
Simulator of a Supercomputer Job Management

System as a Scientific Service

Gennadiy Savin, Boris Shabanov, Dmitriy Lyakhovets, Anton Baranov, Pavel Telegin

Joint Supercomputer Center of the Russian Academy of Sciences

Leninsky prospect, 32a, Moscow, 119334, Russian Federation

Email: [savin, shabanov]@jscc.ru, anetto@inbox.ru, antbar@mail.ru, ptelegin@jscc.ru

Abstract—Job management system (JMS) is an important part
of any supercomputer. JMS creates a schedule for launching
jobs of different users. Actual job management systems are
complex software systems with a number of settings. These
settings have a significant impact on various JMS metrics, such
as supercomputer resources utilization, mean waiting time of a
job in queue, and others. Various JMS simulators are widely
used to study the influence of JMS settings or modifications,
new scheduling algorithms, jobs input stream parameters or
available computing resources for JMS efficiency metrics. The
article presents the comparative analysis results of the actual JMS
simulators (Alea, ScSF, Batsim, AccaSim, Slurm simulator) and
their application areas. The authors consider new ways to use the
JMS simulator as a scientific service for researchers. With such
a service, the researchers are able to study various hypotheses
about JMS efficiency, algorithms or parameters. This gives the
folowing: (1) research is performed on the service side around
the clock, (2) the simulator accuracy or adequacy is provided
by the service, (3) the research results reproducibility is ensured,
and the simulator-as-a-service becomes a single entry point for
the researchers.

I. INTRODUCTION

J
OB MANAGEMENT system (JMS) is an essential soft-

ware for multi-user high performance computing [1]. JMS

handles a queue of user jobs, determines job launch order,

allocates computing nodes for launched jobs, controls job

termination and checks that nodes are freed after job termi-

nation. A number of metrics, such as resources utilization,

mean waiting time of a job in queue, and others, measure

JMS quality.

Modern JMS have been evolving for decades, and now

JMS are complex software systems with a lot of adjustable

parameters. The example of the parameters is a scheduling

algorithm and its options, users and groups priority, job size

limitation. The parameters optimization could be challenging

because parameters influence on JMS quality can be far from

obvious.

A job launch order in most of the JMS is based on job

time limits specified by users. JMS terminates the job when it

reaches job limit. Most of JMSs provide worst-case job launch

time to a user (if no nodes are broken) when every job in queue

ends at its limit. The research [2] shows that most of the jobs

end far before their limits.

The work was carried out within the RFBR grant (project No. 18-29-03236),
and the framework the JSCC RAS government assignment

Every job launch time forecasting is a challenge. The fore-

cast could provide to a user more precise launch time estima-

tion. Such forecast is especially important for geographically

distributed supercomputer systems. Note the integration of

geographically distributed supercomputer resources is a steady

high-performance computing trend [3]. The main goal of this

integration is creation of a digital platform to meet the scien-

tific, educational and industrial needs for high-performance

computing. The digital platform can include several JMSs.

Each JMS could have its own input job stream, so the digital

platform integrates multiple input job streams. In general, any

job from any input stream can be assigned to any JMS of

the platform. As a result, the job management complexity

increases significantly, so as the prediction complexity of

the job launch time and location. The launch location is a

supercomputer in the distributed digital platform, where the

job will be executed. To schedule jobs in a distributed system

efficiently, it is necessary to predict the release time of the

required computing resources in each of the JMS accurately

[4]. Job launch time forecast allows to determine the JMS

where a job could be executed faster. The forecast could

be used to schedule a global job queue for the distributed

supercomputer system [5]. Job from the global queue could be

executed on less busy JMS which reduces resource imbalance.

This can be achieved by modelling of the management system

in order to predict the launch time and location for each job.

We assume to model up to hundreds of thousands jobs per

year executed on tens of thousands nodes from thousands of

different users.

Of particular interest are different aspects of JMS modelling

to solve two tasks mentioned above. The first task is JMS

parameters optimization. The second task is job launch time

forecasting. Most popular JMS model implementation is a sim-

ulator, thus we would use the words «model» and «simulator»

as synonyms.

II. RELATED WORK

Nowadays a number of JMS is available, for instance,

SLURM [6], PBS [7], LSF [8]. SUPPZ [9] is an example of

domestic JMS, which has been used in Joint Supercomputer

Center of the Russian Academy of Sciences (JSCC RAS) for

more than 20 years. Of particular note is JMS for relatively

small clusters named OAR [10]. In the paper [11] authors

investigate some techniques to provide malleable behavior on

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 413–416

DOI: 10.15439/2020F208

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 413



MPI applications and the impact of this support upon the OAR

resource manager.

