
Developing Defense Strategies from Attack

Probability Trees in Software Risk Assessment

Marko Esche

Physikalisch-Technische Bundesanstalt,

Abbestraße 2-12, 10587 Berlin, Germany

Email: marko.esche@ptb.de

Federico Grasso Toro

Federal Institute of Metrology METAS,

Lindenweg 50, 3003 Bern-Wabern, Switzerland

Email: federico.grasso@metas.ch

Abstract—Since the introduction of the Measuring Instruments
Directive 2014/32/EU, prototypes of measuring instruments sub-
ject to legal control in the European Union must be accompanied
by a risk assessment, when being submitted for conformity
assessment. Taximeters, water meters, electricity meters or fuel
pumps form the basis for the economic sector usually known as
Legal Metrology, where the development towards cheaper all-
purpose hardware combined with more sophisticated software
is imminent. Therefore, a risk assessment will always have
to include software-related issues. Hitherto, publications about
software risk assessment methods lack an efficient means to
derive and assess suitable countermeasures for risk mitigation.
To this end, attack trees are used in related research fields. In
this paper, defense probability trees are derived from attack
probability trees, well-suited to the requirements of software risk
assessment and used to identify optimal sets of countermeasures.
The infamous Meltdown vulnerability is used to highlight the
experimental application of the method.

I. INTRODUCTION

L
EGAL Metrology covers measurements and measuring

instruments used as a basis for economic transactions.

In this paper, a method to assess the risks associated with

these instruments is used to derive suitable countermeasures to

mitigate identified risks. The Measuring Instruments Directive

(MID) [1], whose aim is to establish trust in measurements for

users and customers of such instruments, lays down the basic

procedures for putting measuring instruments on the market.

Trust in measurements plays a significant role, since the Legal

Metrology sector generates an annual turnover of around 500

billion Euros for the European Union market [2].

As a first step, conformity to so-called essential require-

ments, laid down by Annex 2 of the MID, shall be demon-

strated by the manufacturer with the help of a conformity

assessment procedure. These essential requirements encom-

pass physical properties of the measuring instrument, such as

climatic operating conditions and electromagnetic compatibil-

ity testing, as well as information technology requirements on

software and data protection.1

Over the past decade, it has become apparent that measur-

ing instruments are going through a transformation process

1One conformity assessment body within the European Union is the
Physikalisch-Technische Bundesanstalt (PTB), Germany’s national metrology
institute. One conformity assessment body that follows the MID as a con-
sequence of the bilateral agreements between Switzerland and the European
Union, is the Federal Institute of Metrology METAS.

from simple stand-alone devices with integrated hardware and

software to complex distributed systems, which use cheaper,

less sophisticated hardware with more complex software.

Therefore, the risk assessment to be supplied by manufacturers

for conformity assessment of a prototype [1] has to specifically

address the risks related to software, as well as its inherent

hardware risks.

As an aid for manufacturers, PTB has published a method

for software risk assessment, specifically tailored for the use

in Legal Metrology [2] based on ISO/IEC 27005 [3] and

ISO/IEC 18045 [4]. With the help of generic assets to be

protected, derived from the MID, the method allows objective

comparisons of different instruments produced by different

manufacturers. Following definitions from ISO/IEC 27005,

the method calculates risk as the combination of the impact

produced by the realization of certain threats to assets and

of the probability of occurrence of each threat. The technical

steps to realize a threat are normally summarized in so-called

attack vectors. An attempt at providing standardization to

derive attack vectors is described in [5]. The approach is

based on the attack tree concept used in related fields of

research, such as the design of cryptographic protocols and

access control [6].

In the present paper the attack probability trees (AtPTs)

presented in [5] are explained in detail and extended towards

defense probability trees (DePTs), as a formal method to

derive optimal countermeasures to be used for risk mitigation.

After this brief introduction, the remaining paper is structured

as follows: In Section II, a literature overview is presented,

which sketches a brief history of attack trees, explaining their

basic functionality and applications. Section III provides a

summary of the original method and recapitulates the concept

and the applicability of AtPTs. Then, Section IV addresses

how to find optimal sets of countermeasures, by means of

DePTs derived from AtPTs. An experimental application of

the method, focused on the Meltdown vulnerability [7] and

its implications for Legal Metrology, is presented in Section

V. Finally, Section VI provides a summary of the paper and

potential further work.

II. LITERATURE OVERVIEW

According to the international standard ISO/IEC 27005 [3]

the risk assessment process can formally be divided into three

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 527–536

DOI: 10.15439/2020F21

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 527

phases: 1) The risk identification phase: It normally starts with

the definition of certain assets to be protected. A derivation of

assets applicable to Legal Metrology was presented in [2] and

a short example is supplied in Section III. 2) The risk analysis

phase: Based on the identified assets, threats are formulated,

constituting an invalidation of a specific security property of an

asset by an attacker with an associated impact. The technical

steps needed to realize a threat, commonly referred to as attack

vectors, are also identified during this phase. 3) The evaluation

phase: The final stage of the risk assessment is the evaluation

of the risk associated with a threat. The evaluator decides

whether the estimated risk is tolerable or if countermeasures

need to be implemented.

The following example from IT security clarifies these three

phases: If a cryptographic key on a computer must be protected

against retrieval by an attacker, during the first phase (risk

identification), the key becomes one asset to be protected with

confidentiality, as the associated security property. One way to

protect such a key would be the read/write permissions of the

operating system, which - under normal conditions - can only

be changed by using the administrator’s credentials. During

the second phase (risk analysis), the threat can be formulated:

”By guessing the correct administrator password - an action

which corresponds to one possible attack vector - an attacker

would be able to modify the read/write permissions for the

cryptographic key and retrieve it without being detected.“

Among other things, the likelihood of said attack vector

would then depend on the window of opportunity to access

the computer and on the strength of the chosen password.

In the final phase, sc. risk evaluation, the calculated risks

are prioritized and a cut off point for the risk assessment

is defined. For all unacceptably high risks, countermeasures

are then selected and implemented to repeat the assessment

process until all risks are classified as tolerable. The theoretical

framework for the selection of countermeasures is described in

Section III and illustrative examples can be found in Section

V.

