
Introducing LogDL – Log Description

Language for Insights from Complex Data

Maciej Świechowski

QED Software, Warsaw, Poland

Email: maciej.swiechowski@qed.pl

Dominik Ślęzak

Institute of Informatics

University of Warsaw, Poland

Abstract—We propose a new logic-based language called Log
Description Language (LogDL), designed to be a medium for the
knowledge discovery workflows over complex data sets. It makes
it possible to operate with the original data along with machine-
learning-driven insights expressed as facts and rules, regarded as
so-called descriptive logs characterizing the observed processes in
real or virtual environments. LogDL is inspired by the research
at the border of AI and games, precisely by Game Description
Language (GDL) that was developed for General Game Playing
(GGP). We emphasize that such formal frameworks for analyzing
the gameplay data are a good prerequisite for the case of real,
“not digital” processes. We also refer to Fogs of War (FoW) –
our upcoming project related to AI in video games with limited
information – whereby LogDL will be used as well.

I. INTRODUCTION

C
OMPUTER languages have played crucial role in the

way how people use computers and interact with them.

The most common types of languages are general-purpose

programming languages such as Java or C++, query (data

manipulation) languages such as SQL, which are often domain

specific, and description (markup) languages such as XML.

In this paper, we present a new language – Log Description

Language (LogDL). The term “Log” was chosen deliberately

as it refers to both logic, because LogDL is logic-based,

and logs, i.e. information obtained from and about some

process (a network activity, a video game, etc.). This ambiguity

accentuates the fact that LogDL is perfect for representing

both the static knowledge stored in a form of database and

dynamic knowledge, i.e. new insights, inferred dynamically by

reasoning mechanisms based on AI, logic, machine learning

(ML) as well as computational intelligence (CI).

LogDL allows us not only for richer data representation – in

terms of descriptive logs (d-logs in short) – but also for formal

logical reasoning, spatio-temporal analysis and interactions.

Because we keep LogDL as human-friendly as possible, it

may be used to guide the discovery algorithms as well as for

preferences specification, complex querying, data labelling and

augmentation. It is also designed to be evolvable to make it a

good fit for large-scale evolutionary algorithms (EA).

Modern knowledge discovery approaches need to deal with

large multimodal process-related and spatio-temporal data

sources such as games, sensors, monitoring, UI controllers, etc.

This work was co-financed by EU Smart Growth Operational Programme
2014-2020 under GameINN project POIR.01.02.00-00-0184/17-00.

Though the original data shall remain unstructured or multi-

structured, the layer of insights can take a form of collections

of well-established facts, rules and formulas expressed in

LogDL – the aforementioned d-logs describing the observed

processes and activities in real or virtual environments. Figure

I illustrates the usage of LogDL and how it can be involved

in various data-related operations and activities.

LogDL provides building blocks (e.g. facts, operators, rules)

which algorithms may use, constraints (expressed by means

of e.g. domains and rules) within which they operate and

some built-in concepts such as time that can be interpreted

automatically. Any language that is not text-based, e.g. with

dynamic elements, needs a dedicated interpreter. LogDL has

a few dynamic elements – already-mentioned rules and oper-

ators, interactive querying and logical reasoning based on a

current knowledge base. In automated scenario, an interpreter

is used by algorithms that can operate with a much higher

rate than humans. Therefore, we take into consideration yet

another aspect – any constructs having negative impact on

performance of LogDL interpreters must be avoided.

In summary, LogDL shall enable us to: 1) be both human-

friendly and computer-friendly (like scripting languages); 2)

represent knowledge, e.g. from diagnostic logs, in a structured

way (like SQL or Game Description Language – GDL); 3)

perform analytical queries directly in LogDL (like in dedicated

software for analytics) and represent results of those queries;

4) perform logical reasoning (like in Prolog); 5) enrich the data

by custom rules and facts that can be formulated directly in

LogDL; 6) provide a framework for AI/ML/CI-based knowl-

edge discovery algorithms (like numpy in Python).

The paper is organized as follows. Section II outlines the

related works. Sections III-IV are devoted to GDL and its

limitations. Sections V-VII introduce some of fundamental

notions related to LogDL. Sections VIII-IX are devoted to

potential applications of LogDL in video games and “real

world”. As this is the first article about LogDL, we let these

sections occupy its significant portion in order to motivate

a new language. Section X concludes our work with some

open questions and comments. More in-depth specifications

and properties will be published in future papers.

II. RELATED WORK

The most closely related work concerns GDL that has inspired

us to develop LogDL. GDL was proposed as a way to represent

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 145–154

DOI: 10.15439/2020F168

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 145



Fig. 1. The usage of LogDL from the data and knowledge processing perspec-
tives. It stands as a medium to represent insights (in form of d-logs) derived
from the original data, store them in a way which is efficiently integrated with
that data and provide the means for human-computer interaction.

game rules [1]. We devote Section III entirely to it. GDL has

been used to this day in the aforementioned GGP research. It is

a first-order logic language that is heavily inspired by Datalog

which is a logical database language [2]. GDL and Datalog

are similar to each other, although not equivalent because GDL

has constructions that are not a part of Datalog syntax.

One can emulate Datalog in Prolog [3], although these

languages use different semantic conventions. A conversion to

Prolog requires three things. Firstly, the notation is different,

so each GDL element must be mapped to a Prolog counterpart.

Secondly, additional code has to be written in Prolog to handle

game-specific logic. Thirdly, there are special cases of negation

that are handled differently in Prolog and GDL, so they have to

be rewritten for Prolog. There have been numerous extensions

to Datalog proposed, such as e.g. Datafun [4] – a functional

oriented version and Dedalus [5] which is aimed at rich

distributed services and tests for correctness.

Such languages as e.g. Ludemic-GDL [6] and Answer Set

Programming [7] were proposed as well. Generally, GDL is

a significant step forward as it allows to deal with the afore-

mentioned game rules in an abstracted way decoupled from

any particular game. It made it possible to create universal

game-playing programs that accept games as input parameters.

Nevertheless, GDL was used only in research so far.

