG to
the intuitionistic fuzzy (IFHC) using the IFSs and IMs concepts.
An intuitionistic fuzzy graph example about network of Wizz air
airlines is modeled by the extended IM to illustrate the proposed
algorithm. In the paper also are introduced for the first time
three index-type operations over IMs.

I. INTRODUCTION

A
HAMILTONIAN cycle is a cycle through a graph that

visits each node exactly once (see [21]). Determining if

a graph is Hamiltonian is well known to be NP-complete [20].

Dirac (1952, [6]) described some relations between the degree

of the nodes in a graph and the lengths of the circuits contained

in it. Ore, Chvatal and Fan have provided the sufficient

conditions for a graph to be Hamiltonian (see [7], [19], [23]).

Zhao, in 2007, gave better conditions for the existence of

Hamiltonian paths in a graph (see [17]).

Nowadays, some parameters of the graph problem may be

uncertain due to uncontrollable factors. The fuzzy sets (FSs)

of Zadeh appeared in 1963 [18] to deal with this environment.

The first idea of a fuzzy graph was described by Kaufman [2].

Rosenfeld [3] developed the theory of fuzzy graphs in 1975.

Mordeson and Nair have also proposed another concepts in

fuzzy graphs [8]. An algorithm for fuzzy Hamiltonian cycle

in a network using adjacency matrix was proposed by Gani

and Latha [1]. In 1983, Atanassov proposed the IFSs ([9],

[11]), which is an extension of the FSs. The major advantage

of IFS over FS is that IFS separates the degree of membership

and non-membership of an element.

In this paper, it is proposed for the first time two algorithms

for finding Hamiltonian cycle in an intuitionistic fuzzy graph

(IFG), based on the concepts of IFSs and of IMs (see [10],

[12]). The first algorithm is illustrated with an IFG example

about a network of Wiz Air [28].

The rest of this paper is structured as follows: Section 2

describes the related concepts of the IMs, IFSs and IFGs. In the

section 2 also are introduced for the first time three index-type
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operations over IMs. In Section 3, we propose an algorithm

for determining a Hamiltonian cycle in an IFG, based on the

fuzzy algorithm [1], by using the concepts of IMs and IFSs.

The effectiveness of the proposed method is demonstrated by

an example in Section 4. Section 5 outlines the conclusion and

some directions for future research.

II. BASIC DEFINITIONS OF IMS, INTUITIONISTIC FUZZY

LOGIC AND IFG

This section presents some definitions on intuitionistic fuzzy

pairs (IFPs) from (see [5], [11], [15], [25]), on IMs concept

from (see [12], [27]) and on IFG (see [4], [12]).

A. Remarks on Intuitionistic Fuzzy (IF) Logic

The IFP is an object in the form of an ordered pair 〈a,b〉=
〈µ(p),ν(p)〉, where a,b ∈ [0,1] and a+b ≤ 1, that is used as

an evaluation of a proposition p (see [15]). µ(p) and ν(p)
respectively determine the “truth degree” (degree of member-

ship) and “falsity degree” (degree of non-membership). With

two IFPs x = 〈a,b〉 and y = 〈c,d〉 were defined some basic

operations and relations with IFPs

x∧1 y = 〈min(a,c),max(b,d)〉;
x∨1 y = 〈max(a,c)),min(b,d)〉;

x∧2 y = x+ y = 〈a+ c−a.c,b.d〉;
x∨2 y = x.y = 〈a.c,b+d −b.d〉;

¬x = 〈b,a〉;α.x = 〈1− (1−a)α ,bα〉(α ∈ R);
x− y = 〈max(0,a− c),min(1,b+d,1−a+ c)〉

(1)

and relations with IFPs

x ≥ y iff a ≥ c and b ≤ d; x ≤ y iff a ≤ c and b ≥ d;

x ≥✷ y iff a ≥ c; x ≤✷ y iff a ≤ c;

x ≥⋄ y iff b ≤ d; x ≤⋄ y iff b ≥ d;

x = y iff a = c and b = d;

x ≥R y iff R〈a,b〉 ≤ R〈c,d〉,
(2)

where

R〈a,b〉 = 0.5(2−a−b)0.5(|1−a|+ |b|+ |1−a−b|) [5].