This paper focuses on the efficient graphical and logical

representation of these vectors and on the identification and

selection of its countermeasures. Originally, attack trees were

used by human evaluators to illustrate and identify vulnerabil-

ities of a known system by graphical means. However, these

trees also have a number of mathematical properties that make

them well-suited for automatic processing and evaluation. The

following sub-sections provide the foundations of attack trees

and their applications on risk assessment of software.

A. Foundations of Attack Trees

In [6], a detailed general introduction to attack trees and

their potential applications is given. According to Mauw and

Oostdijk, the most basic properties of any attack tree can be

summarized as follows: While the root node of such a tree

constitutes an attacker’s main goal, its child nodes can be seen

as refinements thereof, which need to be achieved in order to

reach said goal. Following this interpretation, the leaves of

an attack tree constitute atomic attacks, for which no further

refinement is possible. An exemplary tree that only consists

of seven nodes is given in Figure 1.

replace broken seal
with forged seal

A

B C

E

Gbreak seal and write
software to internal memory

F

D

measurement value

install new software

on the taximeter

replace software of the

taximeter

write new software

modify parameters

of the taximeter

increase legally relevant

Fig. 1. Simple illustration of an attack tree that shows how the calculated
fare/measurement value of a taximeter may be manipulated.

In the example, an attacker’s possible strategies to manip-

ulate the fare calculated by a taximeter are illustrated. Before

exploring the meaning of the shown tree, it is necessary to

explain the specifics of its graphical representation: Child

nodes are always logically connected to either form an AND-

or an OR-expression. The AND-statement is illustrated by an

arc connecting the respective child nodes and indicates that

all of these need to be implemented to achieve the attack

associated with the parent node. On the other hand, if child

nodes represent alternative ways to reach the parent objective,

they are connected via an OR-statement, in which case no

arc is drawn. Mauw and Oostdijk [6] interpret the two pos-

sible connections between nodes as ’conjunctive aggregation‘

and ’disjunctive refinement (choice)‘. Certainly, there is no

guarantee that an attack tree will be a binary tree. However,

if more than two child nodes are identified, they can always

be transformed into a binary structure by combining pairs of

them into subgoals until only two child nodes remain. The

examplary attack tree given in Figure 1 states that the fare can

either be manipulated (node A) by changing the parameters of

the taximeter (node B) or by replacing its software (node C).

Other possible alternatives are not discussed here, since this

example simply aims to illustrate the operation modes of attack

trees. Therefore, at the root node a simple OR-connection

can be found. Consequently, replacing the software requires

at least two steps: 1) writing a new software (node D) and 2)

installing it on the instrument (node E). Both steps need to be

implemented for the attack to be executed successfully, which

is expressed by an AND-statement, see Figure 1. It should be

noted that AND-connected attacks do not necessarily need to

be implemented simultaneously, as is the case in the illustrated

scenario. The process of installing the software can once more

be sub-devided into two AND-connected tasks: 1) opening

the taximeter (node F) to write new software to its memory

and 2) forging a new seal afterwards (node G). It can be

seen that the combination of two nodes into a summary node

has no influence on the mathematical properties of the local

sub-tree, such as likelihood of occurrence [6]. Therefore, it

528 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

is the evaluator’s choice to limit the number of refinements

of an attack as she sees fit. In practice, a node needs no

further refinement if the associated attack constitutes a simple

technical task with a known scope and easily determinable

properties.

In addition to providing basic means of describing and

manipulating attack trees, Mauw and Oostdijk introduce the

concept of predefined characteristics of a node, e.g. possibility,

cost, equipment needed. They show that the attributes of any

parent node can be determined by combining the information

associated with the respective child nodes. They highlight

the point that these rules will be specific to the application,

although they can usually be determined directly from the

attributes and their properties. These rules work directly from

the leaves towards the root without having to resort to trace-

backs. After the application of these rules, the result is a set

of attribute values, either of the root node itself or of a chosen

sub-tree. In the latter case, the sub-tree may either reflect a

set of promising attacks or contain information, such as its

internal structure, not directly represented by the values of its

attributes. It is important to note that there is no requirement

for any node to only exist once within a tree [6]. Instead,

nodes may have multiple copies whose attributes are linked;

therefore, a change in one part of an attack tree can also

affect otherwise unconnected branches. Mauw and Oostdijk

also introduce the attack suite as a set of attacks that can be

used to realize a goal without having to address the logical

structure of the summarized sub-trees and their nodes. They

show that attack trees with different structural representations

may, nevertheless, contain the same logical information.

Concerning attack tree transformations, Mauw and Oostdijk

formulate two rules: 1) ’associativity of conjunction‘ and 2)

distributivity of ’conjunction over disjunction‘. ’Associativity

of conjunction‘ basically states that any sub-tree can be moved

to its parent node if the root of the sub-tree is the only

child node of the parent. In this case, parent node and child

are logically identical. The second rule, which addresses the

distributivity of ’conjunction over disjunction‘, states that any

node with two separate sub-trees corresponds to two copies

of the same node with one sub-tree each. Mauw and Oostdijk

[6] provide proofs for both transformation rules.

The following additional remarks by Mauw and Oostdijk

on the attributes of attack trees will be used later in Section

III: The value of an attribute can only be determined if the

semantics of the tree are known. With this knowledge the value

of the attribute can be estimated from the properties of the

equivalent attack suite. Additionally, the authors state that the

attributes of a node can only depend on the attributes of its

child nodes alone.