We designed LogDL with the aim of taking the best from

GDL and optimizing the rest to make it useful for the game

industry and “real-world” applications. The usefulness of a

language is often reflected in how efficient interpreters or

compilers can be developed. Works such as [8] focus on

the process of creating such interpreters and provide a good

source of knowledge about GDL-style languages too. In [9],

the performance of a few interpreters is compared.

Outside of the game research, there are commercial data

analytics solutions such as e.g. Splunk [10]. These are services

designed for a different purpose than LogDL, although it

is certainly worth combining those two conceptual layers of

data processing and reasoning to create efficient AI pipelines.

Additionally, it is worth comparing some ideas of LogDL to

those behind Complex Event Processing (CEP) [11].

LogDL is a logic-based language with a built-in reasoning

mechanism. There exist commercial logical languages such

as the already-discussed Prolog or 4QL [12]. Most of our

comparison between GDL and LogDL translates to those

languages as they are symbolic-based. From the perspective

of Fogs of War (FoW) – our upcoming project related to AI

in video games with limited information – it is also useful to

look at some formal frameworks utilizing e.g. 4QL to reason

about unknown and inconsistent situations [13].

There are numerous formal representations of insights deriv-

able from the complex data. Let us mention about GVGDL –

one more extension of GDL aimed at dealing with video games

[14]. One may think about it as a step toward modelling “real

world”, though it still refers to “digital reality”. There are also

attempts to adapt spatio-temporal logics to model machine-

generated processes, e.g. network events [15].

Last but not least, we shall refer to a collection of inspiring

use-cases and potential applications of LogDL that revolve

around learning new concepts and extracting new knowledge

through logical reasoning, association rule mining as well as

applying search-based and learning-based methods to con-

struct new LogDL-based rules and facts. Such rules and facts

constitute new knowledge that can be used for prediction,

approximation and explanation [16]. This kind of strategy fits

well into some of hot trends in AI, such as e.g. metaconcept

learning and neuro-symbolic machine learning [17].

III. GAME DESCRIPTION LANGUAGE

GDL includes predefined keywords: role, init, true, next, legal,

does, terminal, goal, distinct. Most of them can be treated as

domain-specific extensions required to build a forward-model,

i.e. simulate a game. When a GDL program is interpreted at

run-time, facts can appear in three ways [18]:

• Constant facts are defined directly in the GDL code and

they are considered true for the whole game. They can

be regarded as “the laws of physics”.

• State facts are parts of dynamic game states. They are

initialized by init rules. They are cleared in each game’s

step, their new set is derived by next rules.

• Temporary facts are produced by non-keyworded rules.

The set of such facts is derived dynamically. They are

needed only temporarily in the logical resolution process

initiated by one of keyworded rules.

In GGP, GDL is written using prefix Knowledge Interchange

Format (KIF). It can also be represented by infix KIF or Lisp

S-expressions. They are all syntactically equivalent.

A. Facts

On the top-most level, any GDL transcript consists only of

facts and rules. For instance, the fact that a soldier a with

146 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



rocket launcher is present in region denoted by coordinates 2
and 3 could be defined using the following form:

(region 2 3 soldier rocket_launcher)

This is a proposition with symbols. The first symbol denotes

the proposition’s name. The remaining ones are arguments

(also called attributes). Each proposition with the same name

must have the same number of arguments. A proposition can

be viewed as relation, i.e. all symbols together are in relation.

There cannot be multiple facts with exactly the same symbols.

Such facts would be interpreted as a single one.

GDL allows for nested facts, e.g “(weapon silver sword)”

below describes a weapon of a soldier:

(soldier1 2 3 (weapon silver sword))

Symbols have no type – they are all plain text. Apart from

predefined keywords, symbols have no meaning – their inter-

pretation is purely due to humans. In particular, game rules in

GGP are often obfuscated in order to avoid any game-specific

reasoning based on the choice of words, e.g. board. Game

mechanics do not change if each unique symbol that is not a

keyword is consistently changed to another one.

B. Rules

A rule in GDL can be specified as follows:

(<= (empty_region ?x ?y)

(true(region ?x ?y soldier ?weapon))

Rules are defined using the <= operator. The first proposition

after it is the consequence. A rule is true or false. In addition

it may produce results in form of facts that become true. The

consequence defines a structure of such facts.

The remaining propositions are conditions that have to be

satisfied in order for the rule to hold. Conditions, in contrast

to facts defined directly in GDL description, can contain

variables denoted by a symbol starting with ?. The variables

are substituted by constant symbols in the resolution process.

For example, ?x and ?y variables will be substituted by

symbols 2 and 3, if the following fact holds:

(region 2 3 soldier <anything>)

If many facts of type region satisfy the query, then there will be

many variable bindings produced. GDL realizes the variable

unification property: variables with the same name receive

the same bindings in the rule’s scope. This rule would only

consider regions with coordinates equal to each other:

(<= (empty_region ?x ?x)

(true(region ?x ?x soldier ?weapon))

Conditions may refer to other rules. Facts may be true either

through explicit specification or through rules, e.g.:

(cat lion)

(<= (cat ?y) (true(mammal ?y)

(true(domestic ?y)

(true(not(dog ?y))

The complete game world is defined by propositions which are

true. There exists the completeness property which means that

everything what cannot be derived as true from the available

rules and facts at particular moment is false. Thus, GDL

follows so-called closed world assumption.

IV. LIMITATIONS OF GDL

Although GDL became useful in the game AI research, it has

several drawbacks that hamper its wider usage. We point out

the major limitations of GDL that have inspired us to develop

LogDL in order to make it more applicable.

A. Poor Interpretation Performance

This is one of crucial limitations of GDL to make it more

applicable in the AI workflows. The fastest GDL interpreters

are based on Prolog and propositional networks [19] which

instantiate all possible variables and lead to massive structures.

There are cases (e.g. bigger games in GGP) in which the

propositional network representation is totally infeasible.

Simulations of games in GDL are usually significantly

slower than those performed by dedicated implementations.

One of the reasons is that GDL is purely symbolic language.

There are no built-in types that allow for taking advantage of

CPU optimizations. Every piece of logic has to be written as

GDL rules, whereas some aspects could be implemented more

efficiently using a lower level language. Many well-established

algorithms cannot be implemented efficiently because of lack

of data structures such as heap, priority queue, etc.