B. Definition, Operations and Relations over Extended Intu-

itionistic Fuzzy Index Matrices

Let I be a fixed set. The definition of two-

dimensional extended intuitionistic fuzzy IM (2-D EIFIM)

[K∗,L∗,{〈µki,l j
,νki,l j

〉}] with sets K and L (K,L ⊂I ) is [12]:
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In [12] are defined the following operations

over two EIFIMs A = [K∗,L∗,{〈µki,l j
,νki,l j

〉}] and

B = [P∗,Q∗,{〈ρpr ,qs ,σpr ,qs〉}] : negation, addition-(◦,∗),
termwise subtraction-(max,min), termwise multiplication-

(min,max), transposition, reduction, projection and

substitution. We recall only index type and aggregation

operations, and internal subtraction with IMs.

Index type operations [27]: Index{(minR /maxR)}( 6⊥),ki
(A) finds

the indices of the minimum/ maximum IFFP of the ki-th row

of A with no empty value in accordance with the relations (2).

Index(max µ(ν)),ki
(A) finds the indices of the IFFP of the ki-th

row of A, for which µ(ν)ki,lvx
is maximum.

AGIndex{(minR /maxR)}(/∈F)(6⊥)(6〈0,1〉)(µ 6=0) (A) finds the indices of

the minimum/ maximum element between the elements of A,

whose indices respectively /∈ F or with no empty value, or

not equal to 〈0,1〉, or with non-zero degree of membership

in accordance with the relations (2).

Let us define the following new index type operations:

Index(〈m,n〉)(A) = {〈kw1
, lv1

〉, . . . ,〈kwy , lvy〉, . . . ,〈kwW
, lvV

〉},
where 〈kwy , lvy〉 (for 1 ≤ i ≤ m) are the indices of the elements

equal to the IFP 〈m,n〉 of A.

AGIndex1
{(minR /maxR)}(/∈F)/( 6⊥)/(6=〈0,1〉) (A) determines the index

of the minimum/ maximum element between the elements

〈αk
i ,β

k
i 〉 of K∗ (the first dimension of A), whose indices

respectively /∈ F or with no empty value, or not equal to

〈0,1〉 in accordance with the relations (2).

AGIndex2
{(minR /maxR)}(/∈F)/( 6⊥)/(6=〈0,1〉) (A) determines the index

of the minimum/ maximum element between the elements

〈α l
j,β

l
j〉 of L∗ (the second dimension of A), whose indices

respectively /∈ F or with no empty value, or not equal to

〈0,1〉 in accordance with the relations (2).

Aggregation operations over EIFIMs

We use the operations #q,(q ≤ i ≤ 3) in aggregation

evaluations [26] over IFPs x = 〈a,b〉 and y = 〈c,d〉:
x#1y = 〈min(a,c),max(b,d)〉;
x#2y = 〈average(a,c),average(b,d)〉;
x#3y = 〈max(a,c),min(b,d)〉.

Let k0 /∈ K∗ be a fixed index. Following [12], [26], another

form of the defined aggregation operation in [12] by K is:

αK,#q(A,k0) =

l1,〈α
l
1,β

l
1〉 . . .

k0,
m

#q

i=1

〈αk
i ,β

k
i 〉

m

#q

i=1

〈µki,l1 ,νki,l1〉 . . .

. . . ln,〈α
l
n,β

l
n〉

. . .
m

#q

i=1

〈µki,ln ,νki,ln〉
.

Aggregate global internal operation: AGIO⊕(max,min)
(A) .

Internal subtraction of IMs’ components ([24], [25], [27]):

IO−(max,min)
(
〈

ki, l j,A
〉

,〈pr,qs,B〉) = [K,L,{〈γtu,vw ,δtu,vw〉}],
〈γtu,vw ,δtu,vw〉

=















〈µtu,vw ,νtu,vw〉, if tu 6= ki ∈ K,
vw 6= l j ∈ L;

〈max(0,µki,l j
−ρpr ,qs), if tu = ki ∈ K,

min(1,νki,l j
+σpr ,qs ,1−µki,l j

+ρpr ,qs)〉 vw = l j ∈ L

C. Intuitionistic Fuzzy Graphs (IFGs)

Let A be an IFS over E1 and B – over E2. In [11], [22] are

defined six versions of the Cartesian products of two IFSs.

