
Deep Bi-Directional LSTM Networks for Device

Workload Forecasting

Dymitr Ruta

EBTIC, Khalifa University, UAE

dymitr.ruta@ku.ac.ae

Ling Cen

EBTIC, Khalifa University, UAE

cen.ling@ku.ac.ae

Quang Hieu Vu

Zalora, Singapore

quanghieu.vu@zalora.com

Abstract—Deep convolutional neural networks revolutionized
the area of automated objects detection from images. Can the
same be achieved in the domain of time series forecasting? Can
one build a universal deep network that once trained on the past
would be able to deliver accurate predictions reaching deep into
the future for any even most diverse time series? This work is
a first step in an attempt to address such a challenge in the
context of a FEDCSIS’2020 Competition dedicated to network
device workload prediction based on their historical time series
data. We have developed and pre-trained a universal 3-layer
bi-directional Long-Short-Term-Memory (LSTM) regression net-
work that reported the most accurate hourly predictions of the
weekly workload time series from the thousands of different
network devices with diverse shape and seasonality profiles. We
will also show how intuitive human-led post-processing of the
raw LSTM predictions could easily destroy the generalization
abilities of such prediction model.

Index Terms—Workload prediction, time series, Long Short-
Term Memory (LSTM), ensemble averaging

I. INTRODUCTION

P
REDICTIVE analytics on workload-related characteristics

has become increasingly important. Reliable workload

prediction of monitored devices becomes critical in order to

proactively manage the capacity of connected infrastructure,

mitigate cyber security risks and simply respond early to the

anomalous behaviour of the monitored IT infrastructure [1].

Accurate forecasting of the future host workload plays also

a central role for robust scheduling and resources manage-

ment in data centers and cloud computing and among many

expected benefits could lead to reduced operational cost, for

example in a form of eliminated or cut idle time of the devices

[2], [3], [4].

Prediction of future workload characteristics has received

considerable research interests in both academia and industrial

applicationss. Simple linear techniques like (auto-regressive)

moving average (ARMA) models have been used heavily in

this field [5], [6], [7], and enjoyed relatively good performance

at the very low computational cost. As the complexity of the

time-series increases, a subtle dependence of the future on

the past may be non-linearly implied in the uni- or multi-

variate series and linear models struggle or completely fail

to efficiently unscramble such dependence. In recent years,

workload prediction has also been attempted using non-linear

machine learning models, e.g. Bayesian model [8], neuro-

fuzzy and Bayesian inference [9], Neural Network (NN) [10].

Despite the fact that these non-linear models are not partic-

ularly suited to learn temporal dependencies in sequences,

their strong regression capabilities often led to the predictive

performance improvement measured in the static conditions

shifted over moving window. The developments of the Re-

current Neural Networks (RNN) managed to better capture

internal correlations along the data series and in an instant

became naturally suited and applied to to sequential data

analysis, including workload prediction. In [2], an adaptive

model was developed for highly-variable workloads prediction

by integrating a Top-Sparse Auto-Encoder (TSA) and Gated

Recurrent Unit (GRU) blocks into RNN. In [3], workload

sequences in Cloud and Grid systems were predicted by

developing a model of stacking prediction algorithms using

RNN and Autoencoder. An approach based on the Long

Short-Term Memory (LSTM) encoder-decoder network with

attention mechanism was proposed in [11]. In [12], a GRU-

based encoder-decoder network containing 2 gated recurrent

neural networks was implemented for prediction of multi-step-

ahead host workload in cloud computing.

Accurate workload prediction is a challenging problem.

Different time series from various devices typically have varied

patterns that not only lack of well pronounced stationarity

but also are often full of sudden spikes, dropouts, staircase

and other complex temporal patterns. This makes them very

difficult to model and predict using the same predictor or even

the same class of predictive models. This paper presents an

ensemble model based on Bi-Directional Long Short-Term

Memory (BiLSTM) networks developed and pre-trained for

prediction of a large class of network device workload time

series. At its core we have proposed a regression network with

our own architecture containing 3 BiLSTM layers that appears

to perform very well for a very diverse workload time series.

Its prediction accuracy evaluated on thousands of different

devices’ workload series was acknowledged to generate best

results in the FedCSIS’2020 Data Mining Challenge, details

of which are further elaborated in sections below.

The remainder of the paper is organized as follows. The

FedCSIS’2020 Challenge is briefly described in Section II.

