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Abstract—In 2017, Vaswani et al. proposed a new neural
network architecture named Transformer. That modern archi-
tecture quickly revolutionized the natural language processing
world. Models like GPT and BERT relying on this Transformer
architecture have fully outperformed the previous state-of-the-
art networks. It surpassed the earlier approaches by such a wide
margin that all the recent cutting edge models seem to rely on
these Transformer-based architectures.
In this paper, we provide an overview and explanations of the
latest models. We cover the auto-regressive models such as GPT,
GPT-2 and XLNET, as well as the auto-encoder architecture
such as BERT and a lot of post-BERT models like RoBERTa,
ALBERT, ERNIE 1.0/2.0.

I. INTRODUCTION

T
HE understanding and the treatment of the ubiquitous

textual data is a major research challenge. The tremen-

dous amount of data produced by our society through social

media and companies has exploded over the past years. All

those information are most of the time stored under textual

format. The human brain can extract the meaning out of text

effortlessly, but this is not the case for a computer. It is then

required to have performing and reliable techniques to treat

this data.

The Natural Language Processing (NLP) domain aims to

provide a set of techniques able to explain a wide variety of

Natural Language tasks such as Automatic Translation [1],

Text Summarization [2], Text Generation [3]. All those tasks

have in common the meaning extraction process to be suc-

cessful. Undoubtedly, if a technique were able to understand

the underlying semantic of texts, this would help to resolve

the majority of the modern NLP problems.

A big concern that restricts a general NLP resolver is the

single-task training scheme. Gathering data and crafting a

specific model to solve a precise problem works successfully.

However, it forces us to come up with a solution not only

each time a new issue arises but also to apply the model on

another domain. A general multi-task solver may be preferable

to avoid this time-consuming point.

Recurrent Neural Networks (RNN) were massively used to

solve NLP problems. They have been popular for a few years

in supervised NLP models for classification and regression.

The success of RNNs is due to the Long Short Term Memory

(LSTM) [4] and Gated Recurrent Unit (GRU) [5] architectures.

Those two units prevent the vanishing gradient issue by

providing a more direct way to the backpropagation of the

gradient. It helps the computation when the sentences are long.

The high versatility of those networks can solve a wide

variety of problems [6]. Unfortunately, those models are not

perfect; the inherent recurrent structure made them hard to

parallelize on multiple processes, and the treatment of very

long clauses is also problematic due to the vanishing gradient.

To counter those two limiting constraints, [7] introduced a

new model architecture: the Transformer. The proposed tech-

nique get rid of the recurrent architecture to rely on attention

mechanism solely. Furthermore, it does not suffer from the

gradient vanishing nor the hard parallelization issue. That

facilitates and accelerates the training of broader networks.

This work aims to provide a survey and an explanation of

the latest Transformer-based models.

II. BACKGROUND

In this section, we introduce a general NLP background. It

gives a broad insight into the unsupervised pre-training and

the NLP state-of-the-art pre-Transformers.

A. Unsupervised Pre-training

The unsupervised pre-training is a particular case of semi-

supervised learning. That is massively used to train the Trans-

former models. That principle works in two steps; the first one

is the pre-training phase. It computes a general representation

from raw data in an unsupervised fashion. Second, once it is

computed, it can be adapted to a downstream task via fine-

tuning techniques.

The principal challenge is to find an unsupervised objective

function that generates a good representation. There is no

consensus on which task provides the most efficient textual de-

scription. [8] propose a language modelling task, [9] introduce

a masked language modeling objective, [10] use a multi-tasks

language modeling.

B. Context-free representation

The recent significant increase in the performance of NLP

models is due to the use of word embeddings. It consists

of representing a word as a unique vector. The terms with

the same meaning are located in a close area of each other.

Word2Vec [11] and Glove [12] are the most frequently used

word embedding methods. They treat a large corpus of text and
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produce a unique word representation in a high dimensional

space.

Byte Pair Encoding (BPE) [13] is another word embedding

technique using subwords units out of character-level and

word-level representation. [14] changed the implementation

of BPE to be based on bytes instead of Unicode characters.

Thus, he could reduce the vocabulary size from 100K+ to

approximately 50K tokens. That has the advantage not to

introduce [UKN] (unknown) symbols. Besides that, it does

not involve a heuristic preprocessing of the input vocabulary.

It is used when the amount of corpus to treat is too large and a

more efficient technique than Word2Vec or Glove is required.

C. Attention Layer

Primarily proposed by [5], the attention mechanism aims to

catch the long-term dependencies of sentences. The relation-

ships between entities in phrases are hard to spot. Furthermore,

it is necessary to get a strong understanding of the underlying

structure of sentences. Indeed, if we can have a method that

can tell us how the units of a sentence are correlated in

a phrase, the language understanding tasks would be more

straightforward.