Many JMS models can be found in the literature. There are

both models of existing JMS (like SLURM, SUPPZ, OAR)

and models of general JMS. Let us consider recent papers for

JMS modelling. Existing JMS modelling tools can be divided

into 3 classes: modelling languages, software platforms and

simulators.

Modelling languages fully support the modelling process —

the model time control and the object interaction in the system.

This allows the researcher to focus on the description of the

JMS model essential properties and characteristics. In this

case, the researcher must independently reproduce the entire

JMS operation logic — build a supercomputer model with the

given characteristics and the jobs processing order, create a

job scheduler with a given scheduling algorithm, describe the

input job stream, develop program modules for conducting the

experiment and collecting the necessary results. Specialized

languages such as AnyLogic [12], ExtendSIM [12], GPSS

World [13], Simulink [12] can be used to build a JMS model.

AnyLogic is a general-purpose modelling language develop-

ing since 2000. Model development is performed in a graphical

interface, the Java programming language is supported to

finalize the components. ExtendSIM has been in development

since 1987. ExtendSim has a user-friendly interface and does

not require special knowledge and programming skills. It is

enough to draw a block diagram of the modeled process and

enter the initial data using the necessary block settings. GPSS

World is one of the earliest modelling languages created in

1961. A GPSS program is a sequence of statements displaying

events. Simulink is a modelling language developing since

1984 that provides tight integration with MATLAB.

Software platforms for JMS modelling allow reducing the

time to implement the model due to the parts of the mod-

eled systems and components for displaying various data

(for example, statistical) implemented in the platform. The

software platform provides typical entities, such as «comput-

ing module», «job», «job scheduler» with a wide range of

different characteristics. The developer builds a model from

ready-made large blocks and configures them for solving the

problem. Software platforms such as SimGrid [14], GridSim

[15] are widespread. SimGrid is a software platform for

developing distributed application simulators, developing since

1999. GridSim developing since 2002 is widely used by

various researchers to model grid systems and JMS.

JMS simulators provide the researher with a ready model

that needs to be configured. Model configuration may re-

quire code development. Examples of JMS simulators are

MONARC [16], Alea [17], OptorSim [18], WorkflowSim [19].

MONARC has been developed since 2000 and is designed to

analyze large-sized systems. A key aspect of this simulator

is wide opportunities for monitoring system components [20].

Alea is based on GridSim and has been in development since

2007. The Alea main purpose is the scheduling algorithms

study, and a number of scheduling algorithms is already

implemented in the simulator. WorkflowSim has been in

development since 2012. The WorkflowSim main purpose is

the job stream processing optimization [20]. OptorSim has

been under development since 2003. In OptorSim, it is possible

to configure the network topology between computing nodes

with their throughput and the job data volume.

We are going to take a detailed look at Batsim [21],

created for OAR modelling. In the paper authors criticize

current situation when other modelling researches are hard

to reproduce. Authors mention that often models are not

used after results publication. One of the problems in JMS

modelling is complexity of experiment reproduction due to

model unavailability, lack of input or output data (in case

when average metrics are published, but not all of the outputs),

no access to the experimental environment [21].The solution

presented by the authors is their own model Batsim which can

be used by other researchers. Beside that, the authors suggest

to publish full experiment plan, including all parameters,

inputs and outputs. Batsim validation consists of Gantt chart

of workload, plot of the difference between the real and the

simulated execution time (so as for submission and turnaround

time) of all jobs in workload. The plot comparison is done

visually. Authors note the difference between the real system

and the model.

Paper [22] states that available modelling tools do not

cover the full cycle of modelling, generation, simulation, and

analysis. The authors present their own model — scheduler

simulation framework (ScSF), model of SLURM. There is no

way to use the fixed job input for ScSF because input generator

is a mandatory part of ScSF. Paper notes the complexity of

long simulations since their few weeks experiment sometimes

failed due to power cuts, hypervisor or VM failures and system

updates. There is no model validation found in the paper.

Paper [23] represents a new version of SLURM simulator.

For model validation there are plots of job start time differ-

ence between simulated and real SLURM runs. The authors

calculated average and standart deviation of all job start time

differences. Plots for real system and its model are compared

visually. There are data for natural modelling on a small cluster

(10 computing nodes) in the paper.

