
 

 

 

 

Abstract—The fourth industrial revolution introduces 

changes in traditional manufacturing systems and creates basis 

for a lot-size-one production. The complexity of production 

processes is significantly increased, alongside the need to enable 

efficient process simulation, execution, monitoring, real-time 

decision making and control. The main goal of our research is 

to define a methodological approach and a software solution in 

which the Model-Driven Software Development (MDSD) 

principles and Domain-Specific Modeling Languages (DSMLs) 

are used to create a framework for the formal description and 

automatic execution of production processes. In that way 

production process models are used as central artefacts to 

manage the production. In this paper, we propose a DSML 

which can be used to create production process models that are 

suitable for automatic generation of executable code. The 

generated code is used for automatic execution of production 

processes within a simulation or a shop floor.  

I. INTRODUCTION 

DVANCED technologies in the form of smart 

resources and smart products are the basis for the fourth 

industrial revolution as they enable changes in factories and 

production. Industry 4.0 introduces primarily IT-driven 

changes in existing production systems in order to enable 

production of individualized products while preserving all 

beneficial economic characteristics of mass production [1]. 

 Producing highly individualized products in traditional 

production facilities requires multiple production lines or, in 

case of a single production line, stopping the production to 

allow reconfiguration of machines which causes additional 

costs. To enable a flexible, individualized, lot-size-one 

production that is economically viable, the production needs 

to be carried out without stopping a production line for 

machine reconfiguration [2]. Therefore, it is necessary to 

solve the problem of tedious machine adaptation to frequent 

production changes that are common in the context of 

Industry 4.0. Additionally, there is a problem of frequent 

location changes of human workers in a factory [3]. Due to 

decreasing number of workers and increasing level of 
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automation in factories, the workers are performing different 

tasks within a factory. Frequently changing worker’s tasks 

increases production dynamics and requires fine 

coordination of workers in a factory so their work can be 

optimized, and production downtime avoided. As worker’s 
tasks are often changed, a fast knowledge transfer is required 

so they do not lose time when changing workplaces. 

 To enable production of individualized products at the 

lower cost, a solution for production orchestration at a 

higher abstraction level can be utilized [4]. This solution 

would require a formal method to specify production 

processes and create process models that are suitable for 

automatic generation of instructions that are executed on 

smart resources. A smart resource represents a machine or a 

human worker that receives generated instructions and 

execute them on materials and products. 

In this context, it is possible to apply a Model-Driven 

Software Development (MDSD) approach in which a 

centralized representation of knowledge would exist in a 

form of production process models. Therefore, in our 

previous work [5], we proposed a novel MDSD approach for 

production process modeling and automatic production 

process execution. The MDSD approach aims to reduce the 

gap between individual customer needs and the ability to 

produce required products. The main goals of the proposed 

MDSD approach are to: (i) enable easier adaptation of 

machines to dynamic changes of production processes, (ii) 

improve coordination of human workers and machines in 

factories and (iii) enable automatic execution of production 

processes. A formal specification of a production process is 

the crucial part of the proposed approach. Existing process 

modeling languages are not tailored to model production 

processes [6]. Currently, production processes are specified 

using different models like Bill of Materials (BOM), Flow 

Process Chart (FPC) and Failure Mode and Effects Analysis 

(FMEA) sheets. These models have different syntaxes and 

semantics. Therefore, it is hard to combine and reason 

production details from them in order to enable automatic 

execution of production processes. 

 To the best of our knowledge, there is no unified formal 

language aimed at modeling all production process aspects 

required for an automatic execution. Therefore, we decided 

to create a new Domain-Specific Modeling Language 

(DSML) aimed at production process modeling. Our MDSD 
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approach, overviewed in Section 2, would enable flexible 

manufacturing with a help of Orchestrator software that 

manages production processes using a knowledge base and 

models created with the DSML. Orchestrator is a software 

running on a cluster of industrial computers that enables 

orchestration, detection and configuration of new and 

existing smart resources [7]. 

In this paper, we present abstract and concrete syntaxes of 

the DSML based on our previous research [5]. The Multi-

Level Abstraction Approach (MLAA) is employed to 

develop the DSML. MLAA refers to representing objects at 

multiple levels of abstraction hierarchies. Due to the 

application of MLAA, we denote the language as Multi-level 

Production process modeling Language (MultiProLan). The 

higher level of abstraction enables easier production process 

modeling by specifying only production process steps, and 

the lower level of abstraction enables modeling of all the 

execution details dependent on a production system. 