B. Threat Risk Analysis for Cloud Security based on Attack-

Defense Trees

The attack trees discussed so far only focus on strategies

an attacker might follow. In [8], Wang, Lin, Kuo, Lin and

Wang introduce a new derivative of such trees that also offers

the possibility to model defensive strategies. These Attack-

Defense Trees (ADT) are specifically tailored to describe the

attack profile and calculate the associated attack cost. Both can

then be used to choose appropriate countermeasures even for

complex attacks. This process is usually referred to as Threat

Risk Analysis (TRA) which takes vulnerability information

and attack profiles as input. Within the scope of a TRA, there

are both the estimation of the impact of a successful attack and

a precise description of attack progression. The combination

of both allows the user of the method to develop adequate

contermeasures/defense strategies. It should be observed that,

when trying to describe all possible attack paths at a desired

level of detail, attack trees quickly become complex and

difficult to handle. Wang, Lin, Kuo, Lin and Wang therefore

claim that expressing both attack and defensive strategies in

the same tree is usually too complex and beyond the scope of

the tree. In contrast to attack trees, which are used to model

systemic weaknesses, protection trees migrate weaknesses and

thus have the potential to help to identify protective strategies.

Section III gives more theoretical background on this, while

Section V provides an example of weakness migration and

defense strategy selection. As explained in [8], it was usually

assumed that an attacker has complete information about the

system to attack and would always select the easiest available

attack path. In reality, the attacker may, however, act upon an

incomplete set of facts, which will affect her ability to select

the easiest route. This needs to be taken into account when

choosing appropriate countermeasures. Wang, Lin, Kuo, Lin

and Wang then supply equations for estimating probability

of occurence and other metrics for both AND- and OR-

connections between attack nodes. Since the ADT is supposed

to be used for both attack and defense modeling these metrics

do not only include probability of success, attack cost and

impact, but also revised attack cost and revised impact for the

countermeasure stage, adding a forth and final phase (risk mit-

igation) to the previously described risk assessment process.

Similar metrics are used in Section III. Once again, all metrics

are estimated for the leaf nodes first and then propagated up

the tree towards the root node. Whenever assessing risks of

a new system, the first step consists of identifying possible

vulnerabilities. To this end, public databases are one important

source of information. The second step of an assessment

is the collection of information on recognized attacks. This

includes identification of attack vectors or, more generally, of

means to realize a threat by exploiting a known vulnerability.

In a third step, an ADT is built, including all identified

vulnerabilities which could facilitate an attack. To construct

the tree and fill it with information, rules for the transfer

of the metrics mentioned above are postulated. The fourth

step then consists of the systematic evaluation of the ADT.

Since data on past incidents may not always be available, the

calculated probability of occurrence is always affected by a

level of uncertainty. Nevertheless, it is stated that there is a

deterministic transfer function between attack cost and defense

cost, influenced by security policies, procedures, equipment

and training of personnel. The final step for the ADTs is to

establish adequate countermeasures for each attack. Despite

MARKO ESCHE, FEDERICO GRASSO TORO: DEVELOPING DEFENSE STRATEGIES FROM ATTACK PROBABILITY TREES 529

the general applicability of their concept, Wang, Lin, Kuo, Lin

and Wang state that the final step would need to be individually

tailored for each new scenario, since the countermeasures

solely depend on the available vulnerabilities.

C. Automated Generation of Attack Trees

Mauw and Oostdijk [6] showed that several different graph-

ical representations may exist for one logical attack tree. Since

the layout of the tree itself is thus subject to the evaluator’s

decisions, an automated approach could ensure that all attack

trees adhere to the same design principles. One such approach

was presented by Vigo, Nielson and Nielson [9]. They over-

come the stated problem by inferring attack trees from the

process logic otherwise used to describe them. According to

Vigo, Nielson and Nielson both the scientific community and

the wider public in general profit from attack trees since they

are easily quantifiable as well as easily comprehensible. In the

described implementation, the root node again reflects a threat

to be implemented and child nodes describe sub-goals to be

combined to realize the threat. To build the attack tree the

attack process is first translated into propositional formulae

from which the tree is then automatically inferred. The result

subsequently does not suffer from human interpretation errors

and is thus easily reproducible. Once the attack tree has been

derived, the leaves, which are interpreted as atomic attacks, are

labeled with individual costs that propagate up the tree. In line

with the process-oriented approach, attack and defense actions

are seen as communication processes from signal theory and

are treated accordingly. From these, the cheapest set of atomic

attacks is selected, corresponding to the most likely attack

path, and the resulting attack cost is calculated. This idea is

reused in Section IV to derive optimal defense strategies.

III. SOFTWARE RISK ASSESSMENT IN LEGAL

METROLOGY

The software risk assessment method, used here to construct

a method for countermeasure identification and selection, was

originally published in [2]. The method is currently used by

both examiners and manufacturers during conformity assess-

ment of measuring instruments within the EU. A number

of modifications and additions, to this method have been

published [5]. In this section these publications are quickly

summarized to lay the groundwork for the countermeasure

derivation introduced in Section IV.

A. Fundamentals of Risk Assessment Method

In line with the formal requirements and definitions for risk

assessment laid down in the international standard ISO/IEC

27005 [3], risk can be defined as a ’combination of impact

and probability of occurrence attributed to a threat‘. A threat

is seen as ’an adverse action carried out by an attacker/threat

agent upon the security properties of an asset‘. In principle,

the standard offers examiners a choice between quantitative

and qualitative interpretations of the associated terms. Here,

the quantitative approach is used to make results more easily

reproducible and algorithmically processable.

TABLE I
MAPPING BETWEEN TOE-RESISTANCE AND ATTACK PROBABILITY SCORE

[2].

Sum of Points TOE Resistance Probability Score

0-9 No rating 5

10-13 Basic 4

14-19 Enhanced Basic 3

20-24 Moderate 2

> 24 High 1

As a first building block, assets derived from legal require-

ments in Annex I of the MID are detailed [2]. Within this

paper, measurement data with their associated security prop-

erties integrity and authenticity will be used as an example.

Nevertheless, the following observations are applicable to all

other assets as well. Availability of data is not required, since

in absence of measurement data no commercial transaction

can take place and no financial damage can be inflicted.

Subsequently, an example for a possible threat could be

formulated as follows:

An attacker falsifies the authenticity of measurement data.