The concept of the IFG was introduced in 1994 in [4]. Let

us have a fixed set of vertices V = {v1,v2, . . . ,vn}. An (◦)-IFG

G (over V ) is the ordered pair G = (V ∗,A∗), where

V ⊂ V ,V ∗ = {〈v,µV (v),νV (v)〉|v ∈V},

A ⊂V ×V,A∗ = {〈〈x,y〉,µA(x,y),νA(x,y)〉|〈x,y〉 ∈V ×V}

and functions µV : V → [0,1] and νV : V → [0,1] define

the degree of membership (existence) and the degree of

non-membership (non-existence), respectively, of the element

v ∈ V to the set V ; functions µA : E1 × E2 → [0,1] and

νA : E1 × E2 → [0,1] define the degree of membership and

the degree of non-membership, respectively, of the element

〈x,y〉 ∈ E1 ×E2 to the set A ⊆ E1 ×E2; these functions have

the forms of the corresponding components of the ◦-Cartesian

product over IFSs from [11], [22] and for all 〈x,y〉 ∈ E1 ×E2,

0 ≤ µV (x)+νV (x)≤ 1,0 ≤ µA(x,y)+νA(x,y)≤ 1.

The all parameters of the IFG G are IFPs. The expert approach

described in detail in [11] may be used to determine the

distances between any two vertices and the existence of the

vertices of the graph in the form of IFPs.

Now, for the graph G= (V,A) was constructed the Extended

Intuitionistic Fuzzy Graph (EIFG) G∗ = (V ∗,A∗) [12]. It has

the following IM-representation as adjacency EIFIM C:

[V ∗,V ∗,{〈µ(vi,v j),ν(vi,v j)〉}] (3)

=

v1,〈α(v1),β (v1)〉 . . . vn,〈α(vn),β (vn)〉
v1,〈α(v1),β (v1)〉 〈µv1,v1

,νv1,v1
〉 . . . 〈µv1,vn ,νv1,vn〉

...
... . . .

...

vi,〈α(vi),β (vi)〉 〈µvi,v1
,νvi,v1

〉 . . . 〈µvi,vn ,νvi,vn〉
...

... . . .
...

vn,〈α(vn),β (vn)〉 〈µvn,v1
,νvn,v1

〉 . . . 〈µvn,vn ,νvn,vn〉

,

where for every 1 ≤ i ≤ n,1 ≤ j ≤ n: Cvi,v j
= 〈µvi,v j

,νvi,v j
〉

and 〈α(vi),β (vi)〉 are IFPs.
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Proposition 1 In an IFG, if every vertex has exactly two

adjacent vertices, then there exists a Hamiltonian cycle.

The proof of the proposition is analogous to that of [1].

III. ALGORITHMS FOR HAMILTONIAN CYCLE IN AN IFG

Let us be given EIFG G∗ = (V ∗,A∗) with the IM-

representation as EIFIM C with a structure (3). The purpose

is to find the Hamiltonian cycle in G∗. Let us extend the

algorithms for Hamiltonian cycle in a fuzzy graph from [1]

to intuitionistic fuzzy ones, based on IFSs and IMs concepts.

Algorithm 1: Minimum edge degree algorithm to find

intuitionistic fuzzy Hamiltonian cycle

Let us define X [V ∗,V ∗,{〈ρ(vi,v j),σ(vi,v j)〉}]

=

v1,〈α(v1),β (v1)〉 . . . vn,〈α(vn),β (vn)〉
v1,〈α(v1),β (v1)〉 〈ρv1,v1

,σv1,v1
〉 . . . 〈ρv1,vn ,σv1,vn〉

...
... . . .

...

vn,〈α(vn),β (vn)〉 〈ρvn,v1
,σvn,v1

〉 . . . 〈ρvn,vn ,σvn,vn〉

where for i and j: xvi,v j
and 〈α(vi),β (vi)〉 are IFPs.

Let us we create the following auxiliary IMs:

1) S = [V ∗,V ∗,{ski,l j
}], such that S =C i.e.

(ski,l j
= cki,l j

∀ki ∈V ∗,∀l j ∈V ∗);
2)

RC[V ∗,e0] =

e0

k1 rck1,e0

...
...

kn rckn,e0

,

where for 1 ≤ i ≤ n: rcki,e0
= {0,1} depending on whether

the ki-th vertex of the matrix S is crossed out (introduced

in the Hamiltonian path) or not. When the algorithm starts,

rcki,e0
= 0,xvi,v j

= 〈0,1〉 (∀ki ∈V∗,∀l j ∈V∗).
We will propose the algorithm for determining a

Hamiltonian path in G∗, interpreted with the tools of

IMs and IFPs extending the fuzzy algorithm from [1]:

Step 1. Construct the EIFIM C for the given IFG G∗ and

create EIFIM S such that S :=C; Check the condition of the

proposition 1. for the existence of a Hamiltonian cycle in G∗ :

for i = 1 to n then {AGIndex{(minR /maxR)}(µ 6=0) (S) =
{〈kwi

, lv1
〉, . . . ,〈kwi

, lvy〉, . . . ,〈kwi
, lvV

〉}}.
If V < 2 then {the Hamiltonian path does not exist and the

algorithm Stop}

else Go to Step 2}.