There is a new Alea version presented in paper [24]. Alea

is the model of general JMS. The paper provides technical

details of the model and data about simulation speed. There

is no model validation found in the paper.

Paper [25] presents an AccaSim model of general JMS,

which is compared to Batsim and Alea. Comparison with ScSF

is not done due to high system requirements and complex

configuration. Also ScSF could not use fixed job input, only

generation of a new one was possible during the experiment.

There is no model validation found in the paper, but there is

validation of input generator.

The above analysis of papers about modelling revealed two

scientific problems for further development.

The first problem is model validation, more precisely lack of

common ways to measure model adequacy and accuracy. Other

researchers skip validation, or compare some plots visually or

calculate average metrics. There are no analytic measures for

414 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



input event stream output event model stream

Job management 

system model

Fig. 1. JMS model research

model accuracy. The authors are investigating this problem,

first results are presented at [26].

III. JMS MODEL AS A SCIENTIFIC SERVICE

Modern way of JMS research could be explained as follows.

A researcher creates a JMS model [26], for example, a JMS

simulator. The researcher experiments with some input event

stream and model with fixed parameters and saves output

model stream (see Fig. 1). Output model stream could be saved

in some kind of a plain text file or in a database. The database

is not a bottleneck in this case. Authors use PostgreSQL.

MySQL is used in SLURM simulator.

Then the researcher modifies input event stream (e.g.,

changing job density) or JMS model (e.g., changing scheduling

algorithm or its options), repeats the experiment and gets new

output model stream. By analyzing output stream before and

after the changes the researcher can determine if modifications

were good or bad (for example, old algorithm provided 95%

average utilization and the new one provided 96%). Reability

of the results is ensured by series of experiments, and results

are presented as average of some metric and its standard

deviation. Improvement is significant if it is bigger than the

deviation.

The above way of research faces the following problems:

1) Researchers have to develop their own JMS model or

to master the existing ones — its installing, configur-

ing, ways to form an input event stream, getting and

analyzing the result [21].

2) Researchers have to validate JMS model on their own.

3) It is hard to reproduce experiments of other researches.

Used models could not be found publicly, or research

could not provide all of the input or output streams (for

example, only average metrics could be published).

All of the problems can be solved if a JMS model operates

alongside with the real JMS. Organization providing the JMS

for users could also provide a JMS model as a scientific

service for researchers. In that case JMS model development,

its installation, configuring and validation is done once by

the organization, and researchers use the model over and over

again.

JMS model as a scientific service extends the field of JMS

research. Often the research relies on some old data (for a

period in the past) or a generated input event stream (generated

to statistically the same as real stream for some period).

Simulator-as-a-service allows to experiment with most recent

streams, close to the real-time. Such a simulator could be

used to forecast job launch times in real-time. Besides, such

a service could constantly calculate model adequacy.

Building the simulator-as-a-service is a challenging job. Let

us consider various options of service organization.

input event stream

output event model stream

Job management 

system model

Job management 

system

output event stream

Fig. 2. Using JMS model in real-time

input event stream

output event model stream

Job management 

system model

Job management 

system

Jobs real execution time

output event stream

Fig. 3. Using JMS model in real-time with feedback

For real-time research we should duplicate input event

stream to both real JMS and its model (see Fig. 2). In this case

a technical problem reveals — there is no real job execution

time in input event stream, which is often less than the limit

specified by user.

Thus, JMS model does not have an important value in input

stream — real execution time. Let us consider ways to get it.

The first way is to add a feedback from JMS to JMS model

(see Fig. 3). After the job ends, JMS notifies the model about

real execution time.

The second way is to forecast real execution time. In this

case for every submitted task real execution time is forecasted

basing on statistics (see Fig. 4).

Result of combination of the two ways is JMS model with

feedback, and forecast (see Fig. 5). For every submitted job,

real execution time is forecasted basing on statistics. When the

job ends, real JMS notifies the model and replaces the forecast

with the actual execution time which allows to constantly

correct forecasting and improve its precision.

Simulator-as-a-service reduces the complexity for re-

searchers. They can concentrate on scientific aspects of exper-

iments. Additional advantage is reproducibility improvements.