MultiProLan allows process and quality engineers to 

collaborate on the specification of a production process by 

using a common language. In this paper, we denote process 

and quality engineers together as process designers. A 

process designer is a person in charge of transforming a 

valuable idea or experiment into an industrial process in a 

way to fulfil not only originality, efficiency, quality and 

sustainability criteria, but to consider a large number of 

often contradictory constraints. 

MultiProLan enables modeling of production processes 

suitable for automatic execution. It can be used in a flexible 

and orchestrated production to facilitate the lot-size-one 

production. Supported with MultiProLan, our MDSD 

approach should increase the degree of factory automation 

by enabling easier adaptation of machines to dynamic 

production changes and by increasing coordination of 

resources in factories. Models expressed by the concepts of 

MultiProLan are simple enough for a human comprehension 

and can be also used as means of knowledge transfer to new 

workers or to workers that change their workplace 

frequently. Modeling production processes is important so 

human workers and supervisors could understand the 

processes better, eliminate potential modeling errors and 

optimize the processes. 

Besides Introduction, this paper is structured as follows. 

An overview of the MDSD approach for modeling and 

automatic execution of production processes and the 

MultiProLan basic concepts are presented in Section 2. The 

related work that includes different modeling languages and 

approaches is summarized in Section 3. Abstract and 

concrete syntaxes of MultiProLan are described in Section 4. 

Conclusions and the future work are presented in Section 5.  

II. AN OVERVIEW OF THE MDSD APPROACH FOR MODELING 

AND AUTOMATIC EXECUTION OF PRODUCTION PROCESSES 

In the Model-Driven (MD) paradigm, models represent a 

central artefact at all stages of system development. A 

system developed by following the MD paradigm includes 

models that are connected and organized at different 

abstraction levels. An MDSD approach is a part of the MD 

paradigm and some of its goals are to: (i) increase software 

system developing speed through automatization and 

centralized representation of knowledge, (ii) increase 

software quality through formalization, (iii) increase 

reusability of models and (iv) lower system complexity 

through abstraction levels [8]. In MDSD approaches, 

DSMLs can be used and their purpose is to bring modeling 

concepts closer to users familiar with an application domain, 

so they can specify their solution with less time in 

comparison to General-Purpose Modeling Languages 

(GPMLs) [9]. Therefore, our opinion is that an MDSD 

approach and DSMLs will have significant role in enabling 

flexible, orchestrated and highly automated production. This 

is why we proposed a novel MDSD approach for modeling 

and automatic execution of production processes [5]. 

In Fig. 1, a system for automatic production orchestration 

and process execution is presented. The components that 

support the main steps of the MDSD approach are 

numerated and grouped within dashed rectangles. The 

proposed MDSD approach comprises the following steps: (i) 

specification of technological process models performed by 

process designers, (ii) automatic enrichment of technological 

process models with details needed for the execution, 

performed by Orchestrator on the basis of semantics 

gathered from Knowledge Base, (iii) generating the 

executable code performed by Code Generator and (iv) 

execution of generated instructions performed by Executor 

that forwards instruction to Digital Twin, and to the smart 

factory shop floor indirectly. A digital twin represents virtual 

model of a physical object. It can simulate the object 

behavior and the object can respond to changes made in the 

simulation [10]. The main part of the proposed system is 

MultiProLan created for the domain of hardware production. 

By using MultiProLan it is possible to create models that are 

suitable for automatic code generation and execution. The 

generated code represents human-readable or machine-

 

Fig. 1 The system for automatic production orchestration and process execution 
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readable instructions that are to be executed by smart 

resources. More detailed description of this approach is 

given in the rest of the section. 

Specification of technological processes. The first step of 

the MDSD approach represents specification of production 

process models by using MultiProLan. These models include 

process steps without details required for automatic 

production, such as: smart resources required to execute 

process steps; production logistic activities; specific storages 

in which products and parts are stored; and machine 

configuration activities. A graphical modeling tool is 

implemented to allow the modeling of production processes 

using MultiProLan. Modeling Tool is used by process 

designers to model production processes at the higher level 

of abstraction. Such models are called Master-Level (ML) 

models. These models represent technological description of 

production processes and they include: (i) process steps, (ii) 

required capabilities, i.e. skills required to execute a process 

step, with their parameters and constraints (iii) input and 

output products, i.e. transformed resources like raw 

materials, components or finished goods, with constraints, 

(iv) workflows, i.e. sequence, parallelism, selection and 

iteration patterns, and (v) collaboration between process 

steps. A collaboration between smart resources, both humans 

and machines, is crucial in the context of Industry 4.0 [11] 

and it needs to be modeled. ML models do not depend on a 

specific technological platform, i.e. on a factory in which 

modeled production processes will be executed. Therefore, 

ML models can be considered as Platform-Independent 

Models (PIMs). 