Step 2. Search for a minimum IFP in the S with non-zero

membership degree in accordance with the relations (2). If

there are several such elements, then we choose any one.

AGIndex{(minR)}(µ 6=0) (S) = 〈kz, lz〉.
If xkz,lz = 〈0,1〉, then {rc[kz,e0] = 1; S(ki,⊥)}

xkz,lz = 〈1,0〉 {rc[ki,e0] = 1; S(ki,⊥)}; Go to Step 3.

Step 3. If the minimum IFP skz,lz in the IM S does not allow

for a fuzzy Hamiltonian path, then the next higher minimum

IFP is selected.

AGIndex{(minR)}(µ 6=0) (S) = 〈kx, lx〉; Go to Step 4.

Step 4. Identify the kx-th row and lx-th column in the S,
where the minimum IFP appears. We add to Hamiltonian

the vertex lx i.e. from kx it reaches lx. rckx,e0
= rclx,e0

= 1,
xkx,lx = 〈1,0〉 and S is reduced by S(⊥,lx); Go to Step 5.

Step 5. Search for a minimum IFP of the lx-th row, such

that: it forms a fuzzy Hamiltonian path; if the minimum

value occurs more than once, then an IFP is selected for a

Hamiltonian path.

The operation is: AGIndex{(minR)}(µ 6=0)

(

prlx,V ∗S
)

= 〈lx, lu〉;
Then rclx,e0

= rclu,e0
= 1, xkx,lu = 〈1,0〉 and the IM S is

reduced by S(lx,lu).
Step 6. Repeat Step 3 through Step 4 row-wise until

|Index(1)(RC)| = n. With |A| let us we denote the number of

elements of the A, where A is an IM.

If |Index(1)(RC)|= n then an intuitionistic fuzzy Hamiltonian

path with all n vertices of G∗ is found and go to Step 7,

else there is no intuitionistic fuzzy Hamiltonian path and

repeat Step 2 or Step 3 as required.

Step 7. If intuitionistic fuzzy Hamiltonian path exists, then

only one row kl will be left out in the IM S. Select an IFP

with non-zero degree of membership from that row to form

a fuzzy Hamiltonian cycle, if exists. If we can select the IFP

skl ,kz
with non-zero membership degree then {the Hamiltonian

cycle exists, xkl ,kz
= 〈1,0〉 and go to Step 8}

else the algoritm Stop.

Step 8. If |Index(〈m,n〉)(X)|= n, then the optimal Hamiltonian

path is obtained with minimum intuitionistic fuzzy length

according to (2). The IF length of the path is:

AGIO1⊕(max,min))

(

C⊗(min,max) X
)

or AGIO2⊕(∨2)
)

(

C⊗(∧2) X
)

,

where ∨2 and ∧2 are the operations from (1).

For an IFG with n vertices the algorithm visits all the

permutations of the vertices, so the complexity is O(n!).
Algorithm 2 Minimum vertex degree algorithm to find an

intuitionistic fuzzy Hamiltonian cycle

Step 1. We select a vertex vmin,i, whose 〈α(vmin,i),β (vmin,i)〉 is

the minimum IFPs 〈α(vi),β (vi)〉(1 ≤ i ≤ n). (If there is more

than one vertex with same IFP, then choose any one).

Step 2. Select a vertex with IFP whose is next higher to the

minimum IFP 〈α(vmin,i),β (vmin,i)〉.
Step 3. Identify the adjacent vertices of the vertex with

minimum IFP selected.

Step 4. We select the unvisited adjacent vertex of the minimum

IFP 〈α(vi),β (vi)〉(1≤ i≤ n). (If more than one adjacent vertex

has the same minimum IFP, then choose any one vertex).

Step 5. Step 3 – Step 4 are repeated until an IF Hamiltonian

cycle is found else go to Step 1. or Step 2. as required.