A good example is lack of simple integer comparison

operator. In GDL, it is usually implemented as follows:

(succ 0 1) (succ 1 2) (succ 2 3)

(<= (greater ?a ?b) (succ ?b ?a))

(<= (greater ?a ?b) (distinct ?a ?b)

(succ ?c ?a)

(greater ?c ?b))

B. Lack of Continuous Domains and Infinity

Another consequence of GDL being a symbolic language is

that it cannot deal with continuous domains such as real num-

bers. For instance, it is not possible to define multiplication

on real numbers, as it would require to define all possible

results. There is no way of emitting new symbols that would

represent the results of such operations and, even if the was,

the algorithm of multiplication would have to implemented

from scratch purely based on symbolic logic.

C. Lack of Stochasticity

GDL suits finite, deterministic and synchronous games. Ac-

cordingly, each rule in GDL is deterministic. It is either true

or false given the current state. There are is no concept of

randomness and no random number generators. It is debat-

able whether the world is deterministic or not, nevertheless,

stochasticity and fuzziness are useful in modelling many real

world phenomena. Moreover, there are many video games with

randomness and incomplete information.

MACIEJ ŚWIECHOWSKI, DOMINIK ŚLĘZAK: INTRODUCING LOGDL—LOG DESCRIPTION LANGUAGE FOR INSIGHTS FROM COMPLEX DATA 147



Fig. 2. Basic elements of LogDL.

D. Lack of Time-based Reasoning

In GDL, the term “synchronous” means that all players

submit their actions simultaneously and then the game state is

updated. Such updates are performed in consecutive frames.

There is no notion of continuous time flow. We can tell that

some fact appeared later than the other, but we cannot tell

when exactly it happened and how much time have elapsed.

There is no concept of time interval between frames.

E. Issues with Advanced Algorithms

Symbolic description without reflection, types and metadata

is not well-suited for more sophisticated algorithms. For

instance, let us consider the problem of rule evolution –

quite important in the game industry and e.g. process mining

– which could be achieved using evolutionary algorithms

(EA) [20]. Consider a specific case of mutation operator that

randomly perturbs a value of a certain argument. Such operator

would greatly benefit from having a domain to choose values

from. GDL does not support numerical domains.

As another example, crossover operator could replace a

rule’s condition to a different one that fits it. However, in

GDL it is hard to determine whether a condition “fits” – there

is nothing that could be tested against the existing rules for po-

tential variable unifications. Moreover, such replacement could

result in unexpected behavior such as a long computational

time or even an infinite loop because of recursion without a

proper stop condition. In GDL, there are no control statements

such as IF and recursion caused by the interplay of rules and

conditions terminates only when all its branches are evaluated

as false at some point in the resolution process.

That said, programs written in generic programming lan-

guages such as C++ can be even more difficult to manipulate

by EA, for different reasons. Although there are classes and

types, there are too many degrees of freedom in how the

code can be constructed. We believe that the GDL structure

with rules, facts and conditions would be suitable for EA-style

manipulation if only the language was extended by additional

metadata. This is one of inspirations for LogDL.

F. Bloated Description

Due to lack of domain-specific operators the reasoning perfor-

mance can be higher compared to programs in general purpose

languages. GDL descriptions can be also extensive if they rely

on concepts that are not easy to map to logical rules.

V. LOG DESCRIPTION LANGUAGE

In this section, we outline some selected ideas behind LogDL.

Whenever useful, we do it in comparison to GDL. Figure

2 depicts the components of our new language. Operators,

domains and types are distinguished using colors because they

are not present in GDL. Symbols are similar to thosw in

GDL. Symbols for arguments can either be constants (fixed

literals) or variables (starting with “?”). Names can only be

fixed literals and they are subject to additional uniqueness

constraints, e.g. in order to avoid rules and operators with

the same names or other kinds of ambiguities.

A. Facts

Facts in LogDL are similar to the GDL ones. However, we

simplified the notation to make it more similar to the JSON

notation and we also introduced metadata for arguments. The

metadata consists of the argument’s name and domain over a

type, so type is indirectly part of metadata too. Domains are

discussed in the next subsection. Names can be declared in a

few ways, e.g. globally with simple configuration.

In GDL, arguments are specified in order of appearance,

both in queries (conditions) and in implicit definitions. In

LogDL, arguments can be addressed by name. The name is

mapped onto the corresponding argument’s index. Unnamed

arguments are mapped onto those that have not yet been

mapped. Here are equivalent fact definitions in LogDL:

1: region{2 3 soldier sword}

2: region{x: 2 y: 3 unit: soldier

weapon: sword}

3: region{x: 2 3 soldier sword}

4: region{y: 3 2 soldier sword}

5: region{weapon: sword 2 3 soldier}

6: region{weapon: sword y: 3 x: 2 soldier}

7: region{x: 2 3 weapon: sword soldier}

To avoid ambiguity, i.e. which fragment is part of name or

value of a specific argument, there are lows regarding a use

of quotation marks and how interpreter reads characters.

The names of arguments are part of metadata. Figure 3

shows a simplified way how the data can be attributed to

a particular type of fact. It also puts forward the idea of

decoupling names from the data. In the implementation of

LogDL, there will be optimizations for data storage such as

using hash functions for logical reasoning purposes and indices

that increase the performance of the expected queries.

B. Domains

Domains are associated with arguments of facts, i.e. the

allowed range of their possible instantiations and the whole

148 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



Fig. 3. Data and metadata stored for a given type of facts.

facts (complex domains). A domain is defined over a specific

type. The following types are possible in LogDL:

1) Basic types – integer, double, boolean, char, string.

2) Complex types – tuples of other types, e.g. (integer, in-

teger). They can be implicitly created by rules producing

facts with the respective types of arguments used.

Types have to be defined as part of metadata description. Do-

main specifications are optional. If domains are not specified,

then LogDL interpreters will make educated guess based on

the data and arguments’ usage. Boolean domain comprises

always of two values: true, false. For numerical types such as

integer, double, char (0-255), domains are defined by:

• The minimum and maximum values.

• Whether min/max values are included or excluded.

• Stride, i.e. distance between consecutive values (for inte-

ger and char it must be an integer number).