 Enrichment of ML production process models with 

details needed for the execution. A production process will 

be executed within a given production system, e.g. some 

factory. To use an ML model for automatic code generation 

and execution, it is necessary to place additional information 

in it. This information refers to elements of a given 

production system. The information include: (i) specific 

resources like robots, machines and humans, that are to 

perform process steps, (ii) production logistic activities, 

which represent transportation of products and resources, 

and (iii) configuration of machines and robots like software 

setup, changing grippers, and plugging into a charger or a 

workstation. ML models enriched with aforementioned 

information are called Detail-Level (DL) models. DL 

models can be considered as Platform-Specific Models 

(PSMs) as they are enriched with details that are specific to a 

production system in which the models will be executed. 

The notions of ML and DL are introduced in this paper to 

better facilitate description of different modeling levels, and 

we did not come across them in surveyed literature. 

DL models can be created manually or automatically. 

Manual DL creation is conducted by a process designer. A 

process designer can make additional changes to the existing 

ML/DL model or create a DL model from scratch using 

Modeling Tool. However, in our vision of the Industry 4.0 

production process modeling, a production system and the 

production process models should be separated to enable a 

high level of a product customization. Thus, automatic 

creation of DL models is supported in our MDSD approach. 

The automatic DL creation from the existing ML model is 

conducted by the means of Orchestrator software. In the 

following text, automatic DL creation process is explained. 

Knowledge Base needs to provide all the necessary 

information about a given production system for 

Orchestrator to be able to automatically generate DL models 

from ML models. Every process step specified in an ML 

model contains a capability, i.e. a skill that is required so 

that a process step can be executed. It is necessary to add the 

information about a resource that is to execute the process 

step within the given production system. This cannot be just 

any resource, but the resource that has the required 

capability in its set of offered capabilities. By using 

Knowledge Base, Orchestrator can match a capability that is 

required in a process step with a capability that a specific 

resource offers and, in that way, matches the process step 

with the resource. A capability of one process step could be 

matched with a capability of multiple resources. 

Orchestrator needs to use optimization techniques and 

scheduling mechanisms to choose one resource for every 

process step and to optimize work of resources in a factory. 

A process step that is ready to be executed is composed of: 

(i) input products, (ii) a capability needed to execute the 

process step, (iii) a smart resource that is to perform the 

capability on input products, and (iv) output products. 

Orchestrator also needs to take care of production logistics. 

Orchestrator needs to add storages in which required 

products are stored and to add process steps that facilitate 

transportation of products and movement of resources 

between storages and workstations. Production logistic 

activities have a big impact on production processes as they 

require a lot of time [12], so it is very important to organize 

these activities well. Orchestrator also takes care of machine 

configurations. Based on knowledge gathered from 

Knowledge Base, Orchestrator can infer whether the 

machine configuration step needs to be added to the process 

to enable further activities.  

For Orchestrator to be able to reach the aforementioned 

conclusions, Knowledge Base needs to contain knowledge 

of production system elements, such as: (i) smart resources 

with their set of capabilities, (ii) smart products with their 

attributes like dimensions and weight (iii) process steps with 

required products and capabilities, (iv) production logistics 

and (v) configuration process steps that are required by some 

resources prior or after execution of another process step. In 

this paper, we look at Orchestrator as a black box. It is 

presented just to provide context in which MultiProLan is 

used. An internal structure of Orchestrator that is used in the 

MDSD approach can be found in our previous work [7]. 

An ML model exists independently from a production 

system that will be the execution platform for the modeled 

production process. At this high abstraction level, a process 

designer does not need to take care for the specific details of 

a given production system. These details must be specified 

within Knowledge Base before the specification of a DL 

model begins. DL models can contain only those capability, 

product, resource, storage, constraint and parameter details 

that are already specified in Knowledge Base. In that 

context, a DL model is specified whenever an execution-
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ready production process model is needed, and it is 

dependent on a production system. 

Generating the executable code. The third step of the 

MDSD approach represents code generation from DL 

models. It is possible to send DL models into Code 

Generator so it could automatically generate instructions that 

can be executed by human workers or machines. More 

details on Code Generator can be found in [7]. 

Execution of generated code instructions. Executor 

forwards generated instructions to Digital Twin, which 

represents both simulation and command proxies to the shop 

floor. In our case, the Digital Twin component could be used 

for the simulation only or it could also forward instruction to 

shop floor smart resources through embedded proxies and 

mobile devices [7]. Using a digital twin in the simulation-

only mode could decrease production failures, provide 

insight into badly modeled process steps and enable 

optimization of resources and processes [13]. By running 

simulations it is possible to predict an influence of process 

steps to a final product [14]. 