The attention mechanism computes a relation mask between

the words of a sentence and uses this mask in an encoder-

decoder architecture to detect which words are related within

each other. Using this process, the NLP tasks such as automatic

translation are more flexible because they can have access to

the dependencies of the sentence. In a translation context, it is

a genuine advantage. Another notable benefit of the attention

mechanism is the straightforward human-visualization of the

model’s outcome.

III. DATASET

The dominant strategy in the creation of deep learning sys-

tems is to gather a corpus corresponding to a given problem.

The next step is to label this data and build a network that is

supposedly able to explain them. This method is not suitable

if we want to create a more comprehensive system (i.e. a

system that can solve multiple problems without a significant

architecture change).

That is then essential to learn on heterogeneous data to

create general NLP models. If we want systems that can

resolve several tasks at the same time, it is necessary to

train this model on a wide variety of subjects. Hopefully, in

our ubiquitous data world, a large number of raw texts are

available online (e.g. Wikipedia, Web blogs, Reddit).

Table I shows the most commonly used datasets with their

size and the number of tokens they contain. The tokenization

is done with SentencePiece [15]. In a few cases, for example,

in [16], the authors only used a subset of those datasets (e.g.

Stories [17] is a subset of CommonCrawl dataset).

IV. BENCHMARKS

During an extended period, the deep learning models have

been trained to resolve one problem at a time. Further, when

those models were used in another domain, they struggle to

TABLE I
DATASETS COMMONLY USED WITH TRANSFORMER-BASED MODELS. (†:
TOKENIZATION DONE WITH SENTENCEPIECE, ‡: UNCOMPRESSED DATA)

Dataset Size Number of tokens †

BookCorpus [18]

plus English Wikipedia 13GB 3.87B

Giga5 [19] 16GB 4.75B

ClueWeb09 [20] 19GB 4.3B

OpenWebText [21] 38GB -

Real-News [22] 120GB ‡ -

generalize correctly. That is the idea that promotes the creation

of GLUE, SQuAD V1.1/V2.0 and RACE to have benchmarks

able to check the reliability of models on various tasks.

GLUE: The General Language Understanding Evaluation

(GLUE) [23] is a collection of nine tasks created to test the

generalization of modern NLP models. It reviews a wide range

of NLP problems like Sentiment Analysis, Question Answer-

ing and inference tasks. Because of the rapid improvement

of the state-of-the-art on GLUE, SuperGLUE [24] is a new

proposed benchmark to check general language systems but

with more complicated more laborious tasks.

SQuAD: Stanford Question Answering Dataset (SQuAD)

V1.1 [25] is a benchmark designed to resolve Reading Com-

prehension (RC) challenges. There are more than 100,000+

questions in the data set. There is no proposed answer like

in the other RD datasets. The task contains a document, and

the model has to find the answer directly in the text passage.

SQuAD v2.0 [26] is based on the same principle than the V1.1,

but this time the answer is not necessarily in the questions.

RACE: Reading Comprehension From Examinations

(RACE) [27] is a collection of English questions set aside

to Chinese students from middle school up to high school.

Each item is divided into two parts, a passage that the student

must read and a set of 4 potential answers. Considering

that the questions are intended to teenagers, it requires keen

reasoning skills to answer correctly to most of the problems.

The reasoning subjects present in RACE cover almost all

human knowledge.

V. TRANSFORMERS

The RNNs (LSTM, GRU) have a recurrent underlying

structure and are, by definition recurrent. It is then hard to

parallelize the learning process because of this fundamental

property. To overcome this issue, [7] proposed a new archi-

tecture solely based on the attention layers; the Transformer.

It has the advantage to catch the long-range dependencies of

a sentence and to be parallelizable.

A. Transformer architecture

The Transformer is based on an encoder-decoder structure,

where it takes a sequence X = (x1, ..., xN ) and produce

a latent representation Z = (z1, ..., zN ). Due to the auto-

regressive property of this model, the output sequence YM =
(y1, ..., yM ) is produced one element at a time. i.e. the
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word YM used the latent representation Z and the previously

created sequence YM−1 = (y1, ..., yM−1) to be generated.

The Encoder and the Decoder are using the same Multi-Head

Attention layer. A single Attention layer maps a query Q and

keys K to a weighted sum of the values V . For technical

reason there is a scaling factor 1
√

dk

.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V

B. Auto-Regressive Models

The auto-regressive models take the previous outputs to

produce the next outcome. It has the particularity to be a

unidirectional network; it can only reach the left context

of the evaluated token. However, despite this flaw, it can

learn accurate sentence representations. It relies on the regular

Language Modeling (LM) task as an unsupervised pre-training

objective:

L(X) =
∑

i

logP (xi|xi−k, ..., xi−1; Θ)

This LM function maximizes the likelihood of the condi-

tional probability P . Where X is the input sequence, k is

the context window, and Θ are the parameters of the Neural

Network.