In line with the definition from ISO/IEC 27005, values for

impact and probability of occurrence are needed to calculate

a numerical risk score. Here, only two impact values are used

(1
3

if a single measurement is affected and 1 if all future or

past measurements are affected). To evaluate the probability of

occurrence, technical details (so-called attack vectors) needed

to implement a threat are evaluated according to the vulner-

ability analysis described in ISO/IEC 18045. For example,

guessing an administrator’s password would be one attack

vector to obtain access to protected operating system features.

The evaluation of all possible attack vectors for an attack by

means of the ISO/IEC 18045 vulnerability analysis consists

of assigning point scores in five different categories: 1) time

required; 2) expertise required; 3) knowledge needed about

the target of evaluation (TOE); 4) window of opportunity; and

5) equipment needed to implement the attack. An expertise

score of 0, for instance, reflects the fact that the attack can be

carried out by a layman. If an expert is needed instead, the

score is set to 6. Incidentally, the very same scores can also be

used to describe the cost of implementing a countermeasure to

an attack since attacker and defender have to perform similar

tasks, see Section V. More detailed examples that address all

five scores may be found in Section V of this paper and in

ISO/IEC 18045 [4]. Once the scores for all five categories

have been assigned, the sum score is calculated. In the original

ISO/IEC 18045 this sum score with a theoretical upper limit of

51 points is mapped to a TOE resistance between ’no rating‘

and ’high‘. It follows that an attack is less likely to happen

if the sum score is higher. As described in [2], this resistance

can be transformed into an attack probability score between 1

and 5, where 5 corresponds to a high likelihood, see Table I.

The probability score is then multiplied with the determined

impact to calculate the numerical risk score, which is again

in the range between 1 and 5. An overview of the entire risk

assessment workflow is given in [2].

530 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

B. Extension of Risk Assessment method for Attack Probability

Trees

In [5] the attack tree concept from Mauw and Oostdijk

was extended by augmenting the attack nodes with attributes

such as time and expertise detailed above. The resulting

attack probability trees (AtPTs) both represent the attack logic

and the probability of occurrence (and subsequently risk)

associated with a threat. This means that each attack vector is

no longer evaluated individually, but only the atomic attacks

at the leaf nodes are assessed. This reduces the possibility for

misjudging an attack and makes it possible to re-use atomic

attacks for different threats.

To propagate the attributes up the tree a number of rules

specifically tailored for the characteristics of each attribute

were introduced. Since these rules are used extensively in the

experimental example in Section V, the following description

is needed:

• Time

– AND: Time representation in point scores is loga-

rithmic (1 for more than a day, 2 for one to two

weeks, 19 for half a year). Adding up times for two

attacks can, therefore, be approximated by selecting

the maximum of the two.

– OR: The time score connected to the smaller sum-

score is chosen.

• Expertise

– AND: Normally, the maximum of both scores is cho-

sen. Should expertise in both hardware and software

(HW and SW) be needed, scores are added with a

maximum value of 8, see ISO/IEC 18045.

– OR: The expertise score connected to the smaller

sum-score is chosen.

• Knowledge of the TOE

– AND: The maximum of both knowledge scores is

chosen.

– OR: The knowledge score connected to the smaller

sum-score is chosen.

• Window of opportunity

– AND: A smaller window of opportunity (higher

score) for one node will also affect the other node.

Therefore, the maximum is selected.

– OR: The window of opportunity score connected to

the smaller sum-score is chosen.

• Equipment

– AND: The maximum of both equipment scores is

chosen unless equipment from different areas is

required (HW or SW), in which case the scores are

added with a maximum of 9 according to ISO/IEC

18045.

– OR: The equipment score connected to the smaller

sum-score is chosen.

IV. SELECTING COUNTERMEASURES

In the context of this paper, a countermeasure shall be any

technical modification of a measuring instrument or organiza-

tional measure that results in the reduction of the overall risk

associated with the instrument below a predefined threshold.

However, finding a set of countermeasures to prevent an attack

from happening is more complex then simply countering each

individual atomic attack.

A. Connection between AtPTs and Logic Networks

In the case of an AND-statement, increasing the attack

cost, i.e. the sum score of one leaf node, always affects

the sum score of the parent node. For OR-connected nodes,

modification of one node may be sufficient, if the other node’s

sum score is already above a predetermined level and the

associated risk is subsequently low enough. In other cases,

however, it may be necessary to counter both child nodes of

an OR-connected node to increase the cost associated with the

parent node sufficiently, see Figure 2.

countermeasure

blocked due to

no countermeasure

A A

B C B C

A A

B C CB

countermeasure

Fig. 2. Two seperate kinds of atomic AtPTs exist which correspond to OR-
statements (above) and AND-statements (below) in boolean logic. For an OR-
statement it may be necessary to counter both leaf attacks i.e. to increase their
individual costs to mitigate the threat while one blocked leaf always has the
same affect for an AND-statement.

It should be noted that the two atomic trees correspond

directly to the fundamental building blocks of any logic

network. It follows that even more complex trees can be

converted into logic networks. This is the inverse principle

of the method described in [9]. Of course, the interpretation

of AtPTs as logic networks, see Figure 3, lacks all the in-

formation concerning individual attributes and the probability

of occurrence or risk. However, this simple Boolean view

of an AtPT constitutes a practical step towards identifying

potential sets of countermeasures to be evaluated. To derive

practical countermeasures to be implemented, any AtPT can

first be transformed into the equivalent Boolean equation. The

corresponding term for the exemplary tree given in Figure 1

is given in Equation (1).

A = B ∨ C = B ∨ (D ∧E) = B ∨ (D ∧ (F ∧G)) (1)

It should be noted that nodes C and E disappear in this

representation since they only act as intermediate summary

nodes. The final equation only contains the root and leaf nodes.

By calculating the logical inverse of Equation (1) the Boolean

expression of the Defense Probability Trees (DePT) can be

found, see Equation (2).