III. RELATED WORK 

Production processes should be digitally supported in 

Industry 4.0 [15] so they can be integrated within a smart 

factory. Modeling production processes is very important in 

industrial informatics [16], but it is not enough to document 

processes and store them in a factory database. Production 

processes should be modeled to lead the production. Process 

models should be ready for automatic production, but also 

not too complex for a human comprehension. In this section, 

different production process modeling approaches and 

languages are presented, as well as their capabilities to fulfill 

the aforementioned needs.  

Companies mostly use manufacturing process charts and 

BOMs to specify production processes, but none of these 

specifications provide enough data to facilitate automatic 

execution. BOM specifications are not enough to understand 

a production flow [17]. On the other hand, Bill of Materials 

and Operations (BOMO) [18] specifications cover the 

production flow, but are insufficient to specify selection and 

iteration patterns or smart resources. There is also Korean 

manufacturing process chart standard KS A 3002 [19], but a 

tooling support and a possibility to automatically execute 

models are missing [17]. Unified Modeling Language 

(UML) activity diagrams are used to describe production 

processes, but models are not suitable for the automatic 

execution, they are not intuitive for process designers and 

they could be complex [20]. 

By using conceptual process modeling languages like 

UML activity diagram, Business Process Modeling and 

Notation (BPMN) and Petri nets, it is difficult to model 

production processes primarily as they are not created for 

that purpose. These difficulties are even more noticeable 

whenever the languages need to cover all production process 

concepts required for the automatic execution [6]. To solve 

this problem researches usually extend existing languages to 

add missing semantics. However, these extensions are not 

enough to solve the problem due to the wide application 

domain of a language. Therefore, researches often try to 

create new domain-specific languages instead of extending 

existing general-purpose languages [21]. 

Zor et al. proposed BPMN extensions to model 

production processes [22], however it is difficult to model a 

material flow [23] and the whole context of production 

domain is not covered due to the absence of uniformity [17]. 

BPMN extensions are also proposed by Ahn and Chang for 

production process similarity measurements [17], however it 

is not possible to model selection and iteration patterns or to 

specify smart resources. According to Lütjen and Rippel 

[23], some languages like DELMIA Process Engineer, 

Systems Modeling Language (SysML) and Petri nets lack in 

possibility to specify the material flow. To overcome the 

usual lack of the material flow modeling concept, the same 

authors proposed a novel material flow-oriented process 

modeling language – GRAMOSA, but the material flow-

oriented approach was complex [23]. 

Meyer et al. [24] proposed BPMN extensions to model 

Internet of Things (IoT) devices and create IoT-aware 

process models. Besides humans that participate in business 

process executions, IoT-aware processes also include IoT 

devices that can do some of tasks in a smart factory. 

Likewise, Petrasch and Hentschke [25] proposed IoT-Aware 

Process Modeling Method (IAPMM) using UML use cases 

and BPMN extensions in order to model IoT-aware 

processes. The goal of this method is to enable modeling of 

software systems and software applications like sensing and 

actuation. The same authors extended IAPMM and created 

Industry 4.0 Process Modeling Language (I4PML) [26] by 

adding extensions like Cloud Computing applications. Using 

this language, it is not possible to model all the technological 

details, as its purpose is to model production processes in a 

requirements specification and analysis phase. According to 

Schönig et al. [27], none of the aforementioned languages 

and approaches provides details on how to execute models. 

This is the reason why they proposed an approach for 

integration of IoT objects with business process models 

ready for an execution. They extended BPMN to enable 

integration of IoT objects with process models, but also to 

preserve a possibility to execute the models in existing 

Business Process Management (BPM) execution systems. 

However, it would be difficult to specify the material flow, 

smart resources, products, capabilities and constraints, and 

thus the full automatization, in which both humans and 

machines participate, would be hard to achieve. Because of 

these insufficiencies, Orchestrator would not be able to 

manage the production based on the models. 

Witsch and Vogel-Heuser [20] presented Manufacturing 

Execution System Modeling Language (MES-ML) whose 

purpose is to specify MES through different views so that 

model complexity could be reduced. MES-ML is based on 

BPMN and covers the modeling of a technical system, 

production processes and MES/IT functions. By using links, 

it is possible to connect process steps with production 

system elements, i.e. smart resources, that will execute the 

steps. This way a dependency between production process 

models and a production system is created. Due to this 

dependency, a process designer needs to take care how to 

connect process steps with production system elements 
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during the production process modeling. This makes the 

production process modeling significantly more difficult and 

could lead to higher number of created errors during the 

modeling and higher model complexity. 