Domains can be also defined by the sets of allowed and

disallowed values. If a symbol appears in both above sets,

then it is considered disallowed. For numerical types, such set

specifications can be combined with the range definitions. For

example, we can consider a domain that has integer values

from the [0, 10] interval, but excluding 2 and 3.

Types and domains are part of LogDL for two main reasons:

1) They enable to introduce operators that work with spe-

cific types, which in turn allows for optimized imple-

mentation. Low performance, especially in case of math

operations, is one of the main limitations of GDL.

2) They mimic what is called reflection in programming

languages. A formalized structure enables us to use the

AI/CI techniques that operate on the LogDL description,

in particular search-/population-based EA methods.

C. Operators

Operators in LogDL can be treated as predefined functions.

They are not present in GDL and we have already discussed

why we believe they are important. The idea behind them is

to perform certain operations more efficiently than by generic

symbol manipulation and to be able to extend our language

with a specialized application-specific logic.

LogDL is designed to be easily extendable by functions

that can be used as conditions for rules. We are not saying

that the language schema is extendable but rather a way the

things are computed. This is a practical approach that also

plays along with using LogDL in automated AI pipelines.

Operators (just like rules) are building blocks to be used by

the AI/CI algorithms, in particular EA approaches. Due to the

introduction of domains and types, the algorithms can be aware

of the context in which a particular operator is used.

Operators may use variables, facts or results of other oper-

ators as input parameters. The user specifies types for inputs

and outputs. From LogDL point of view, the implementation

is treated as a black-box. There are two categories:

1) Built-in operators have reserved names, i.e. keywords,

in the LogDL language. By the standardization, their

implementation has to be already provided by a LogDL

interpreter. They are ready to be used.

2) Custom operators are not part of the standard. They can

be declared and implemented as third-party extension to

the interpreter for specific application.

Examples of built-in operators are: logical (conjunction, al-

ternative, negation, etc.), fact-related (count, top N, getArity,

etc.) and mathematical (+, −, square root, mean, etc.).

LogDL is still in its R&D phase, so the list of operators

will continue to grow. Custom operators are provided to the

LogDL interpreter by code that is compatible with the par-

ticular interpreter implementation. For example, if an already

compiled interpreter is used e.g. as .NET Assembly or C++

library on Windows, then a dynamic link library (DLL) with

the custom operators implementation should be provided.

D. Time and Data Organization

In contrast to GDL, LogDL includes the notion of time. It is

defined by the reserved fact with the name “time”, which has

one argument of type double. For example:

time{5.0}

This is a time-stamp. It makes sense only if certain assump-

tions are made about the process that LogDL describes.

As GDL followed some constraints required to build a

simulator of a game written in it, LogDL uses its specific

conventions as well. First, it is assumed that LogDL is used

to express the knowledge from and about processes. This suits

use-cases that will be outlined in further sections.

Second, it is assumed that the process states are grouped

within so-called activities. The concept of time is valid within

the scope of the activity. Examples of activities can be: a game

session, logs from a networking device, changing prices of

specific stocks, health data of a specific patient. Any activity

is described by a changing state in time. Another way to in-

terpret activity is the correlated data observed chronologically.

It enables to perform causal inference between events that

MACIEJ ŚWIECHOWSKI, DOMINIK ŚLĘZAK: INTRODUCING LOGDL—LOG DESCRIPTION LANGUAGE FOR INSIGHTS FROM COMPLEX DATA 149



Fig. 4. Simple example of a rule in LogDL.

happen within the activity. There is a strong analogy between

an activity and a Markov Decision Process [21].

Activities are grouped together within so-called worlds.

With worlds, general rules (i.e. law of physics) of certain

process are associated. For example, a world can denote a

particular game, map in the game or a specific type of a

networking device (e.g. router). The idea is that the data within

the same world but distinct activities can be used to find

patterns and extract knowledge about the process.

VI. RULES IN LOGDL

Rules are valid in the scope of worlds. Each rule consists of

the following three parts: conditions, implication parameters

and results. LogDL rule’s structure is as follows:

(conditions) =>

[implication_parameters]{results}

The respective parts are distinguished with different colors in

Figure 4. Implication parameters are optional to specify – there

are default values in our LogDL language.

A. Conditions

In LogDL, conditions are either fact propositions, like in GDL,

or operators that specifically return a boolean value. This is

new compared to GDL. Facts and operators used as conditions

may contain variables. Each condition is evaluated as true

or false. If it contains variables, it provides instantiations

(bindings) of those variables just like in GDL.

There are certain constraints imposed on rule conditions,

which makes reasoning simpler and potentially faster. Condi-

tions are checked in the order they are defined. Each condition

may introduce new variables and use the already introduced

ones. Naturally, a condition may be just a check, i.e. without

any variables at all. The introduced variables are those with

names that have not been used so far by conditions checked

earlier. We refer to Table I to see how introduction of variables

and their usage in conditions is defined. Variables in boldface

are the ones that are introduced by a condition. The results of

checking conditions in LogDL are:

• A boolean value indicating whether conditions as a whole

are evaluated as true or false.

• If true: a list of records satisfying all variables.

Let us now list constraints that allow us for efficient implemen-

tation of LogDL interpreters. They are imposed on conditions

starting from the second one in the order of appearance:

1) Operators cannot introduce new variables. However, they

can use the already existing ones.

2) Conditions defined by facts should either: a) use at least

one already introduced variable; b) do not have variables

at all; c) have only one valid instantiation.

B. Results

This part of our language is analogous to GDL, i.e. it consists

of specification of facts that become true if the rule is

satisfied. The produced facts can include constants and any

variables that have been introduced in the previous subsection.

Implication parameters that are discussed below define the

probability and time constraints, i.e. “from when” and “for

how long” the results are considered true.

C. Implication Parameters

This aspect is new compared to GDL. It is a construction that

describes additional context how results are created. All such

parameters have default values in order to allow for concise

expressions. They consist of the following elements:

1) resultStartTime is the expected delay time between the

moment when conditions are met and results are pro-

duced. It is measured in the same units as LogDL’s time.

The default value is equal to 0.

2) length is the time that results are expected to hold, i.e.

from resultStartTime to resultStartTime + length. This

can be set to a real value or two special values UPKEEP

and PERSISTENT. UPKEEP denotes that the rule effects

will hold as long as its conditions do. The PERSISTENT

option denotes that the rule effects will be persistent in

the scope of the context the rule is launched.