A = B ∨ (D ∧ (F ∧G)) = B ∧ (D ∧ (F ∧G))

= B ∧ (D ∧ (F ∧G)) = B ∧ (D ∨ (F ∧G)) (2)

= B ∧ (D ∨ (F ∨G))

MARKO ESCHE, FEDERICO GRASSO TORO: DEVELOPING DEFENSE STRATEGIES FROM ATTACK PROBABILITY TREES 531

A

B C

B

C & A

D

E F

E

F ≥ 1 D

A

B

D E F G

C

D

E

F

G ≥ 1

&
B

C

≥ 1 A

Fig. 3. Any given AtPT can be transformed into a logic network. Three
examples (top to bottom: AND-connection, OR-connection, complex AtPT)
are shown here using electric gate symbols.

The inverse of the logical representation of an AtPT represents

all possible countermeasure scenarios, since an attack can

only be accomplished if the attack associated with the root

node is realized. The logical inverse, therefore, describes

all combinations of realized/prevented sub-goals that prevent

the root node and its attack from being achieved. Once the

Boolean representation has been transformed back into a tree,

referred to as a DePT, the connections between AtPT and

DePT can be easily seen. Should the DePT contain ambiguous

leaf nodes where a range of countermeasures could be selected,

this is due to a badly defined AtPT, where the atomic attacks

could be further refined by additional subdivisions.

Figure 4 contains the DePT for the taximeter example given

in Figure 1. At every leaf node, the DePT automatically offers

a possible countermeasure to prevent that atomic attack from

being carried out: Node G, for instance (replacing an old seal

with a forged new seal) can be countered by improving the

quality of the applied seals. Other suggested countermeasures

are less practical, however. To prevent new software from

being installed (node F), a possible countermeasure is to make

the procedure of installing software more difficult, e.g. by

creating a non-standard programming interface. Unfortunately,

such a measure would also affect the legal intended modifica-

tion of software. Countermeasures to the remaining leaf nodes

(B and D) should also be obvious. Node B (modification of

parameters), can be prevented from happening by increasing

parameter protection. Node D (writing new (fake) software

for the taximeter) can be made more difficult by increasing

the complexity of the API. To reiterate, this countermeasure

would affect both attacker and original programmer of the

software and it is, thus, impractical. Based on the DePT, it

can be concluded that one way to prevent fare manipulation

improve quality
of seals

implement non−standard
programming interfaces

countermeasures for

taximeter fare manipulation

increase parameter

protection

increase complexity of

modifying software

increase protective

hardware measures

increase API
complexity

Fig. 4. DePT for the countermeasures needed to prevent the calculated
fare/measurement value of a taximeter from being manipulated.

is implementing increased parameter protection measures and

better physical seals. Other combinations of countermeasures

are, of course, also possible. To select the optimal constellation

of countermeasures (cheapest countermeasure set to lower the

risk below a defined threshold) the attributes examined during

the original risk assessment are needed.

B. Usage of Defense Probability Trees

As mentioned above, the simple Boolean view on AtPTs and

DePTs lacks all information on attack attributes, probabilities

of occurrence and subsequently risk. However, the DePT can

be used in the same way as the AtPT to estimate defense costs

and resistance to attacks: Here, it will be assumed that the

impact of a realized threat is 1 (larger number of measurement

results affected) and that a total risk of 3 or lower (probability

score ≤ 3, sum score ≥ 14) is acceptable. Each leaf node in the

DePT can then be assigned scores for time, expertise, knowl-

edge, window of opportunity and equipment that represent the

cost of implementing a countermeasure that reduces the risk

of the corresponding leaf node in the AtPT to 3 or lower. The

knowledge score now refers to the amount of research needed

to realize a countermeasure. If all necessary information is

easily available (for instance, because the defender is also

the original developer) the knowledge would be considered

readily available (score of 0). The window of opportunity then

reflects the fact that a defender may not always have access

to the attacked instrument. It should be noted that, just as

for the attack scenario, not all countermeasures need to be

implemented. Instead, the DePT will help to identify the set of

countermeasures that produce an acceptable risk reduction at

minimal cost/effort. The rules of attribute propagation within

the DePT remain the same as listed in Section III-B, since

the defender will try to minimize her efforts as well. The

process of finding an optimal set of countermeasures can be

summarized as follows:

1) Construct an AtPT according to the rules described in

[5].

2) Derive a DePT from the resulting Boolean formulae and

discard all branches that constitute impractical measures

that affect both attacker and intended user.

532 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

3) Select implementations for each atomic countermeasure

(leaf node in the DePT) that reduce the resulting risk

for the specific node to 3 or lower and label the corre-

sponding leaf node with the respective attribute scores.

4) Propagate these weights up the tree to identify the

optimal (cheapest) set of countermeasures.

For the attribute scores for implementation of the countermea-

sure, the same values as for the implementation of attacks

can be used, since they reflect the cost of implementation

adequately. The only difference is the perspective of the

party attempting an implementation of the countermeasure.

For example, the window of opportunity for implementation

of a countermeasure should almost always be easy (score

of 0) since the user of the instrument will normally allow

access to the instrument to close its vulnerabilities. A practical

example that illustrates the four steps listed above is given in

the following section.

V. EXPERIMENTAL EXAMPLE: ASSESSMENT OF THE

MELTDOWN VULNERABILITY

The following assessment of the Meltdown vulnerability and

its impact on measuring instruments was performed at PTB in

late 2017. Manufacturers of affected instruments were after-

wards contacted to close the vulnerability, when necessary.

At the moment of writing this paper, all necessary software

patches have been implemented and re-certified, preventing

susceptible instruments to remain in the field.

A. Problem Description

The address space of all physical memory including the

address space of the kernel of most operating systems such

as Linux, Windows and macOS is mapped in the page table

of each individual user process. To prevent processes from

accessing certain addresses without permission, these are

marked with a supervisory bit. If a process attempts to write

data to or read data from such an address, an exception is

triggered. However, between the actual access violation and

the triggering of the exception, a certain time elapses during

which the processor may have read data from the forbidden

address and performed additional transient commands [7].

These actions affect the contents of the processor cache, which

itself may be read out by the well established Flush-Reload

or Evict-Reload algorithms [10]. Both algorithms depend on a

precise time reference to determine the contents of the cache.