This algorithm 2 can be presented with similar

IMs operations to that of algorithm 1, but the oper-

ation AGIndex1
{(minR /maxR)}(µ 6=0) (S) will be used instead

AGIndex{(minR /maxR)}(µ 6=0) (S) . In the algorithm 2, step 3 and

step 4 need to be repeated starting with each vertex of IFG

G∗ to find all possible IF Hamiltonian cycles. We can identify

the minimum length of IF Hamiltonian cycle(s).

IV. AN EXAMPLE FOR HAMILTONIAN CYCLE IN IFG

The part of the airline network of the Wizz air is modeled by

an IFG G∗ = (V ∗,A∗). The vertices of IFG are {Sofia airport

(S), Dortmund airport (D), Viena airport (V), Brussels South
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Charleroi Airport (Br), Barcelona airport (Ba)}. The IFG has

the following IM-representation as EIFIM C[V ∗,V ∗]:

S,〈0.6;0.20〉 D,〈0.75;0.20〉 . . .
S,〈0.6;0.20〉 〈0;1〉 〈0.80;0.18〉 . . .

D,〈0.75;0.20〉 〈0.80;0.18〉 〈0;1〉 . . .
V,〈0.70;0.1〉 〈0,40;0.50〉 〈0,35;0.60〉 . . .

Br,〈0.80;0.10〉 〈0,80;0.10〉 〈0,10;0.90〉 . . .
Ba,〈0.83;0.15〉 〈0.90;0.05〉 〈0.50;0.48〉 . . .

. . . V,〈0.70;0.1〉 Br,〈0.80;0.10〉 Ba,〈0.83;0.15〉

. . . 〈0.40;0.50〉 〈0.80;0.10〉 〈0.90;0.05〉

. . . 〈0.35;0.60〉 〈0.10;0.90〉 〈0.50;0.48〉

. . . 〈0;1〉 〈0.38;0.60〉 〈0.75;0.20〉

. . . 〈0.38;0.60〉 〈0;1〉 〈0.45;0.50〉

. . . 〈0.75;0.20〉 〈0.45;0.50〉 〈0;1〉

.

The IFPs, presented the vertices and the edges of G∗

are calculated using the expert approach [11]. Each of the

experts is asked to evaluate the degree of membership of IFP,

corresponding to every vertex using the ratio of the air distance

to all destinations from it to the total air distance of all the air

roads. The minimum degree of membership proposed by the

experts for the respective vertex is the degree of membership

for this vertex. The degree of non-membership of the vertex is

calculted as 1-maximum degree of membership, proposed by

the experts. The approach to calculating the IFP for the length

of each edge is similar. Each expert estimates the degree of

membership of IFP, corresponding to every edge using the

ratio of the air distance between two cities to the total air

distance of all the air roads in the map of Wizz air. Let us

find a Hamiltonian cycle in the G∗ using the algorithm 1:

Step 1. Let us create EIFIM C for the given IFG G∗. Then we

create IM S such that S :=C. The condition of the proposition

1 for the existence of a Hamiltonian cycle in G∗ is met.

Step 2. The minimum IFP in the S with non-zero member-

sheep degree is sD,V = 〈0.35;0.60〉.
Step 3. The minimum IFP in the S represents that from

Dortmund airport it reaches Vienna airport.

Step 4. In the row “V” the minimum IFP is equal to

〈0.38;0.60〉 = sV,Br. Therefore from Vienna airport it goes to

Brussels South Charleroi Airport.

Step 5. Repeat Steps 3-4, the path obtained is: D-V-Br-Ba-S.

Step 6. From the row “S”, select the element sS,D =
〈0.80;0.18〉 with non-zero membership degree to get an IF

Hamiltonian cycle “D-V-Br-Ba-S-D.” The IF length of the path

is: AGIO1⊕(max,min))

(

C⊗(min,max) X
)

= 〈0.9;0.1〉.

V. CONCLUSION

In this paper it was developed new methods to obtain the IF

Hamiltonian cycle in an IFG, using the IFSs and IMs concepts.

The main contribution of our approach lies in its ability to find

a Hamiltonian cycle not only in a clear but also in an uncertain

environment. The proposed algorithms can be generalized to

multidimensional intuitionistic fuzzy data [13]. The efficiency

of the first algorithm was demonstrated by a real data example

from the selected network map of Wizz air. In the paper also

was defined three index type operations over EIFIMs. In the

future, we will extend this algorithm for an application to the

interval-valued intuitionistic fuzzy graphs [14].
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