3) chance is conditional probability. If conditions are met,

then results will be produced with probability equal to

this value. The default is 1, i.e. if not specified otherwise,

rules will always produce results immediately and results

will be valid as long as conditions are valid.

We may also consider a fuzzy component, e.g. by reserving the

first argument of each fact as its satisfaction degree ∈ [0, 1]. In

contrast to purely symbolic GDL, LogDL could handle fuzzy

membership functions, fuzzy literals and the overall computing

with words paradigm [22]. It might be worthwhile to make it

possible to configure the logical reasoning mechanism, so it

uses fuzzy norms to determine whether a rule is satisfied and

to what degree. Rules and operators could be then used to

perform the fuzzification and defuzzification processes.

VII. LOGDL COMPILATION

Figure 5 shows typical environment for the LogDL usage.

LogDL description is a code written in LogDL that is based

on facts, rules and operators. LogDL metadata are definitions

of global aspects such as domains and types. Both the LogDL

program and metadata together form data repository. One of

unique aspects of languages such as LogDL or GDL is that

150 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



TABLE I
AN EXAMPLE OF CONDITIONS OF A RULE. EACH ROW IS A TOP-LEVEL

CONDITION. THE LAST TWO ROWS CONTAIN NESTED CONDITION.THE

THIRD COLUMN DENOTES THE TRACKING OF THE INTRODUCED

VARIABLES AFTER EACH CONDITION IS TAKEN INTO ACCOUNT.

Condition
Condition

type
No. of variables

new / total

loan_inquiry{?id ?amount} fact 2 / 2

client{?id ?name ?age} fact 2 / 4

has_loans{?id ?blocked} fact 1 / 5

disposable_income{?id ?income} fact 1 / 6

>=(-(?income ?blocked) ?amount)
operator using
nested operator

0 / 6

OR(
>(?age 25)
parents_guarantee?id ?amount))

operator
nested operator
nested fact

0 / 6

the code and the data are essentially inseparable, e.g. a stand-

alone definition of a fact means that it is true, therefore it is

a part of data.

In our proposal, which is still in development, we designed

various ways to provide LogDL description to a repository, e.g.

using a file (*.logdl), interactively as in e.g. Python console,

or programmatically through a dedicated API. The last case

can be useful e.g. when a game, or another data provider, is

able to log the structured data in LogDL format.

LogDL metadata can be either provided through files or

in a GUI-based administration suite which is the preferred

approach The idea behind it is to have an easy to use,

graphical tool to define the structure of particular problem to

be modelled using LogDL. It can allow for defining all kinds

of metadata, organizing the data by worlds and activities (see

Section V-D), viewing / updating / deleting all kinds of the data

as well as providing LogDL compiler with implementation of

custom operators and making them visible for LogDL.

We assume dedicated LogDL compilers written in a few

programming languages. Having a compiler for specific lan-

guage allows for two features: (1) extending LogDL with

custom operators with a native implementation as well as

(2) having access to the interpreter from a code in the

host language. (1) requires some metadata to bind LogDL

expression with functions exported from a library that contains

implementation. This includes providing a way to call the

function, reserve its corresponding operator name as well as

provide metadata for its arguments. All of this will be possible

to set up via the GUI-based administration suite.

When a LogDL program is available, the user can utilize

the interpreter either as interactive program (like in Python

console) or directly from the user’s application through API.

The latter is possible if there exists an interpreter for a pro-

gramming language of the host application. We will provide

bindings to the most popular languages. First and foremost,

the interpreter allows for interactive queries based on rules,

facts and operators. The user may e.g. wish to perform a

logical resolution, check a hypothesis or just fetch or count the

specific data. The program can also be compiled without the

interactive interpreter. In such case, queries must be provided

beforehand, e.g. via a file. Then the compiler will compile the

file to a program returning results of specified queries.

VIII. MOTIVATION – VIDEO GAMES

The subsequent sections are devoted to potential LogDL use-

cases. First, we motivate why logic, structured logs and LogDL

can be useful for the game industry domain. In particular, we

intend to apply it in our upcoming projects. We have already

carried out a prototype implementation aimed at verification

of the expressive power of LogDL, its integrity and ease

of use. Selected aspects have also been implemented in an

optimized way, together with the tests measuring what kind

of performance can be expected when the whole ecosystem

outlined in Section VII is developed and integrated.

A. AI Development

The traditional approach to AI in commercial video games

is extensively based on heuristics. A heuristic can be part

of search algorithms, functionally realized by finite state

machines or in form of behavior trees [23]. Heuristics require

the expert knowledge expressed by means of some important

aspects of the game environment, preferences, weights, proba-

bilities, threshold values and utility values. For example – it is

worth shooting the opponent with weight X if the distance to

it is less than Y and otherwise it is worth running away. All

components and parameters are usually chosen by a repetitive

trial-and-error method or chosen arbitrarily.

LogDL promotes a different, evidence-based approach. Hu-

man game testers are usually the biggest group of people

involved in the game production process. Logs from such test

runs can provide a valuable data source, based on which game

creators may build and tune heuristics. LogDL is particularly

useful to represent facts from game replays and new insights

that can be discovered from them. For example it may find

choke-points on maps, usefulness of in-game items and how

different strategies work against each other.

LogDL was in part inspired by our experience with the Grail

library aimed at developing AI in video games [24]. Grail

supports algorithms such as Utility AI and Monte Carlo Tree

Search (MCTS) [25] which can be used as action-selection

mechanism for AI players. Utility AI is based on curves that

define relationship between an action’s utility and a given

consideration. Identification of considerations can be extracted

from logs thanks to LogDL. Similarly, in video games MCTS

is typically optimized with heuristics that provide early cut-

off (i.e. scores in non-terminal states), limit the number of

considered actions or guide the search process.