According to Weissenberger et al. [28], MES-ML does 

not support creation of generic production processes as the 

semantics of process tasks are insufficiently specified and 

process models are not suitable for code generation. To 

enable the modeling of machine-usable MES specifications 

suitable for code generation, the same authors implemented 

a DSML by extending MES-ML. The goal of this language 

is to enable higher independency of production process 

models from a production system during process modeling. 

Instead of the link that is used to connect a process step with 

a resource of a production system, the authors proposed a list 

of links to be used. At the runtime, resources that execute 

process steps will be determined. However, the dependency 

between process steps and production system resources still 

exists and it is ambiguous which resources will execute 

process steps until the runtime.  

Similar to the previous work, Fallah et al. [4] presented a 

framework to model a modular MES using SysML. 

However, the framework is not implemented. Neither a code 

generator for model transformation into executable code nor 

an interpreter for direct model execution are implemented.  

Because of the dependency between production process 

models and a production system, we decided to create the 

language with two levels of abstraction. In this way, process 

designers do not need to take care of production system 

elements during the production process modeling and they 

can be entirely focused on modeling process steps. 

Production process models become more generic by 

separating a production system from them. It is possible to 

automatically connect process steps with smart resources in 

the runtime without additional load to process designer by 

using Orchestrator. As we could not find any formal 

language that allows creation of generic production process 

models suitable for automatic execution, we decided to 

create a novel DSML. This DSML unifies all production 

process aspects, as mentioned in Section 1, and thus enables 

the specification of DL models that are used for automatic 

code generation and production process execution. ML 

models are separated from a production system so that 

process designers could model them in more generic way. 

IV. ABSTRACT AND CONCRETE SYNTAXES OF 

MULTIPROLAN 

In this section we present abstract and concrete syntaxes 

of MultiProLan for modeling production processes suitable 

for automatic code generation and execution. We use an 

Ecore meta-meta-model, which is a part of Eclipse Modeling 

Framework (EMF) [29], to create the abstract syntax of 

MultiProLan. Also, we use the Eclipse Sirius framework 

[30] to create the graphical concrete syntax and to enable 

simple implementation of a prototype tool. 

A. The Abstract Syntax of MultiProLan 

Two levels of abstraction are needed to ease the modeling 

performed by process designers, but also to fully prepare 

models for an execution phase. A higher abstraction level – 

ML separates production process models from a production 

system, while a lower abstraction level – DL enables 

creation of production process models that are executable 

within a given production system. Based on these levels of 

abstraction, we divided the meta-model into two parts. This 

was also done because the meta-model is more concise and 

easier to understand. 

The ML part of the MultiProLan meta-model is depicted 

in Fig. 2 and it represents production process modeling 

concepts needed at the higher level of abstraction. These 

concepts are used by process designers to create ML models. 

A production process is modeled by the Process class which 

represents the root model element. A process version must 

be specified as models are stored in a knowledge base and 

can be changed or reused at any time. A process is 

composed of process elements (ProcessElement), which can 

 

Fig. 2 The first part of the meta-model used for ML model creation 
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be process steps (ProcessStep) or gates (Gate), and 

relationships (Relationship) between them. The start process 

step must be referenced from a process (startStep) as 

knowledge of the execution starting point is needed. There 

are two types of relationships (ERelationshipType): (i) flow 

– representing a workflow between process elements, and 

(ii) collaboration – representing a message flow between 

process steps. Relationships have the message attribute 

specified whenever a message needs to be sent between 

collaboration process steps. Also, relationships have the 

logical condition specified whenever they are used in 

selection or iteration patterns.  

A process step is composed of a capability (Capability) 

and products (Product) on which the capability is to be 

performed. Input products (inProducts) represent products 

on which a capability is performed, i.e. raw materials, and 

output products (outProducts) represent products that are the 

result of the capability usage, i.e. finished goods. Process 

steps can be of different types (EProcessStepType): (i) start 

– the first process step, (ii) end – the last process step or (iii) 

regular – other process steps that contain capabilities that 

must be performed on products. Start and end process steps 

do not have any capability or product, and only one start 

process step and only one end process step have to exist per 

each production process model. A process step has a 

notation (EProcessStepNotation) which has one of the 

following values: (i) none – for start and end process steps, 

(ii) operation – an activity that changes input products and 

creates output products and (iii) inspection – an activity to 

check quality of products.  

A material flow should be specified for every product. An 

input product can be equivalent (equivalent) to an output 

product of the previous process step, or it can be brought 

from a storage. An output product can be used in following 

process steps or it can be stored in a storage. Every product 

and capability have constraints (Constraint) such are 

dimensions, color and weight that will be considered by 

Orchestrator when it decides which smart resource is able to 

perform a process step. Some capabilities require parameters 

(Parameter) to be specified, e.g. to drill a hole, the drilling 

position must be specified.  