Using a JMS model in real-time enables the continuous

comparison of real and model output streams which allows

to modify a JMS model to improve its accuracy. Using a JMS

model in real-time with forecasting and feedback allows to

input event stream

output event model stream

forecasting 

subsystem

Job management 

system

JMS model

output event stream

Fig. 4. Using JMS model in real-time with forecasting

GENNADIY SAVIN ET AL.: SIMULATOR OF A SUPERCOMPUTER JOB MANAGEMENT SYSTEM AS A SCIENTIFIC SERVICE 415



input event stream

output event model stream

forecasting 

subsystem

Job management 

system

Jobs real execution time

JMS model

output event stream

Fig. 5. Using JMS model in real-time with forecasting and feedback

improve forecasting subsystem which later could be used for

scheduling.

IV. CONCLUSION

The authors’ JMS models analysis revealed the complexity

of other researchers’ models reproduction. Lack of used soft-

ware or its installation or configuration complexity, incomplete

input or output event streams, lack of common ways to validate

a model — all these makes every researcher to repeat a huge

amount of work in order to search, configure, execute and

validate a model.

We suggest a new approach for experimental study of JMS

based on once developed and then publicly served JMS model

used by researchers. The approach does not restrict researchers

in using their own models or creating new simulators as a

service. Simulator-as-a-service could attract more researchers

making JMS model easy to use for any kind of research.

The main purpose of the simulator-as-a-service is to research

the influence of new scheduling algorithms or scheduling

parameters on JMS quality metrics.

We outlined different ways to build a JMS model simulator-

as-a-service: to work in real-time, in real-time with feedback,

in real-time with forecasting, in real-time with forecasting and

feedback.

REFERENCES

[1] A. Reuther et al. “Scalable system scheduling for HPC and big data,”
J. of Parallel and Distributed Computing, vol. 111, 2018, pp. 76–92.
https://dx.doi.org/10.1016/j.jpdc.2017.06.009

[2] A. V. Baranov, E. A. Kiselev, D. S. Lyakhovets, “The quasi scheduler
for utilization of multiprocessing computing system’s idle resources
under control of the Management System of the Parallel Jobs,” Bul.

of the South Ural State University. Series Comp. Math. and Software

Engineering, issue 3(4), 2014, pp. 75–84 (in Russian). https://dx.doi.org/
10.14529/cmse140405

[3] B. Shabanov, A. Ovsiannikov, A. Baranov, S. Leshchev, B. Dolgov, and
D. Derbyshev, “The distributed network of the supercomputer centers for
collaborative research,” in Program systems: Theory and applications,

8:4(35), 2017, pp. 245–262 (In Russian). https://dx.doi.org/10.25209/
2079-3316-2017-8-4-245-262

[4] N. N. Kuzyurin, D. A. Grushin, and S. A. Fomin, “Two-dimensional
packing problems and optimization in distributed computing systems,”
in Proc.of the Institute for System Programming of the RAS, vol. 26, no
1, 2014, pp. 483–502 (in Russian).

[5] A. I. Tikhomirov, “The English Auction Method for Scheduling Jobs in
a Distributed Network of Supercomputer Centers,” Lobachevskii J. of

Math., vol. 40, issue 5, 2019, pp. 606–613. https://dx.doi.org/10.1134/
s1995080219050214

[6] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” Lecture Notes in Comp. Science,

vol. 2862, 2003, pp. 44–60. https://dx.doi.org/10.1007/10968987_3

[7] R. L. Henderson, “Job scheduling under the Portable Batch System,”
Lecture Notes in Comp. Science, vol. 949, 1995, pp. 279–294. https:
//dx.doi.org/10.1007/3-540-60153-8_34

[8] IBM Spectrum LSF overview, https://www.ibm.com/support/
knowledgecenter/en/SSWRJV_10.1.0/lsf_foundations/chap_lsf_
overview_foundations.html

[9] G. I. Savin, B. M. Shabanov, P. N. Telegin, and A. V. Baranov, “Joint
Supercomputer Center of the Russian Academy of Sciences: Present
and Future,” Lobachevskii J. of Mathematics, vol. 40, issue 11, 2019,
pp. 1853–1862. https://dx.doi.org/10.1134/S1995080219110271

[10] N. Capit et al., “A batch scheduler with high level components,” in IEEE

Int. Symp. on Cluster Comp. and the Grid, Cardiff, Wales, UK, vol. 2,
2005, pp. 776–783. https://dx.doi.org/10.1109/CCGRID.2005.1558641

[11] M. C. Cera et al., “Supporting Malleability in Parallel Architectures
with Dynamic CPUSETs Mapping and Dynamic MPI,” in Distributed