B. Game Testing and QA

When logs from games are available, LogDL can be a valuable

tool for Quality Assurance (QA) [26]. Firstly, it can be used

for balancing, i.e. identifying too strong aspects of the game,

e.g. a weapon that inflicts too much damage or an enemy that

cannot be reliably defeated. This is a similar case to developing

the AI, but this time we are interested in other types of insights

from the data. Secondly, it can be used to verify hypotheses

about the game. For example a hypothesis may state that 60%

MACIEJ ŚWIECHOWSKI, DOMINIK ŚLĘZAK: INTRODUCING LOGDL—LOG DESCRIPTION LANGUAGE FOR INSIGHTS FROM COMPLEX DATA 151



Fig. 5. Technical overview of the usage of LogDL.

of the time a player is able to finish a particular level without

losing life. LogDL is particularly suitable to query the game

data with its structured form and the notion of time and space.

Thirdly, the QA requirements can be expressed as queries and

rules directly in LogDL. This enables to build an automated

or semi-automated QA pipeline similar to continuous software

integration systems. Lastly, LogDL can aid automated QA

provided that the testing agents (bots) are available. The data

in LogDL can be analyzed on the fly thanks to the reasoning

mechanisms and custom rules provided once for the testing

process. It makes it possible to guide agents in real-time in

their testing behavior. For example, it can be revealed that

certain game areas or interactions need to be tested more

thoroughly. Although the automated testing is not common

in the video game industry yet, it will be more popular in

future with the AI becoming smarter.

C. Game Analytics

Game analytics and e-sport are one of the hottest topics not

only in games but in entertainment, in general. LogDL allows

for transformation of raw information collected from games

into useful information that can be presented to players, teams,

sponsors or game development companies. On a technical

level, this use-case is related to the previous ones, i.e. devel-

oping AI, testing and QA. LogDL is designed to be queried

interactively, used in the knowledge discovery processes and

to provide new insights from the data. Such insights can be

utilized in game analytics and coaching to increase human

players’ skills [27] or to comment e-sport games.

Fact-based and rule-based description can integrate the

gameplay data with metadata about players as well as maps

and concepts that are related to the given game but not actually

present within it. It also includes the data obtained as input

from players, game developers and data scientists. The rules

can be continuously refined in an incremental self-improving

process with human feedback in the loop. For example, logical

analysis could find inconsistencies, potential candidates for

anomalies, unexpected correlations, new strategies or just new

concepts that human experts could use and name.

D. Explainability in Games

AI behavior that is understood and trusted is not only a

requirement for high-risk applications such as e.g. those in

medical field. Game studios extensively test the AI in their

games to minimize the risk of players encountering unexpected

or unnatural behavior in the shipped game [28].

The other facet of explainability refers to “cheating AI”. In

multi-player games with bots, players often do not believe that

their AI opponents played with the same rules. Cheating AI is

so prevalent in games without perfect information (especially

in real-time strategy games) to make up for poor strategic

skills, that if a bot in a particular game is competent, then it

is often accused of cheating. Hidden information is important,

because players cannot verify during the game whether the bot

plays along the same game rules and limitations.

FoW – our already-mentioned new R&D project – will

concentrate on believable AI bots in games with hidden

information and on explaining their limitations and reasoning

processes behind actions. LogDL is good for such applications,

particularly when it serves for representing game logs too. It

can be used to express the knowledge of bots and explanatory

rules of their behaviors in an accurate or approximate way

depending on what kind of AI algorithms are applied.

E. Multi-Agent Communication

Let us refer to FoW once again, now from the viewpoint

of creating tools for game developers, which are aimed at

reasoning under uncertainty (hidden and stochastic informa-

tion), managing and updating beliefs of computer agents as

well as their coordination and communication in a multi-agent

environment [29]. One of our goals is to simulate human-like

behavior in games with imperfect information with human-

plausible simulation of perception. Formal languages, e.g. the

aforementioned 4QL, can be used for modelling multi-agent

interactions. However, they are often too difficult to apply in

the industry. LogDL shares similarities to 4QL and other logic-

based languages, however, it is simpler and reasoning is faster

what fits better into game production pipelines.

F. Mechanics, Prototyping, Narrative Design

Tools aiding designers to create a plot in games have gained

popularity in recent years [30]. They are typically based on

graphs that contain events, branches, triggers and milestones

that define progression in the game. They often allow for

specifying the “keys and doors” systems, i.e. the goals that

have to be achieved to unlock a certain game’s aspect. LogDL

can help in two ways in such use-case. All elements of the

narrative can be expressed in it in a form of facts and rules.

However, more importantly, due to the Prolog-style logical

reasoning, it can provide immediate feedback to the designers.

For example, LogDL queries can check whether the game can

be completed, in how many ways, what is the most probable

152 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



or efficient way, etc. Thanks to the extensive nature and ability

to add custom operators, a narrative system build on top of

LogDL can be fine tuned for a particular game.

In GGP, game rules are described in GDL and game-playing

algorithms use such descriptions to conduct simulations. We

believe that LogDL could be employed in a similar fashion to

express the core mechanics and rules in video games. Due to

complexity of such games, their descriptions would have to

be high-level game approximations. Nevertheless, it could be

useful for rapid prototyping aimed at testing the soundness of

ideas in the creative design process [31].

IX. MOTIVATION – REAL WORLD

Below we present some real-world use-cases that we intend to

investigate. By a use-case we mean an area, wherein LogDL

can bring extra value. The data and ML-related challenges in

video games and “real world” are similar to each other [32].

This is why LogDL can be useful in both cases.

A. Process Mining

In general, LogDL is suitable for applications where the data

needs to be stored, analyzed and new – most likely difficult

to predict – insights from the existing data can be discovered.

Good examples are innovative R&D applications, where new

knowledge can emerge and provide technological advantage.

For instance, it can help to gather information about any given

process in the form of rules that describe it [33]. Imagine

using process mining to discover weather patterns, laws of

physics, proving hypotheses, making scientific discoveries,

analyzing art, texts, making reverse-engineered models. Works

such as [34] illustrate that the analytics of processes requires

significant effort at the level of concept formation. Once

appropriate concepts are specified, one can reason about their

occurrences in the data in a logical fashion.