Besides process steps, there are also gates that are used as 

process elements. Gates are elements that are needed in 

order to create: (i) selection and iteration patterns – flow 

control in processes, (ii) parallelism – two or more process 

steps need to be executed in parallel and (iii) collaboration – 

two or more process steps need to be executed in parallel, 

but one process step must not start or finish its activity 

before gets a message that another process step finished its 

activity. Finally, most of the presented classes inherit the 

IDNamedElement class comprising id and name attributes. 

The DL part of the MultiProLan meta-model is depicted in 

Fig. 3 and it represents production process modeling 

concepts needed at the lower level of abstraction. This part 

of the meta-model is an extension of the ML part and 

together they are used to create DL models. Process step 

notations are extended by (i) transportation – production 

logistic activities, (ii) configuration – activities to configure 

resources and (iii) delay – necessary waiting activities. A 

process step is extended with a resource that will execute it 

by using a required capability. A resource (Resource) can be 

an actuator – an active resource, i.e. one that performs 

different activities during the production, or a storage – a 

passive resource, i.e. one that stores products. A resource 

can be both an actuator and a storage, e.g. there are robots 

that can execute different tasks, but also have a place to 

temporarily store products. A resource can be a human 

worker or a machine (EResourceType) and it can also 

represent an actuator or a storage. Depending on the 

resource type, human-readable or machine-readable 

instructions will be generated for every process step. Also, a 

resource could be of type NONE which means that it is 

neither a human nor a machine, e.g. a regular storage shelf, 

with no smart devices or sensors attached. Products are 

extended with a specific storage that must be defined for 

every input product brought from the storage and for every 

output product placed in the storage. When extended with 

active and passive resources, production logistics and 

configuration activities, process steps are ready for the 

automatic code generation and execution. 

B. The Concrete Syntax of MultiProLan 

There are two types of concrete syntaxes – textual and 

graphical, but there is no general answer which one is more 

suitable [31]. We decided to create the graphical syntax for 

MultiProLan to make the modeling easier for production 

 

Fig. 3 The second part of the meta-model used for DL model creation 
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process designers as they are already familiar with other 

graphical languages, such as FPC. The decision was also 

made to enable visualized process monitoring, as well as to 

enable visualization of detected errors during the production. 

As BPMN [32] is commonly used to model different kind of 

processes and as it is easy to interpret its models [33], some 

BPMN concepts, such as activities and gates, are used in the 

graphical syntax of MultiProLan. The graphical syntax is 

also inspired by American Society of Mechanical Engineers 

(ASME) FPCs [34] as process designers are used to these 

charts. Some of FPC elements are used in process step 

notations, such as: operation, transportation, inspection, and 

delay. Also, the storage element is used within a product, 

indicating that a product should be gathered from a storage 

or placed in a storage. The symbols used for the 

MultiProLan concrete syntax are presented in Fig. 4. 

The concrete syntax is described within production process 

model examples presented in Fig. 5 and Fig. 6. These two 

examples represent a process of a wooden box production at 

ML and DL of abstraction, respectively. The box is 

composed of four wooden planks that represent different 

sides of the box, and of a thin wooden back side. The four 

wooden planks can be assembled into a frame using wooden 

pins, and the wooden back side needs to be hammered into 

the frame, creating the box. The production of the wooden 

box is installed in a smart factory composed of: (i) the smart 

shelf – storage in which wooden planks are stored, (ii) the 

first assembly table – storage that is used to assemble four 

wooden sides, (iii) the second assembly table – storage that 

is used to hammer the back side into the frame, (iv) the 

recycle bin – storage for impaired boxes, (v) the finishing 

area – storage for finished boxes and (vi) human workers 

and industrial mobile robots – smart resources that are able 

to perform required activities. 

The ML model of the wooden box production is presented 

in Fig. 5. The presented ML model is composed of six parts: 