Since this process can be repeated as often as needed, it is

feasible to read out the entire contents of the RAM with a

data rate of around 500kByte/s.

From a technical point of view, the Meltdown vulnerability

can initially only be used to read data from the RAM without

permission and thus violate the confidentiality of a specific

piece of information. Confidentiality, however, does not belong

to the security properties of the assets worthy of protection

of a measuring instrument, which only address integrity,

authenticity and availability. However, the vulnerability can

be exploited to spy on secondary sensitive attributes, such as

private keys used for asymmetric cryptographic signatures. For

different types of measuring instruments, such private keys

are used to cryptographically sign determined measurement

results and thus to ensure that the measurement results can

no longer be changed unnoticed after an export from the

measuring instrument. In addition, the signature ensures that

the results have been actually generated by the calibrated

measuring instrument.

Within this example, only threats on the authenticity of the

measurement data will be examined. The formal threat defini-

tion can therefore be stated as follows:

An attacker generates false measurement results.

B. Attack probability tree for the Meltdown scenario

The Attack Probability Tree (AtPT) shown in Figure 5

breaks down this threat into individual partial attacks / attack

vectors, which must be combined to realize the threat. As

before, attack vectors associated with an arc are read as AND-

connected, all other attack vectors are OR-connected.

The attacks A01, A04, A07, A09, A10, A12, A13, and A14

represent atomic attack vectors that are no longer subdivided.

From the AtPT shown in Figure 5, the following two basic

requirements can be derived, which are necessary for exploit-

ing a Meltdown attack on a measuring instrument to realize

the threat:

• The measuring instrument’s processor is affected by the

Meltdown vulnerability.

• The measuring instrument has an open physical interface

or a network connection that is protected by means of the

operating system.

The attack is therefore unworkable if a hardware security

module is used or if the measuring instrument has no open

physical or logical interfaces.

C. Evaluation of atomic attack vectors

The score for atomic attack vectors according to the proce-

dure described in [2] is shown in Table II. A brief description

of all atomic attack vectors in order to execute the attack is

presented below:

A13, A14: To introduce executable code into the instrument

(A11), an attacker must use a physical interface (A13) or a

network interface (A14).

A12: Once A11 has been achieved (attacker introduces

executable code into the instrument), and the attacker is set

to use a vulnerability of the operating system (A12), she has

the ability to execute the Meltdown attack on the processor

(A08).

If code is to be executed on the attacked measuring in-

strument with limited privileges, basically two variants are

conceivable to differ, in terms of what detailed knowledge of

the system architecture must be available to the attacker. The

more probable scenario results from the lower sum score:

1) Known system architecture (known location of the key):

Knowledge of the system: 11, Time: 1, Expertise: 3

(Total: 15)

2) Unknown system architecture (unknown location of the

key):

MARKO ESCHE, FEDERICO GRASSO TORO: DEVELOPING DEFENSE STRATEGIES FROM ATTACK PROBABILITY TREES 533

attacker produces
fake measurement results

expertise = 6 equipment = 4

time = 2 win. of opp. = 0

knowledge = 11 sum = 23

T

equipment = 4

win. of opp. = 0

attacker generates
complete measurement dataset

time = 1

expertise = 3

knowledge = 3 sum = 11

A01

equipment = 4

attacker falsifies
origin of the dataset

time = 2

expertise = 6

knowledge = 11

win. of opp. = 0

sum = 23

A02

equipment = 4

time = 2

expertise = 6

knowledge = 11

win. of opp. = 0

attacker obtains
private key of the instrument

sum = 23

A03

equipment = 4

win. of opp. = 0

with private key
attacker signs dataset

time = 0

expertise = 3

knowledge = 0 sum = 7

A04

expertise = 6 equipment = 4

time = 2 win. of opp. = 0

knowledge = 11

attacker executes Melt-
down attack on private key

sum = 23

A05

win. of opp. = 0

attacker exports private
key to external memory

time = 0

expertise = 3

knowledge = 3

equipment = 0

sum = 6

A06

expertise = 6

win. of opp. = 0

attacker implements
Meltdown attack

time = 1

knowledge = 3

equipment = 0

sum = 10

A07

expertise = 6

win. of opp. = 0

Meltdown attack
attacker executes

time = 2

knowledge = 11

equipment = 4

sum = 23

A08

win. of opp. = 0

attacker uses
open physical port

time = 0

expertise = 3

knowledge = 3

equipment = 0

sum = 6

A09

win. of opp. = 0

attacker uses

time = 0

network interface

expertise = 6

knowledge = 7

equipment = 4

sum = 17

A10

knowledge = 3

able code into the instrument
attacker introduces execut-

equipment = 4

win. of opp. = 0time = 2

expertise = 6

sum = 15

A11

win. of opp. = 0

equipment = 0

time = 1

expertise = 3

knowledge = 11

attacker uses vulnerability
of the operating system

sum = 15

A12

expertise = 6

attacker uses
open physical port

time = 1

knowledge = 7 sum = 24

win. of opp. = 10

equipment = 0

A13

win. of opp. = 0time = 2

expertise = 6

knowledge = 3

equipment = 4

attacker uses

sum = 15

network interface
A14

Fig. 5. Attack probability tree for generating false measurement results with a stolen private key by means of the Meltdown vulnerability. Attack vectors
linked with an arc are AND-connected. All other attack vectors have an OR-connection. Note: The attack can only be implemented if the private key is
available in the instrument at runtime and if the processor is affected by Meltdown.

Knowledge of the system: 7, Time: 4, Expertise: 6

(Total: 17)

A07: Once A08 has been achieved (attacker executes Melt-

down attack), and the attacker has written the required code

for spying out the private key, she can use the Meltdown

attack on the private key (A05). When the attacker implements

the actual attack to exploit the Meltdown vulnerability, she

will probably create a full dump of all memory. Therefore,

no special knowledge of the system is needed. Once again,

the more probable attack scenario results from the lower sum

score:

1) Attacker’s own implementation:

Knowledge of the system: 3, Time: 2, Expertise: 8

(Total: 13)

2) Attacker uses third parties’ implementations:

Knowledge of the system: 3, Time: 1, Expertise: 6

(Total: 10)

A09, A10: The writing or exporting of data is already

provided in many measuring instruments, so that no increased

effort has to be set for this. Either of these two subgoals allows

exporting of the private key to external memory (A06). Once

A06 has been achieved, and the attacker has executed the

Meltdown attack on the private key (A05), the attacker can

obtain the private key of the instrument (A03).