B. Business Intelligence

This is a field wherein the state-of-the-art data processing

approaches are often applied. LogDL can be used as a glue that

binds together logs, domain-specific concepts which subject

matter experts understand and the automated data science

that they usually are not deeply familiar with. A system that

incorporates LogDL can be developed in such a way that

technical AI/ML details are hidden and friendly interfaces

are exposed. Actually, our aforementioned system that advises

players how to improve their skills can be treated as an

example of business intelligence development in the game

industry [27]. Similarly, the analytics can be conducted in “real

world” over complex multimodal data sources [35]. In both

scenarios, the original data needs to be first digested/enriched

– in the already-discussed form of d-logs – and then the main

business intelligence layers can be employed.

C. Hierarchical Learning

In a typical ML scenario, languages such as JSON are used

only in the first step of the data processing pipeline – to

store the input data. However, the phase of reasoning about

structured information expressed by LogDL-based d-logs can

be still a part of a discovery process. Such an approach, i.e.

to combine numerical and symbolic ML techniques (in our

case: deriving d-logs from the raw data and reasoning about

them) has long stayed under the radar, but recently it has

been attracting researchers’ attention. This is first, to provide

the end-users with the explainable ML models and second,

to utilize the layer of d-logs for other purposes, such as the

above-discussed process mining or business intelligence.

The logical layer can also reinforce ML-based algorithms

with reasoning and rule mining performed on a higher level,

e.g. on definitions, features and concepts discovered by the

ML-based algorithm such as neural networks [17]. This way,

a natural hierarchical system can be achieved [36].

Good examples can be found in applications, where the data

from videos or pictures is analyzed by convolutional neural

networks (CNN) that are suitable for extracting low level

and local features [37]. Methods that manipulate a LogDL

description could take it from there and use those local features

to induce/infer higher-level concepts. Works such as [38]

demonstrate efficiency of such hybrid approach with respect

to multimodal spatio-temporal data, whereby LogDL could be

additionally used to express the domain knowledge of subject

matter experts at that higher level of abstraction.

D. Interactive Analytics

LogDL enables to be interactively queried and manipulated by

the AI/CI/ML algorithms which typically run in a continuous

loop. It provides advantages of logic-based languages in terms

of reasoning as well as robustness and flexibility of database

languages. We believe that there is a need for such a medium

that can be used interactively by humans algorithms.

In particular, one may consider utilizing LogDL rules for

real-time annotations or feedback that consists of comments

of the data. Examples of the corresponding applications refer

to augmented reality, virtual reality, streaming platforms, self-

driving cars, etc. Methods operating with logic and rules could

help human investigators analyze large chunks of machine-

generated or sensory data [39]. Such data usually consists

mostly of the cases that are not particularly interesting and

only at certain points there are photos or video frames that

need human attention [40]. Rule-based systems combined with

feature extraction may help to narrow down the cases and show

only the most interesting ones to human operators.

X. CONCLUSIONS

We introduced a new logic-based language – LogDL – for

complex data and knowledge discovery workflows. Examples

of usefulness have been shown by motivations from both,

video games and “real world” applications outside of the

entertainment industry. The GDL language from the game

research domain was the protoplast for LogDL. However, there

are significant differences between them, e.g. types, domains,

custom operators, time, probabilistic elements, etc.

Our goal was to combine advantages of data representation

languages such as JSON and query languages such as SQL and

MACIEJ ŚWIECHOWSKI, DOMINIK ŚLĘZAK: INTRODUCING LOGDL—LOG DESCRIPTION LANGUAGE FOR INSIGHTS FROM COMPLEX DATA 153



introduce a necessary formalism to take advantage of the AI-

driven knowledge discovery. In future, we plan to create highly

efficient LogDL-based system integrating manual management

and the AI/CI methods in the process of discovering new

concepts/insights from the complex data. We believe that at

foundations of such system there should be a language that

can allow for logical reasoning, can be interactively queried

and manipulated by intelligent (e.g. EA) algorithms.

A feature that could be beneficial to such manipulations is

built-in granularity (level of detail) of rules [41]. It is already

possible to define rules that operate with various granularities,

but it is up to human interpretation and transparent from the

LogDL’s viewpoint. We could introduce a convention, e.g. that

rules with the same name and a dedicated argument denoting

the level of granularity describe the same concept.

Another aspect refers to our aforementioned project FoW,

whereby LogDL will be used for reasoning (under uncertainty)

by AI players and explanations for human players. Therein,

we will need to decide whether to follow the GDL-style closed

world assumption or rather make the world “open”, like e.g.

in case of Action Description Language (ADL) [42].

We also plan to integrate modern ML techniques (e.g. deep

learning) which are powerful but difficult to explain with a

logical/symbolic top-layer. Such combination not only would

make using such a system more interpretable and trustful for

human operators but it could also lead to discovery of new

knowledge using the concepts defined within LogDL.

REFERENCES

[1] M. R. Genesereth, N. Love, and B. Pell, “General Game Playing:
Overview of the AAAI Competition,” AI Magazine, vol. 26, no. 2, pp.
62–72, 2005.

[2] S. Greco and C. Molinaro, “Datalog and Logic Databases,” Synthesis

Lectures on Data Management, vol. 7, no. 2, pp. 1–169, 2015.
[3] V. S. Costa, R. Rocha, and L. Damas, “The YAP Prolog System,” Theory

and Practice of Logic Programming, vol. 12, pp. 5–34, 2012.
[4] M. Arntzenius and N. R. Krishnaswami, “Datafun: A Functional Data-

log,” in Proc. of ICFP 2016, pp. 214–227.
[5] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and

R. Sears, “Dedalus: Datalog in Time and Space,” in Proc. of Datalog

2010, pp. 262–281.
[6] E. Piette, M. Stephenson, D. J. Soemers, and C. Browne, “An Empirical

Evaluation of Two General Game Systems: Ludii and RBG,” in Proc.

of CoG 2019, 2019, pp. 1–4.
[7] M. Thielscher, “Answer Set Programming for Single-Player Games in

General Game Playing,” in Proc. of ICLP 2009, pp. 327–341.
[8] J. Kowalski and M. Szykuła, “Game Description Language Compiler

Construction,” in Proc. of Australasian AI 2013, pp. 234–245.
[9] Y. Björnsson and S. Schiffel, “Comparison of GDL Reasoners,” in Proc.

of GIGA@IJCAI 2013, pp. 55–62.
[10] M. Okumura and S. Fujimura, “Constructing a Log Collecting System

using Splunk and its Application for Service Support,” in Proc. of

SIGUCCS 2016, pp. 103–106.
[11] O. Etzion and P. Niblett, Event Processing in Action. Manning

Publications, 2010.
[12] J. Małuszyński and A. Szałas, “Logical Foundations and Complexity of

4QL, a Query Language with Unrestricted Negation,” Journal of Applied

Non-Classical Logics, vol. 21, no. 2, pp. 211–232, 2011.
[13] B. Dunin-Kęplicz and A. Strachocka, “Paraconsistent Multi-party Per-

suasion in TalkLOG,” in Proc. of PRIMA 2015, pp. 265–283.
[14] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and

J. Togelius, “Towards a Video Game Description Language,” in Artificial

and Computational Intelligence in Games. Dagstuhl, 2013, pp. 85–100.