(i) the start process step, (ii) parallel process steps of 

assembling left-bottom and right-upper sides, after which 

these two assembled sides should also be assembled into the 

frame, (iii) collaboration process steps of holding the frame 

and hammering the back side into the frame, (iv) inspection 

of the box, (v) decision whether the box needs to be stored 

or discarded, depending on results of the inspection process 

step and (vi) the end process step. The process step of 

assembling the left-bottom side represents an operation as it 

is depicted with a circle icon at the left side of the process 

step name. It has two input products, left and bottom sides of 

the frame, both gathered from a storage. The inverted 

triangle icon at the left side of a product name represents that 

an input product should be gathered from a storage, or that 

an output product should be placed in a storage. Two input 

products have two constraints, width and height, that will be 

considered by Orchestrator when it assigns a smart resource 

that is able to pick the plank of these dimensions. The same 

process step has the assemble capability with parameters that 

represent two wooden pins with the space between them of 

0.07m. The output product of this process step is the 

assembled left-bottom side, which will not be stored, but 

will be used by the next process step. Assembling the right-

upper side is an equivalent process step to assembling the 

left-bottom side process step. Both process steps need to be 

executed in parallel, as they are modeled between two 

parallelism gates (PAR). The next process step requires to 

assemble the frame and it has two input products, which are 

left-bottom and right-upper sides from the previous two 

process steps. These input products are not gathered from a 

storage but are equivalent to the previous process steps 

output products, as it is depicted by directed dashed lines in 

the process diagram. This process step has the assemble 

capability and the frame as the output product. The same 

frame is held in the next process step. This process step is a 

part of the collaboration activities, represented between two 

 

Fig. 5 The ML model of the wooden box production example 

 

Fig. 4 Symbols of the MultiProLan concrete syntax 
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collaboration gates (COL). It does not have an output 

product as it is the same as the input product. Another 

process step of the collaboration activities is to hammer the 

back side into the frame that is held. Hammering the back 

side should not start before the message arrives that the 

frame is being held. The frame should be held until the 

message arrives that the hammering is finished. This is 

presented in the process diagram with dotted-line 

relationships between those two process steps. The input 

product of the hammering process step is the back side that 

should be gathered from a storage and the output product is 

the box. The hammer capability has predefined number of 

nails that should be hammered, e.g. eight, and after the 

hammering is finished, the message is sent to the hold 

process step. After the collaboration process steps are 

finished, the box is inspected for any deformation. The 

inspection process step and process steps between decision 

gates also have input and output products and a capability, 

but they are hidden from the diagram using the +/- button at 

the top left corner of process steps. The decision of storing 

or discarding the box should be made depending on whether 

the box passes all checks. These process steps are modeled 

between two decision gates (DEC). The process is finished 

after it reaches the end process step.  

Based on the presented ML model and knowledge from 

Knowledge Base, Orchestrator generates the DL model of 

the wooden box production, which is presented in Fig. 6. 

Due to the paper length limitations, products and capabilities 

are depicted just for process steps in the left parallelism 

branch, while for other process steps they are modeled, but 

not presented on the diagram. Like the presented ML model, 

the generated DL model is composed of the same six parts, 

but the model is extended with additional details and new 

process steps, like production logistic activities and mobile 

robot configurations. These new process steps are needed to 

automatically produce the box. In the rest of this subsection, 

we describe some of the process steps, while others are 

extended in the similar way. The assemble left-bottom side 

and the assemble right-upper side process steps are assigned 

in parallel to a human worker and an industrial mobile robot, 

respectively. In both parallel branches transportation process 

steps have been added, which are depicted with the arrow 

icon at the left side of the process step name. To assemble 

the left-bottom side, the human worker needs to move to the 

smart shelf, pick left and bottom sides, move to the first 

assembly table and assemble these two sides. Transportation 

process steps only have the move capability with the location 

parameter, as products for these steps do not exist. The pick 

process steps have a capability and an input product, but an 

output product does not exist. Unlike the ML model in 

which input products have general storages as an indicator 

that they need to be gathered, the DL model input products 

have the specific storages, e.g. smart shelf, from which the 

products need to be gathered. These specific storages are 

depicted by inverse triangle objects set on input products. By 

selecting a storage, it is possible to specify values of the 

storage attributes, but this is not presented in the diagram 

due to the paper length limitations. Similar could be done with 

resources set on process steps. As for the assemble process 

step input products, they are equivalent to previously picked 

products, which is denoted with the directed dashed lines 

between equivalent products. The capability and the output 

product of this process step are the same as in the ML model.  

Another parallel branch represents assembling of the right-

upper side by the industrial mobile robot. Process steps in 

this branch are similar to process steps of the previously 

described branch, except of the configuration process steps. 

