
 
Abstract—Agile  software  development  methodologies  are

used  in  many  industries  of  the  global  economy.  The  Scrum

framework is the predominant Agile methodology used to de-

velop, deliver, and maintain complex software products. While

the  success  of  software  projects  has  significantly  improved

while using Agile methodologies in comparison to the Waterfall

methodology,  a  large  proportion  of  projects  continue  to  be

challenged or fails. The primary objective of this paper is to use

machine learning to develop predictive models for Scrum adop-

tion, identifying a preliminary model with the highest predic-

tion accuracy. The machine learning models were implemented

using multiple linear regression statistical techniques. In partic-

ular, a full feature set adoption model, a transformed logarith-

mic adoption model, and a transformed logarithmic with omit-

ted features adoption model were evaluated for prediction ac-

curacy. Future research could improve upon these findings by

incorporating additional model evaluation and validation tech-

niques.

Index  Terms—Adoption,  Agile  methodologies,  Machine

learning, Scrum.

I INTRODUCTION

HE Scrum framework is one of many Agile software

development methodologies [1]-[3]. The purpose of the

Scrum framework is to develop, deliver, and maintain com-

plex software products. The Scrum Guide [4] defines Scrum

as  “a framework within which people can address complex

adaptive problems, while productively and creatively deliv-

ering products of the highest possible value.” 

T

Scrum remains the predominant Agile software develop-

ment methodology used for project management according

to the 13th annual State of Agile survey. According to the

survey [5],  Scrum and Scrum variants (such as Scrumban

and  the  Scrum/XP hybrid)  account  for  72% of  the  Agile

methodologies used. 

The rise in popularity of Agile approaches has grown to

other industries within the global economy. Some of these

industries we are referring to are Transportation, Education,

Energy, Healthcare and Pharmaceuticals, and Financial Ser-

vices [5].  With this growth in Agile popularity,  this study
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posits that incorporating predictive and prescriptive analytics

with Agile methodologies’ context of use is a start  at  un-

packing the complex relationships between factors related to

Agile project outcome.    

Machine Learning (ML) can be defined as the study of a

“real world” phenomenon implementing the scientific prin-

ciple to iteratively validate and refine a model or hypothesis

[6]. From literature as recent as 2015, there was a mention

for the need to incorporate Agile and data science method-

ologies to see frequently realized gains to software develop-

ment and applications [7].

The purpose of this paper was to use ML techniques to

predict adoption of the Scrum Agile methodology. This re-

search takes the reader through the data science lifecycle of

the defined  problem,  data collection,  data  preparation  and

exploration,  feature  extraction,  prediction  model  develop-

ment, testing and evaluation, followed by the discussion of

the findings.

The remainder of this paper comprises of the following

sections: Sect. 2 discusses the research problem; Sect. 3 pro-

vides  literature  on  incorporating  machine  learning  tech-

niques with Agile software development; Sect. 4 presents the

research methodology including the statistical analysis tech-

niques. The results of the machine learning predictive mod-

elling are presented in Sect.  5 and a discussion of the re-

search findings are provided in Sect. 6. Section 7 concludes

the paper and provides recommendations for future research.

II  RESEARCH PROBLEM

There is plenty of literature on the benefits and success of

Agile software development methodologies over traditional

methodologies  such  as  the  Waterfall  method [5],  [8],  [9].

However, literature also note that even when organizations

use Agile methodologies and practices for software develop-

ment projects, less than half of these projects were deemed

successful.

The  Standish  Group’s  modern  criteria  for  determining

project  outcomes  are  known  as  the  triple  constraint  [9].

These constraints are:
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1. OnBudget – The project remained within the planned 

budget. 

2. OnTime – The project was resolved within a 

reasonable time estimation.   

3. A satisfactory result – The project delivered user and 

customer satisfaction even though changes were 

made to the initial scope. 

 

The project outcome definitions taking the triple constraint 

into account can, therefore, be summarized as follows; 

1. Successful – A project that has met all three 

constraints, OnBudget, OnTime, and with a 

satisfactory result. 

2. Challenged – A project that has accomplished two of 

the three constraints upon project completion, for 

example, the project was delivered on budget with a 

satisfactory result but did not keep to the planned 

time-of-delivery. 

3. Failed – A project that was cancelled before it could 

be completed, or completed but was not used. 

 

The Standish Group’s 2018 CHAOS report stated that 

42% of the surveyed Agile projects succeeded, while 50% 

were challenged, and 8% were reported as failures [10]. 