A04: Once the attacker has obtained the private key (A03),

she is able to sign new datasets (A04); if A03 and A04 are

achieved, the attacker can falsify the origin of fake datasets

(A02).

A01: Finally, once the capacity for falsifying the origin of

datasets is achieved (A02), and the attacker has generated a

new (and fake) measurement dataset, the analysed Threat (T)

can be realized.

In the case of an operating system configured in accordance

with legal requirements, no code can be executed from an

external medium. However, it cannot be ruled out that the

Meltdown bug will not lead to speculative execution. It should

be noted that attacks A01 (generation of a measurement

dataset) and A04 (signing of a measurement dataset) must be

repeated for each individual measurement result and therefore

should be assigned a reduced impact of 1

3
. However, since

these are attacks with comparatively little effort, the overall

impact rating does not change. Once the rules for attribute

534 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

TABLE II
EVALUATION OF ATOMIC ATTACK VECTORS - THE ATTACK VECTORS A01
AND A04 DIFFER FROM ALL OTHERS IN THAT THEY MUST BE REPEATED

FOR EACH INDIVIDUAL REALIZATION OF THE THREAT. ACCORDINGLY,
THE DAMAGE HERE IS REDUCED TO A VALUE OF 1/3.

A
tt

ac
k

ID

at
ta

ck
v
ec

to
r

ti
m

e

ex
p
er

ti
se

k
n
o
w

le
d
g
e

w
in

d
o
w

o
f

o
p
p
.

eq
u
ip

m
en

t

su
m

im
p
ac

t

A13 Attacker uses open inter-
face to bring code into
instrument.

1 6 7 10 0 24 1

A14 Attacker uses network
connection to bring code
into instrument.

2 6 3 0 4 15 1

A12 Attacker expoits oper-
ating system vulnera-
bilites to execute code
with limited privileges.

1 3 11 0 0 15 1

A07 Attacker implements
Meltdown attack.

1 6 3 0 0 10 1

A09 Attacker uses open in-
terface to export private
key.

0 3 3 0 0 6 1

A10 Attacker uses network
connection to export pri-
vate key.

0 6 7 0 4 17 1

A04 Attacker signs measure-
ment result with private
key.

0 3 0 0 4 7 1

3

A01 Attacker generates
complete measurement
dataset.

1 3 3 0 4 11 1

3

propagation have been applied, the root node has a sum score

of 23, which is equivalent to a probability score of 2 and a

risk score of 2. Such a rating would be acceptable for most

instrument classes except when the law requires even more

stringent protective measures, in which case the risk has to be

reduced to 1.

D. Identification and Selection of Suitable Countermeasures

As described in Section IV the DePT (see Figure 6) can

be inferred by converting the AtPT to a Boolean expres-

sion and applying the inverse operation on the expression.

The resulting graphical representation is given in Figure 6.

It should be noted that the structure of the tree has been

modified according to the transformation rules laid out in

[6] for better comprehensibility. From this initial DePT all

nodes can be removed that constitute impractical defensive

measures, i.e. making the signature algorihm more complex

(node D04), deactivating all hardware and software interfaces

(node D11/D13 and D12/D14) since all three are needed for

the actual intended operation of the instrument. Afterwards,

a number of nodes remain that have only one child node.

According to [6], such a parent node can be replaced by the

child node since its attributes must be identical to those of

the child node. After the removal of all impractical defensive

measures, the DePT is reduced to a tree of three nodes, see

Figure 7. The remaining DePT states that retrieving the private

prevent generation of

fake measurement results

C

D01increase

algorithm complexity

D02increase

security

D03more complex D04more complex

signature algorithm

D05increase

software protection

D06increase

interface protectiondatasets

D07close Meltdown

vulnerability

D08increase OS

protection

D09prevent

introduction of code

D10prevent export

of data

D11block physical

interfaces

D12block network

interfaces

D13block physical

interfaces

block network

interfaces

D14

Fig. 6. Defense probability tree for generating false measurement results with
a stolen private key by means of the Meltdown vulnerability. Defense vectors
linked with an arc are AND-connected. All other defense vectors have an
OR-connection.

key from within a measuring instrument via exploitation of the

Meltdown vulnerability to generate false measurement data

can be prevented by one of two alternatives:

• external code is prevented from being executed through

increased protective operating system measures (node

D08),

• a patch is applied to the operating system to prevent

speculative code execution, thus closing the vulnerability

(node D07).

When evaluating these alternatives, all assigned scores (time,

expertise, knowledge, window of opportunity and equipment)

have to be based on the assumption that the implementation

is done by a white hat developer who has access to both the

instrument, as well as all manufacturer’s documentation.

win. of opp. = 0

win. of opp. = 0time = 1

expertise = 3 expertise = 6

win. of opp. = 0

prevent generation of
fake measurement results

close Meltdown
vulnerability

increase OS
protection

time = 1

expertise = 3

knowledge = 0

equipment = 0

knowledge = 0

equipment = 0

sum = 4

time = 4

knowledge = 0 sum = 10

equipment = 0

sum = 4

C

D07 D08

Fig. 7. Reduced DePT for the Meltdown vulnerability. Nodes with only one
child node have been replaced by the child node in accordance with the rules
laid down in [5].

Concerning the implementation of increased protective op-

erating system measures (D08), a programming expert (score

of 6 for expertise) should be able to implement, test and

release a solution within a month (score of 4 for time).

Since all internal manufactuer’s documentation is available

to the white hat developer, the knowledge score shall be set

to 0 (readily available). The same is true for the window

of opportunity. Furthermore, no special equipment will be

needed to implement a software solution. Similarly, applying

MARKO ESCHE, FEDERICO GRASSO TORO: DEVELOPING DEFENSE STRATEGIES FROM ATTACK PROBABILITY TREES 535

an operating system patch to close the vulnerability (D07)

should be quite easy.