Data pre-processing is presented in Section III, followed with

the description of the core BiLSTM network and its ensemble

aggregation model in Section IV and the experimental results

in Section V. Concluding remarks are provided in Section VI.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 115–118

DOI: 10.15439/2020F213

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 115



II. FEDCSIS’2020 CHALLENGE

The aim of this challenge was to predict workload-related

characteristics of monitored devices based on historical data

collected from these devices. Accurate prediction of device

workload can be quite useful to manage infrastructure capacity,

mitigate cyber security risks and early respond to anomalous

events. The data provided in the competition were collected

by EMCA Software that is a Polish vendor of Energy Log-

server, a globally operating system capable of collecting data

from various log sources to provide in-depth data analysis and

alerting to its end-users [1].

The training data were organized in hourly aggregated val-

ues of various workload characteristics extracted from device

logs, provided in the form of a CSV table also containing

device identifiers and timestamps of the aggregation windows.

Overall there were 24249 devices’ time series, each containing

7 sets of workload related statistics including mean, standard

deviation and the candlestick intra-hour aggregates of open,

high, low, close of each hour. Each of such multivariate time

series was captured along 1924 subsequent hours spanning

over 80 days from 2019-12-2 07:00:00 to 2020-2-20 10:00:00,

however, a significant number of values were missing.

Based on these data the task of the competition was to

predict the following week i.e. a 168-hourly future sequences

starting at 2020-02-20 11:00:00 - directly after the end of

the training data, of the mean workload for only the selected

subset of 10000 series. The competitors’ solutions provided in

a form of 10000 168-element vectors yi were evaluated against

the true values fi using the R2 score defined as follows:

R2(y, f) = 1−

∑
i
(yi − fi)

2

∑
i
(yi − y)2

(1)

During the competition only partial feedback on the per-

formance of the competitors’ models was provided by the

knowledgepit.ml platform, on which the competition was

hosted. This feedback was in a form of the preliminary R2

score that was computed over a small unknown subset of the

complete testing set of 10000 series.

It is important to note that although y is supposed to stand

for the mean of the true values of the testing series, in fact

in this competition the scope of the mean has been extended

to include a complete series, i.e. it is a mean of both training

and testing parts of the series. This has been necessitated by

the risk of infinite R2 scores reported over the testing week

that could easily happen for a single flat or dropped out signal

that would hijack the complete score of 10000 series.

R2 score scaled between −∞ and 1 is considered to

be a very "tough" or penalizing measure of the regression

performance compared to the mean squared error (MSE) or

relative MSE measurements. This is simply because it is open

to the large negative scores observed for random predictions

and to even reach the score of 0 one has to correctly match

the mean between predicted and actual values.

III. DATA PROCESSING

Considering that the task of the competition concerned

the prediction of only the mean values of devices’ workload

characteristics, there was a founded temptation to only use

the mean values time series rather than the whole candlestick

series and the signal volatility as features. Following a rapid

prototyping experiments with a couple of standard and simple

regression models we have concluded that none of the time

series other than the mean, even in the multivariate regression

setup, bring any visible improvement in predicting the future

hourly mean values of the series, while their inclusion only

multiplies the computational cost of the regression model.

Backed up by these results we have reduced the data to

include only the mean workload series for both training and

testing sets. Our task was therefore simplified to predicting 168

subsequent values of the 10000 univariate time series based

on their own history of 1924 hourly values as well as other

univariate time series available in the training set containing in

total 24249 series of 1924 hourly mean workload values. For

computational simplicity the whole data were represented as

a matrix X [24249×1924] of values in a single precision format

to reduce memory requirements.

A. Filling missing values

Out of the 46655076 values, 2265379, which is almost

5%, were missing. Since the models we intended to apply

to the regression problem did not accept missing values we

have developed a simple scheme to fill all missing values that

simply fills the average values from the same hour in the same

week-day across all weeks if there is at least one values given

for this hour, otherwise, it is filled with the average of its

closed hour, i.e. previous or next hour in the same weekday.

B. Normalization

After all missing values are filled, each time series is

then normalized to zero mean and unit standard deviation,

expressed as:

x̃ =
x− µ

σ
, (2)

where µ and σ are the mean and standard deviation, yielding

the output time series with

µ̃ = 0 , σ̃ = 1. (3)

C. Data partition

Competition participants are required to predict workload

for only selected 10000 among the 24249 device time series.

Accordingly, the whole data set X was partitioned into training

and validation sets.

• The training set contains the selected 10000 time series,

which will be used for model training and testing.

• The validation set contains all the remaining 14249
workload time series after ensuring that:

– all of the values used for validation are positive;

– all time series have positive standard deviation.

116 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



IV. THE UNIVERSAL TIME SERIES REGRESSION NETWORK

Note that after the preprocessing we are left with a set of

time-aligned but independent series of data, each of which

needs forward prediction in time. Using traditional time series

approach one would in fact build a separate model for all

of them independently and also independently use them to

forecast the time series’ future. The novelty of our proposed

solution is that it intends to build a single model that is trained

on all diverse time series and once pre-trained it is effectively

expected to be able to predict the future of any other time-

aligned time-series, based on its past, without any further (re)-

training necessary. We have decided to build such universal

time series prediction model using Long-Short-Term-Memory

(LSTM) networks that are particularly suited for predicting

deep futures of the variety of diverse time series data.