Various models are using this property coupled with the

Transformer architecture to produce accurate Language Model

languages (i.e. it determines the statistical distribution of

the learned texts). The first auto-regressive model using the

Transformer architecture is GPT [8]. It has a pre-training

Language Modeling phase where it learns on raw texts. In

the second learning phase, it uses supervised fine-tuning to

adjust the network to the downstream tasks.

GPT-2 [14] uses the same pre-training principles than GPT.

Though, this time it tries to achieve the same results in a

zero-shot fashion (i.e. without fine-tuning the network to the

downstream tasks). To accomplish that goal, it must capture

the full complexity of textual data. To do so, it needs a wider

system with more parameters. The results of this model are

competitive to some other supervised tasks on a few subjects

(e.g. reading comprehension) but are far from being usable on

other jobs such as summarization.

Another auto-regressive network is XLNet [28]. It aims

to use the strength of the language modeling of the auto-

regressive model and at the same time, use the bidirectionality

of BERT [9]. To do so, it relies on transformer-XL [29], the

state-of-the-art model for the auto-regressive network.

C. BERT

GPT and GPT-2 use a unidirectional language model; they

can only reach the left context of the evaluated token. That

property can harm the overall performance of those models

in reasoning or question answering tasks. Because, in those

topics, both sides of the sentence are crucial to getting an

optimal sentence-level understanding.

To counter this unidirectional constraint, [9] introduced

the Bidirectional Encoder Representations from Transformers

(BERT). This model can fuse the left and the right context of

a sentence, providing a bidirectional representation and allow

a better context extractor for reasoning tasks. The architecture

of BERT is based on the Multi-Head Attention layers encoder

like proposed in [7]. Originally [9] proposed two versions of

BERT, the base version with 110M of parameters and the large

version with 340M parameters.

Like GPT and GPT-2, BERT has an unsupervised pre-

training phase where it learns its language representation.

Nevertheless, due to its inherent bidirectional architecture,

it cannot be trained using the standard Language Model

objective. Indeed, the bidirectionality of BERT allows each

word to see itself, and therefore it can trivially predict the next

token. To overcome this issue and pre-train their model, [9]

use two unsupervised objective tasks: the Masked Language

Model (MLM) and the Next Sentence Prediction (NSP).

Once the pre-training phase is over, it remains to fine-tune

the model to the downstream tasks. Thanks to BERT’s Trans-

former architecture, the downstream can be straightforwardly

done because the same structure is used for the pre-training

and the fine-tuning. It merely needs to change the final layer

to match the requirements of the downstream task.

VI. POST-BERT

Due to the high performance of BERT on 11 NLP tasks, a

lot of researchers inspired by BERT’s architecture applied it

and tweaked it to their needs [30], [31].

A. BERT improvement

Further, studies have been done to improve the pre-training

phase of BERT. The post-BERT model RoBERTa [16] pro-

poses three simple modifications of the training procedure. (I)

Based on their empirical results, [16] shows that BERT is un-

dertrained. To alleviate this problem, they propose to increase

the length of the pre-training phase. By learning longer, the

outcomes are more accurate. (II) As the results of [32] and

[14] demonstrate, the accuracy of the end-task performance

relies on the wide variety of trained data. Therefore, BERT

must be trained on larger datasets. (III) In order to improve

the optimization of the model, they propose to increase the

batch size. There are two advantages to have a bigger batch

size; First, the large batch size is easier to parallelize, and

second, it increases the perplexity of the MLM objective.

B. Model reduction

Since the Transformer’s revolution, state-of-the-art networks

have become bigger and bigger. Accordingly, to have a better

language representation and better end-task results, the models

must grow to catch the high complexity of texts. This ex-

pansion of the network’s size has a high computational cost.

More powerful GPUs and TPUs are required to train those

large models. If we take, for example, the Nvidia’s GPT-8B 1

with 8 billion parameters, it became infeasible for small tech

companies or small labs to train a network as huge as that.

1https://nv-adlr.github.io/MegatronLM
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It is then necessary to find smaller systems that maintain the

high performances of the bigger ones.

Working with smaller models has multiple advantages. If

the model size is shrunk, it trains faster, and the inference

time will also be reduced. If it is small enough, it can be run

on smartphones or IoT devices in real-time.

One technique introduced to reduce the size of those big

networks is the knowledge distillation. It is a compression

method that consists of a small network (student) trained to

reproduce the behaviour of a bigger version of itself (teacher).

The teacher is primarily trained as a regular network, and after

that, it is distilled to reduce its size. DistilBERT [33] is a

distilled version of BERT that reduces the number of layers by

a factor of 2. It retains 97% of BERT on the GLUE benchmark

while being 40% smaller and 60% faster at the inference time.