[15] I. Haghighi, A. Jones, Z. Kong, E. Bartocci, R. Grosu, and C. Belta,
“SpaTeL: A Novel Spatial-Temporal Logic and Its Applications to
Networked Systems,” in Proc. of HSCC 2015, pp. 189–198.

[16] D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale, S. Ruggieri,
and F. Turini, “Meaningful Explanations of Black Box AI Decision
Systems,” in Proc. of AAAI 2019, pp. 9780–9784.

[17] M. H. Segler and M. P. Waller, “Neural-Symbolic Machine Learning
for Retrosynthesis and Reaction Prediction,” Chemistry – A European

Journal, vol. 23, no. 25, pp. 5966–5971, 2017.
[18] M. Świechowski and J. Mańdziuk, “Fast Interpreter for Logical Rea-

soning in General Game Playing,” Journal of Logic and Computation,
vol. 26, no. 5, pp. 1697–1727, 2016.

[19] C. F. Sironi and M. H. M. Winands, “Optimizing Propositional Net-
works,” in Proc. of CGW@IJCAI 2016, pp. 133–151.

[20] J. C. Tay and N. B. Ho, “Evolving Dispatching Rules using Genetic
Programming for Solving Multi-Objective Flexible Job-Shop Problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[21] D. J. Lizotte and E. B. Laber, “Multi-Objective Markov Decision Pro-
cesses for Data-Driven Decision Support,” Journal of Machine Learning

Research, vol. 17, pp. 211:1–211:28, 2016.
[22] L. A. Zadeh, Computing with Words – Principal Concepts and Ideas.

Springer, 2012.
[23] D. Mark, Behavioral Mathematics for Game AI. Cengage Learning,

2009.
[24] M. Świechowski and D. Ślęzak, “Grail: A Framework for Adaptive and

Believable AI in Video Games,” in Proc. of WI 2018, pp. 762–765.
[25] M. Świechowski, T. Tajmajer, and A. Janusz, “Improving Hearthstone

AI by Combining MCTS and Supervised Learning Algorithms,” in Proc.

of CIG 2018, pp. 445–452.
[26] D. Irish, The Game Producer’s Handbook. Cengage Learning, 2005.
[27] A. Janusz, D. Ślęzak, S. Stawicki, and K. Stencel, “SENSEI: An

Intelligent Advisory System for the eSport Community and Casual
Players,” in Proc. of WI 2018, pp. 754–757.

[28] M. Świechowski, “Game AI Competitions: Motivation for the Imitation
Game-Playing Competition,” in Proc. of FedCSIS 2020, pp. 155–160.

[29] B. Dunin-Kęplicz and R. Verbrugge, Teamwork in Multi-Agent Systems

– A Formal Approach. Wiley, 2010.
[30] G. N. Yannakakis and J. Togelius, “A Panorama of Artificial and Com-

putational Intelligence in Games,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 7, no. 4, pp. 317–335, 2014.
[31] J. Ruan, W. Van Der Hoek, and M. Wooldridge, “Verification of Games

in the Game Description Language,” Journal of Logic and Computation,
vol. 19, no. 6, pp. 1127–1156, 2009.

[32] J. Togelius, “AI Researchers, Video Games Are Your Friends!” in Proc.

of IJCCI 2015, pp. 3–18.
[33] W. Van Der Aalst, “Process Mining,” Communications of the ACM,

vol. 55, no. 8, pp. 76–83, 2012.
[34] T. Kawamura, T. Kimura, and S. Tsumoto, “Estimation of Service

Quality of a Hospital Information System Using a Service Log,” The

Review of Socionetwork Strategies, vol. 8, no. 2, pp. 53–68, 2014.
[35] L. Dey, I. Verma, A. Khurdiya, and S. B. H., “A Framework to Integrate

Unstructured and Structured Data for Enterprise Analytics,” in Proc. of

FUSION 2013, pp. 1988–1995.
[36] P. MacAlpine, M. Depinet, and P. Stone, “UT Austin Villa 2014:

RoboCup 3D Simulation League Champion via Overlapping Layered
Learning,” in Proc. of AAAI 2015, pp. 2842–2848.

[37] M. Przyborowski, T. Tajmajer, Ł. Grad, A. Janusz, P. Biczyk, and
D. Ślęzak, “Toward Machine Learning on Granulated Data – A Case
of Compact Autoencoder-based Representations of Satellite Images,” in
Proc. of Big Data 2018, pp. 2657–2662.

[38] J. Ludziejewski, Ł. Grad, Ł. Przebinda, and T. Tajmajer, “Integrated
Human Tracking Based on Video and Smartphone Signal Processing
within the Arahub System,” in Proc. of FedCSIS 2020.

[39] G. J. Nalepa, E. Brzychczy, and S. Bobek, “On the Opportunities for
Using Mobile Devices for Activity Monitoring and Understanding in
Mining Applications,” in Proc. of IDEAL (2) 2018, pp. 75–83.

[40] C. Han, J. Mao, C. Gan, J. Tenenbaum, and J. Wu, “Visual Concept-
Metaconcept Learning,” in Proc. of NeurIPS 2019, pp. 5002–5013.

[41] M. Świechowski and D. Ślęzak, “Granular Games in Real-Time Envi-
ronment,” in Workshop Proc. of ICDM 2018, pp. 462–469.

[42] R. Reiter, Logical Foundations for Specifying and Implementing Dynam-

ical Systems. MIT Press, 2001.

154 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