Since many operating system manufacturers provide patches

and instructions for their installation on their website, any

proficient user (expertise score of 3) should be able to patch

the operating system within a week. All necessary information

should be readily available (knowledge score of 0), while

access to the instrument is always granted. Also, as was the

case for node D08, only standard equipment is needed for the

implementation of the countermeasure.

E. Conclusion of Experimental Example

Once the two leaf nodes of the DePT have been labeled with

these attributes, see Figure 7, the rules laid down in Section

III-B are applied to yield the attributes for the root node. This

results in the root node becoming a copy of leaf node D07,

which indicates that application of an operating system patch

is the easiest countermeasure against the defined threat. Once

the Meltdown vulnerability has been closed as described, the

only way to get the private key of the instrument (node A03

in Figure 5) is to correctly calculate the key by a brute-force

method, taking longer than half a year for any state-of-the-

art signature algorithm. Since this will set the time score for

node A03 to 19 points, the root node will be similarly affected,

increasing its sum score to 40 (equivalent to a probability score

and risk score of 1). Therefore, the proposed countermeasure

is suitable to prevent the examined threat.

The same procedure can be applied to other threats with

larger DePTs. The logic behind choosing a countermeasure

should be, in general, identical to the logic of attack implemen-

tations, since both attacker and defender will aim to achieve

their goals with minimal effort. Therefore, all previously

performed evaluations of AtPTs will hold true also for DePTs.

To validate the usefulness and efficiency of the proposed

countermeasure identification and selection method, more ex-

emplary applications are needed, of course. Nevertheless, this

investigation should be seen as a first proof of concept. Within

the scope of this paper, the action associated with a node has

either been assumed to have a permanent effect (impact score

of 1) or its influence on the overall cost of implementing an

attack/countermeasure was assumed to be negligible. Since

this assumption will eventually fail in certain scenarios, an

approach to deal with differing impact scores for individual

nodes is still needed.

VI. SUMMARY

Evaluating IT threats to assets and selecting appropriate

countermeasures will form a cornerstone of Legal Metrol-

ogy in the near future. While other IT sectors are already

using such risk-based evaluation schemes, the present paper

describes a suitable method for risk mitigation tailored for

measuring instruments subject to legal control. To this end,

AtPTs with calculation rules for their attributes have been

transformed into equivalent DePTs. Since the method is based

on established international standards, it is anticipated that it

can easily be applied in other economic sectors as well. An

application of the method [5] on the Meltdown vulnerability

has been used to demonstrate the workflow and usage of

the presented countermeasures selection procedure. In the

future, the impact of vulnerabilities in common IT products on

Legal Metrology will certainly need to be investigated more

frequently. The risk analysis and countermeasure derivation

methods discussed in this paper represent a selection of tools,

at the disposal of notified bodies, manufacturers and market

surveillance authorities, to asses the risks associated with

such IT-related incidents. One piece that is still missing for

AtPTs and DePTs to be generally applicable is a method to

deal with attacks/countermeasures with different impact scores

(i.e. permanent and repetitive) within one specific AtPT/DePT

alike. Further work will address a theoretical analysis of the

influence of impact scores on the overall risk and a proposal to

reflect such scores in AtPTs and DePTs. Finally, a harmonized

guideline for using AtPTs and DePTs should be written to

be applied to new technologies, to test the efficiency of both

methods for streamlining innovations within Legal Metrology.

REFERENCES

[1] EC, “Directive 2014/32/EU of the European Parliament and of the
Council of 26 February 2014 on the harmonisation of the laws of
the Member States relating to the making available on the market
of measuring instruments,” European Union, Council of the European
Union ; European Parliament, Directive, February 2014.

[2] M. Esche and F. Thiel, “Software risk assessment for measuring in-
struments in legal metrology,” in Proceedings of the Federated Con-

ference on Computer Science and Information Systems, Lodz, Poland,
September 2015. doi: http://dx.doi.org/10.15439/978-83-60810-66-8 pp.
1113–1123.

[3] ISO/IEC, “ISO/IEC 27005:2011(e) Information technology - Security
techniques - Information security risk management,” International Or-
ganization for Standardization, Geneva, CH, Standard, June 2011.

[4] ——, “ISO/IEC 18045:2008 Common Methodology for Information
Technology Security Evaluation,” International Organization for Stan-
dardization, Geneva, CH, Standard, September 2008, Version 3.1 Revi-
sion 4.

[5] M. Esche, F. Grasso Toro, and F. Thiel, “Representation of attacker
motivation in software risk assessment using attack probability trees,”
in Proceedings of the Federated Conference on Computer Science and

Information Systems, Prague, Czech Republic, September 2017. doi:
http://dx.doi.org/10.15439/2017F112 pp. 763–771.

[6] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Pro-

ceedings of the 8th international conference on Information Secu-

rity and Cryptology. Seoul, Korea: IEEE, December 2005. doi:
http://dx.doi.org/10.1007/11734727_17 pp. 186–198.

[7] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th

USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,

USA, August 15-17, 2018., 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[8] P. Wang, W.-H. Lin, P.-T. Kuo, H.-T. Lin, and T. C. Wang, “Threat
risk analysis for cloud security based on attack-defense trees,” in
Proceedings of the International Conference on Computing Technology

and Information Management. Seoul, Korea: IEEE, April 2012, pp.
106–111, ISBN: 978-89-88678-68-8.

[9] R. Vigo, F. Nielson, and H. R. Nielson, “Automated generation
of attack trees,” in Proceedings of the IEEE Computer Secu-

rity Foundations Symposium. Seoul, Korea: IEEE, 2014. doi:
http://dx.doi.org/10.1109/CSF.2014.31 pp. 337–350.

[10] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in Proceedings of the 23rd

USENIX Security Symposium, San Diego, CA, USA, August 20-22,

2014., 2014, pp. 719–732. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/yarom

536 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