Another way to reduce the size of BERT is by changing

the architecture itself. AlBERT [34] proposes two ideas to

decrease the number of parameters. The first approach factor-

izes the embedding of the parameters. It separates the large

vocabulary embedding matrix into two smaller matrices. The

size of the hidden layer is separated from the size of the

vocabulary representation. The second method is a cross-layer

parameter sharing. This technique prevents the parameters

from growing with the depth of the network. With those two

tricks, it allows reducing the size of the large BERT version

by 18% without a loss of performance. Since this architecture

is smaller, the training time is also faster.

C. Multitask Learning

BERT learns several tasks sequentially and increases the

overall performance of the downstream end-tasks. The main is-

sue with the continual pre-training method is that it must learn

efficiently and quickly newly introduced sub-tasks, and it must

remember what has been learned previously. The Multi-task

Learning (MTL) principle is based on human consideration.

If you learn how to do a first task, then a second related task

is going to be more accessible to master. There are two main

trends in MTL.

The first one uses an MTL scheme during the fine-tuning

phase. MT-DNN [35] based on the backbone of BERT is using

the same pre-training procedure, but during the fine-tuning

step, it uses four multi-tasks. Training on all the GLUE tasks at

the same time makes it gain an efficient generalization ability.

On the opposite [10] proposes an MTL process directly

during the pre-training step; ERNIE 2.0 introduces a continual

pre-training framework. More specifically, it uses a Sequential

Multi-task Learning where it begins to learn a first task.

When this first task is mastered, a new task is introduced

in the continual learning process. The previously optimized

parameters are used to initiate the model, the new task and

the previous tasks are trained concurrently. There are three

groups of pre-training tasks, and each of them aims to capture

a different level of semantic:

Word-Aware Tasks: It captures the lexical information of

the text: the Knowledge Masking Task (i.e. it masks phrases

and entities), the Capitalization prediction (i.e. it predicts if a

word has a capitalized first letter), and the Token-Document

Relation Prediction Task (i.e. it predicts if a token of a sentence

belongs to a document where the sentence initially appears).

Structure-Aware Tasks: It learns the relationship between

sentences: sentence reordering task (i.e. split and shuffle a

sentence and must find the correct order), sentence distance

task (i.e. it must find if two sentences are adjacent, belong to

the same document or if they are entirely unrelated).

Semantic-Aware Tasks: It learns a higher order of knowl-

edge: discourse relation task (i.e. it predicts the semantic or

rhetorical relation of sentences), IR relevance task (i.e. find

the relevance of information retrieval in texts).

D. Specific language models

In order to tackle specific languages problems, different

monolingual versions of BERT were trained in different

languages. For example BERTje [36] is a Dutch version,

AlBERTo [37] is an Italian version, and CamemBERT [38]

and FlauBERT [39] are two different models for French.

These models outperform vanilla BERT in different NLP tasks

specific to these languages.

E. Cross-language model

XLM [40] aims to build a universal cross-language sentence

embedding. The goal is to align sentence representations

to improve the translation between languages. To do so, a

Transformer architecture with two unsupervised tasks and

one supervised is used. The effectiveness of cross-language

pre-training in order to improve the multilingual machine

translation is shown.

VII. GOING FURTHER

Despite the excellent performances of the Transformer ar-

chitecture, new layers aiming to improve the performance and

the complexity have been released.

The Transformer uses a gradient-based optimization proce-

dure. Thus, it needs to save the activation value of all the

neurons to be used during the back-propagation. Because of

the massive size of the Transformer models, the GPU/TPU’s

memory is rapidly saturated. The Reformer [41] counter the

memory problem of the Transformer by recomputing the input

of each layer during the back-propagation instead of storing

the information. The Reformer can also reduce the number

of operations during the forward pass by computing a hash

function that pairs similar inputs together. Like that, it does not

compute all pairs of vectors to find the related ones. Therefore,

it increases the size of the text it can treat at once.

Another way to improve the architecture of a network

is by using an evolving algorithm as proposed by [42]. To

create a new architecture designed automatically, they evolve

a population of Transformers based on their accuracy. Using

the Progressive Dynamic Hurdles (PDH), they could reduce

the search space and the training time. With this technique

and an extensive amount of computational power (around 200

TPUs), they could find a new architecture that outperforms the

previous one.
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VIII. CONCLUSION

The Transformer-based networks have pushed the

reasoning-skills to human-level abilities. It can even excel the

human capabilities on a few tasks of GLUE. Transformer-

based networks have changed the face of NLP tasks. They

can go far beyond the results obtained with RNNs, and they

can do it faster. They have helped solve many problems at the

same time by providing a direct and efficient way to combine

several downstream tasks. Nevertheless, much work remains

before having a system with a human-level comprehension

of the underlying meaning of texts, that is also sufficiently

small to run on devices with low computational power.
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