As the industrial mobile robot assigned to these process 

steps is not equipped with the machine vision modules, 

therefore it must be calibrated after each movement to 

 

Fig. 6 The DL model of the wooden box production example 
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determine its position. Configuration process steps can be 

differentiated from other process steps by the gear icon at 

the left side of the process step name. After the left-bottom 

and right-upper sides are assembled, the same human worker 

needs to assemble the frame. This activity does not require 

any transportation process steps as the human worker and 

the required input products are already at the first assembly 

table. The assembled frame is used in the collaboration 

process steps that are extended with transportation and 

configuration process steps in the similar way. The frame 

should be transported to the second assembly table and the 

back side should be gathered from the smart shelf and 

transported to the same table. Hammering the back side into 

the frame should not start before the frame is transported and 

placed on the second assembly table and is being held. Also, 

holding the frame should not end until the hammering is 

finished, and the box is produced. The human worker then 

visually inspects the box for any deformations. Via a mobile 

device the human worker gets detailed instructions generated 

from the description attribute and checks whether the box 

passes the inspection. The decision must be made whether the 

box should be transported and discarded into the recycle bin 

or should be transported and stored into the finishing area. 

Any of these two cases will be done by the human worker. 

 The presented DL model is suitable for automatic 

execution. Code Generator will generate instructions from 

the DL model and Executor will send the instructions to 

smart resources and wait for their response. After the 

response arrives, Executor will send subsequent instructions 

until the production is finished. Code Generator generates 

generic instructions that are passed to Digital Twin in an 

appropriate protocol. Digital Twin receives and transforms 

messages into human-readable or machine-specific commands 

and passes them for execution. Digital Twin also updates the 

digital footprint of all resources it contains. 

V. CONCLUSION AND FUTURE WORK 

In this paper we presented the DSML for modeling 

hardware production processes suitable for automatic 

execution. The goal of the language is to support the 

modeling of all production details required for automatic 

execution, but not to be too complex for a human to 

comprehend. To achieve this goal, two levels of abstraction 

are implemented so that production processes could be 

modeled in a generic way. By creating two levels of 

abstraction, production process models become independent 

from the production system details and thus efforts needed 

during the production process modeling are reduced. 

According to our experience from the industry, a process 

designer still needs to have the knowledge about the 

production system. Consequently, it is hard to make strict 

separation between production process models at PIM and 

PSM levels.  However, we aim to achieve this separation by 

creating ML models and automatically generating DL 

models from them by using Orchestrator and the domain 

knowledge represented in a machine-readable way. Thus, the 

presented research leads one step closer to this goal. The 

language also allows process and quality engineers to 

collaborate on the creation of production process models. 

Created models could be used as a central artefact in a smart 

factory and thus lead the production automatically. Such 

language is implemented in a formal way and thus should 

increase consistency during modeling and decrease the 

amount of time needed for modeling. Integrating the 

language within the proposed MDSD approach should 

increase the production flexibility and contribute to the 

faster lot-size-one production. 

One of the key future steps of our research will be to 

conduct the evaluation of the presented language. Using 

Modeling Tool, the language is tested by industrial process 

designers within an industrial use case [35], but we plan to 

systematically conduct the language evaluation that will 

include researchers and students from the academic 

community and process designers from the industry. During 

the initial MultiProLan validation, process designers were 

able to easily model the entire production process they 

needed and send the models to Orchestrator for execution. 

The evaluation should verify whether the language with 

multiple abstraction levels could make the modeling of 

production processes suitable for automatic execution easier 

comparing with other languages and approaches. Also, the 

evaluation should verify whether the language contributes to 

increasing the factory automation degree.  

We will expand the language with concepts of quality 

assurance and error handling, as an occurrence of any failure 

requires error handling that needs to be carefully carried out 

and modeled [2]. Modeling production errors will cover all 

the basic attributes of FMEA documentation as the FMEA 

sheets will be automatically generated from process models. 

Also, an automatic generation of user manuals is needed. 

These documents contain a textual description of every 

process step and images on how to execute these steps. 

Currently, our Code Generator only generates human-

readable or machine-readable instructions for the automatic 

process execution and should be extended with a feature to 

generate FMEA sheets, user manuals, BOMs and FPCs. 

In addition to the error modeling, we plan to extend the 

language with: (i) subprocesses – to lower complexity of 

graphical process models, (ii) unordered process steps – as 

some activities could be executed in any order, e.g. in Fig. 6, 

the pick left side and the pick bottom side process steps 

should be unordered process steps and (iii) process 

variations – when the same result could be done by 

executing different process steps. 

As the language is currently designed to model a 

hardware production, it could be extended to support the 

modeling of: (i) process production, e.g. breweries, sugar 

factories, pharma factories, (ii) software production and (iii) 

provision of service processes, e.g. banks, health care, 

education. Also, currently there is only the graphical syntax 

of the language. A textual syntax should also be 

implemented as some process designers could find it easier 

to use than the graphical syntax, or they could use the 

combination of these two syntaxes. 

As a part of the future work, we also plan to further 

investigate the usability of MultiProLan. The emphasis will be 

on the collaboration between various participants and artefacts 

during the specification of a production process model. 
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