A. Long-Short-Term-Memory networks

LSTM networks are powerful family of models based on

deep recurrent learning regression networks that are very

flexible with a freedom of layered architecture design and

powerful gated mechanism of LSTM layers that give them

the ability to manipulate its memory state to extract complex

patterns over long sequentially arranged input feature space.

Due to these features LSTMs are known to successfully

capture multitude of seasonalities, autocorrelations and other

subtle time dependencies in both uni or multivariate mode

and are reported to maintain stable accurate forecast deep into

the future. As per the application recommendations we used

bi-directional version of the LSTM (BiLSTM), that can learn

from both past and future, which is suited to our problem when

the predicted series is long and therefore has enough space to

accommodate forward and backward learning patterns.

B. BiLSTM network architecture

There has been an iterative refinement process of con-

structing the final BiLSTM network architecture [13]. This

process was guided by the observation of improved predictions

with an increasing number of hidden units and a number of

BiLSTM layers. Expanding the network along this tendency

had two issues, however. Firstly the computational cost and

hence the time of training grew very quickly, exponentially

if expanding both the number of layers and their sizes. The

second drawback is, that unless validation set was perfectly

representative, the expanded network showed the tendency of

becoming over-trained very quickly, although without clear

and reliable rule as to when is the best moment to stop

training. On top of this, allowing frequent validation evaluation

during training is very costly and additionally slows down the

experimentation phase of the network build.

To address the above issues we have noticed that we can

compensate the additional cost of expanding the network by

reducing the training set down the the k-last weeks. This

process brought significant performance benefits up to when

we tried to shrink the training series below 4 last weeks

indicating that on average there is no predictive gain from

learning from more than 3 weeks back. Eventually, we have

expanded the BiLSTM layers up to 504 (3 × 168) hidden

units and included 3 BiLSTM layers followed with 10%
dropout layers. We have also tried to include ReLu layers that

eliminate negative signals but eventually their impact turned

out not to influence the results hence we dropped them. The 3
rounds of BiLSTM and dropout layers followed with two sets

of dense layers separated with another dropout layer before

eventually reaching the final (MSE) regression layer. The final

network architecture, with which we have generated the final

predictions, is presented in Figure 1:

Figure 1. Deep BiLSTM Network Architecture

To take full advantage of the BiLSTM layers that require

to look forward and backward in relation to the tested point

we have trained the network in the sequence-to-sequence

mode rather than the standard one-next-and-update mode. It

is also worth noting that our validation strategy evolved from

initially evaluating on the additional series not used in testing,

through validating on the last 2 weeks of the available 10000
tested series, up to validating on just the last week of the

available data. The training proceeded on the mini-batches of

64 randomly selected series and terminated when validation

error has not been reduced within the last 50 iterations.

V. EXPERIMENTS AND POST-PROCESSING

Once the network architecture has been established the

experiments followed an iterative process of final parametric

optimization guided by the regression performance measured

on the validation set as indicated above. The generated val-

idation and testing set predictions have been provisionally

inspected particularly in terms of the signal and its trend

continuity. For the vast majority of series that visually follow

an established pattern the validation set predictions are very

accurate as shown in Figure 2.

It is reassuring to observe a correct flat mean prediction

whenever a signal resembles a random noise. Even unexpected

sudden changes of the signal are to a certain extent reflected

in the predictions. Overall the presented BiLSTM model in its

standalone form received the preliminary R2 score of 0.31

A. post-processing

Analysis of the predictions revealed some perceived issues

for the time series that have sudden change of the signal near

the end of the series as well as occasional signal dropouts

to 0 or near 0. In response to these observations we have

developed a set of additional post-processing techniques that

were supposed to fix these issues.

DYMITR RUTA ET AL.: DEEP BI-DIRECTIONAL LSTM NETWORKS FOR DEVICE WORKLOAD FORECASTING 117



Figure 2. Validation set series samples (blue) and their predictions (red)

We have identified two categories of significant disparity

between the last week of the training series and the following

predictions that we have decided to address in post-processing:

• Signal dropouts: observed when all values of the training

time series in the last week are (near) 0 but the predictions

are not completely 0. In such case we have concluded that

the signal which drops at its end to 0, should maintain

its prediction also at the 0 level for the whole week.

• Excessive difference: observed when the mean difference

between the last weeks’ values and the predicted values is

excessively large i.e. exceeds 3 standard deviations of the

complete training series. In such case we have introduced

two adjustments: moderation that simply computes the

average between the last week and the predictions and

trend alignment that replaces the network predictions

with a simple average of the 3-weekly trend matched

to continuously extrapolate the end of the series in the

direction of the gradient between the last two weeks.