Computing and Networking, 2010, pp. 242–257. https://dx.doi.org/10.
1007/978-3-642-11322-2_26

[12] I. M. Yakimov, M. V. Trusfus, V. V. Mokshin, and A. P. Kirpichnikov,
“AnyLogic, ExtendSim and Simulink Overview Comparison of Struc-
tural and Simulation modelling Systems,” in Proc. 3rd Russian-Pacific

Conf. on Computer Technology and Applications (RPC), Vladivostok,

2018, pp. 1–5. https://dx.doi.org/10.1109/RPC.2018.8482152
[13] S. W. Cox, “GPSS World: A brief preview,” in 1991 Winter Simulation

Conference Proceedings, Phoenix, AZ, USA, 1991, pp. 59–61. https:
//dx.doi.org/10.1109/WSC.1991.185591

[14] A. Legrand, M. Quinson, H. Casanova, and K. Fujiwara, “The SIMGRID
Project Simulation and Deployment of Distributed Applications,” in 15th

IEEE Int. Conf. on High Performance Distributed Computing, Paris,

2006, pp. 385–386. https://dx.doi.org/10.1109/HPDC.2006.1652196
[15] S. R. Chelladurai, “Gridsim: a flexible simulator for grid integration

study,” 2017. https://dx.doi.org/10.24124/2017/1375
[16] I. C. Legrand and H. B. Newman, “The MONARC toolset for simulating

large network-distributed processing systems,” in Winter Simulation

Conf. Proc. (Cat. No.00CH37165), Orlando, FL, USA, vol.2, 2000,
pp. 1794–1801. https://dx.doi.org/10.1109/WSC.2000.899171

[17] D. Klusacek, H. Rudova, “Alea 2: job scheduling simulator,” in SIMU-

TOOLS ICST, 2010. https://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.
8722

[18] W. H. Bell, D. G. Cameron, F. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “Optorsim: A Grid Simulator for Studying Dynamic Data
Replication Strategies,” The Int. J. of High Performance Comput-

ing Applications, 17(4), 2003, pp. 403–416. https://dx.doi.org/10.1177/
10943420030174005

[19] W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating
scientific workflows in distributed environments,” in 2012 IEEE 8th Int.

Conf. on E-Science, Chicago, IL, 2012, pp. 1–8. https://dx.doi.org/10.
1109/eScience.2012.6404430

[20] J. Taheri, A. Zomaya, S. Khan, “Grid Simulation Tools for Job Schedul-
ing and Data File Replication,” in Scalable Computing and Communi-

cations: Theory and Practice, New Jersey: Wiley, 2013, pp. 777–797.
[21] P. F. Dutot, M. Mercier, M. Poquet, O. Richard, “Batsim: a realistic

language-independent resources and jobs management systems simula-
tor,” in Job Scheduling Strategies for Parallel Processing, 2015, pp. 178–
197. https://dx.doi.org/10.1007/978-3-319-61756-5_10

[22] G. P. Rodrigo, E. Elmroth, P. Ostberg, L. Ramakrishnan, “ScSF: A
Scheduling Simulation Framework,” Lecture Notes in Comp. Science,

vol. 10773, 2017. https://dx.doi.org/10.1007/978-3-319-77398-8_9
[23] N. A. Simakov et al., “A Slurm Simulator: Implementation and Para-

metric Analysis,” Lecture Notes in Comp. Science, vol. 10724, 2017.
https://dx.doi.org/10.1007/978-3-319-72971-8_10

[24] D. Klusacek, M. Soysal, F. Suter, “Alea — Complex Job Scheduling
Simulator,” Lecture Notes in Comp. Science, vol. 12044, 2019. https:
//dx.doi.org/10.1007/978-3-030-43222-5_19

[25] C. Galleguillos, Z. Kiziltan, A. Netti et al., “AccaSim: a customizable
workload management simulator for job dispatching research in HPC
systems,” in Cluster Comput. vol. 23, 2020, pp. 107–122. https://dx.
doi.org/10.1007/s10586-019-02905-5

[26] A. Baranov, P. Telegin, B. Shabanov, D. Lyakhovets, “Measure of
Adequacy for the Supercomputer Job Management System Model,” in

Proc. of the 2019 Fed. Conf. on Computer Science and Information

Systems, ACSIS, vol. 18, 2019, pp. 423–426. https://dx.doi.org/10.15439/
2019F186

416 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