The above post-processing techniques have been applied to

the predictions and their effects measured in a form of prelimi-

nary and, later revealed, final testing scores. Interestingly, all of

these techniques improved the R2 score but only reported over

the validation set, also reflected by the gains in the preliminary

scores. Unfortunately, as the final testing revealed after the

end of the competition, none of the pre-processing techniques

improved the performance measured over the complete testing

set. The comparison of the preliminary and final testing R2

scores are shown in the Table I.

Table I
PRELIMINARY AND FINAL R

2 SCORES OF THE BILSTM MODEL WITH

VARIOUS POST-PROCESSING TECHNIQUES

model post-proc preliminary R
2 final R2

BiLSTM none 0.309 0.290
BiLSTM dropout 0.312 0.288
BiLSTM moderation 0.318 -2.38
BiLSTM trend alignment 0.321 -0.779

B. Ensemble averaging

As a final step an arbitrary number (20-30) of the top

solutions have been aggregated with the simple mean operator.

Although this operation expectedly resulted with the average

performance improvements, notably R2 score was elevated to

0.322, these gains were negligible compared to the perfor-

mance degradation caused by the signal post-processing.

VI. CONCLUSIONS

In this paper, we presented a powerful 3-layer BiLSTM

network that has the capability to deliver deep predictions

of a very wide and diverse spectrum of time series. The

model achieved the performance of the R2 score of nearly 0.3

beating all other competitive solutions in the FedCSiS’2020

competition. Although the subsequent post-processing intro-

duced to the model turned out be a bad idea, this lesson

learnt gives us confidence in the native capability of the deep

BiLSTM networks to reliably predict diverse time series that

the arbitrary and selective human corrections can only damage.

REFERENCES

[1] FedCSIS 2020 Challenge: Network Device Workload Prediction,
https://knowledgepit.ml/fedcsis20-challenge/.

[2] Z. Chen, J. Hu, G. Min, A. Zomaya, and T. El-Ghazawi, "Towards
Accurate Prediction for High-Dimensional and Highly-Variable Cloud
Workloads with Deep Learning," IEEE Transactions on Parallel and

Distributed Systems, vol. 31, no. 4, pp. 923-934, April 2020.
[3] H. Nguyen, S. Woo, J. Im, T. Jun, and D. Kim, "A Workload Prediction

Approach Using Models Stacking Based on Recurrent Neural Network
and Autoencoder," IEEE Int. Conference on High Performance Computing

and Communications, IEEE International Conference on Smart City, IEEE

International Conference on Data Science and Systems, Dec. 2016.
[4] K. Qazi and I. Aizenberg, Towards quantum computing algorithms for

datacenter workload predictions, IEEE Int. Conf. on Cloud Comput., 2018.
[5] P. Saripalli, G. Kiran, R. Shankar, H. Narware, and N. Bindal, “Load

prediction and hot spot detection models for autonomic cloud computing,”
IEEE Int. Conf. in Utility and Cloud Computing, pp. 397–402, 2011.

[6] R. Calheiros, E. Masoumi, R. Ranjan, R. Buyya, "Workload prediction
using ARIMA model and its impact on cloud applications’ QoS," IEEE

Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, 2014.
[7] P. Dinda, and D. O’Hallaron, “Host load prediction using linear models,”

Cluster Computing," vol. 3, no. 4, pp. 265–280, 2000.
[8] S. Di, D. Kondo, W. Cirne, "Host load prediction in a Google compute

cloud with a Bayesian model," Proc. of IEEE Int. Conf. on High Perfor-

mance Computing, Networking, Storage and Analysis, 2012.
[9] F. Benhammadi, Z. Gessoum, A. Mokhtari, CPU load prediction using

neuro-fuzzy Bayesian inferences. Neurocomputing 74, 1606–1616 (2011)
[10] J. Kumar, A. Singh, Workload prediction in cloud using artificial neural

net. and adaptive diff. evolution, Futur. Gen. Comput. Syst. 81:41–52, 2018.
[11] Y. Zhu, W. Zhang, Y. Chen and H. Gao, "A novel approach to

workload prediction using attention-based LSTM encoder-decoder network
in cloud environment," EURASIP Journal on Wireless Communications

and Networking, Article number: 274, 2019.
[12] C. Peng, Y. Li, Y. Yu, Y. Zhou and S. Du, "Multi-step-ahead host load

prediction with GRU based encoder-decoder in cloud computing," IEEE

Int. Conference on Knowledge and Smart Technology, pp. 186–191.
[13] S. Hochreiter, J. Schmidhuber, "Long short-term memory," Neural

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

118 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