While 42% success is not an ideal rate, it is nonetheless an 

improvement from previous Standish Group CHAOS 

reports. For example, the 2015 report for 2011 to 2015 had 

Agile project success as 39%, challenged projects at 52% 

and failed projects at 9%. When combining Agile and 

Waterfall projects, the successful project outcomes drops to 

a low 29% with projects that experienced challenges at 52% 

and failed projects at 19% [9]. The recent CollabNet 

VersionOne [5] annual global survey also stated that “95% 
of respondents reported at least some of their agile projects 

have been successful with 48% reporting that most or all of 

their agile projects were successful”. 

The authors are, therefore, aware of the low success rate of 

software development project outcomes regardless of the 

industry, methodology, and project size. We are optimistic 

that the future project outcome success will have an upward 

trajectory, however, we are also aware that the acceleration 

of autonomous and converged technologies can deepen the 

problem. 

We, therefore, posit that ML algorithms can be used to 

contribute towards improving the success of project 

outcomes. As a start to solving this complex problem, this 

research paper focused on developing ML models to predict 

Agile methodology adoption. Before the outcomes of the 

project are predicted, we think that predicting the adoption 

of an Agile methodology during the early stages of the 

methodologies inclusion in software development projects 

could contribute significantly to the future understanding and 

outcomes of Agile projects. In other words, we believe that 

by understanding the problem earlier at the adoption phase 

could allow the project team to implement strategies that 

could pivot the trajectory of future project outcomes. 

III. FUSING MACHINE LEARNING WITH AGILE 

METHODOLOGIES 

From an engineering perspective, ML involves developing 

software that implements scientific principles. This complex 

process can be simplified into three steps. The first step is to 

formulate a hypothesis about a phenomenon, which also 

includes the model selection. Secondly, collect data to test 

the hypothesis and validate the model. Lastly, iteratively 

refine the hypothesis for continuous model increments [6]. 

Both the Agile software development methodology and 

ML incorporates an iterative approach to providing solutions 

to complex challenges. Indeed, past studies have successfully 

utilized ML within the context of Agile software 

development. Kahles and others [11] applied ML to 

automate the root cause analysis in Agile software testing 

environments. The study was able to produce an ML model 

that could achieve a prediction accuracy of 88.9% by using 

artificial neural networks to either classify or pre-process the 

data for clustering, using manually labelled data. 

Another research area within Agile software development 

where ML models are often used is in effort estimation. 

Software development effort estimation is the process of 

estimating the effort required by the software development 

team within the Agile environment to develop and maintain 

software [12]. The studies by [12], and [13] used ML 

algorithms for effort prediction. Satapathy and Rath [13] 

used ML algorithms such as Random Forest (RF), decision 

tree (DT), and stochastic gradient boosting (SGB) to 

improve upon the manual and tedious story pointing 

approach of effort estimation. The results indicate that RF, 

DT and SGB improved upon the story point approach, 

however, SGB outperforms the other two ML algorithms. 

Moharreri and others [12] also developed an automated 

estimation methodology called “Auto-Estimate”. The 

study’s ML model construction used supervised learning 

algorithms. The model was used to improve upon the manual 

Agile Planning Poker (PP) for effort estimation. PP involves 

all key stakeholders of the Agile planning team to estimate 

the effort required to complete a task, which usually makes 

use of playing cards with estimates using the Fibonacci series 

of numbers [12]. The results of the study indicate that the 

J48 Decision Tree (J48) and the Logistic Model Tree (LMT) 

ML algorithms outperformed PP. The results also suggest 

combining PP with J48 or LMT yields lower aggregate costs 

which could in future augment human effort estimation. 

Other studies that combined Agile methodologies and ML 

include a study by [14], which successfully incorporated 

Agile practices in big data analytics, and the study by [15] 

which built a model using the J48 ML technique to predict 

software code defects during automated testing with 85% 

accuracy, drastically lowering the time needed to detect these 

potential problems. In addition, Schleier-Smith [7] 
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incorporated Agile practices into data science real-time 

recommendation system development for benefits such as 

faster development cycles, quick feedback mechanisms and 

improved teamwork. 

In summary, there is sufficient literature to be found on 

ML being used with Agile methodologies. The authors found 

more than 100 search results of ML being used with Agile 

methodologies on the Scopus and Web of Science citation 

databases alone.  

IV. METHODOLOGY 

Before the authors could develop and evaluate the ML 

predictive models a few preprocessing steps had to be 

undertaken.  The first preprocessing step was to extract and 

synthesize Scrum and Agile adoption challenges within the 

literature. This was published in a paper entitled “Scrum 
adoption challenges detection model: SACDM” [16] in 

which a conceptual model was developed to test and evaluate 

challenges to Scrum adoption. A narrative review was 

conducted on the existing Agile and Scrum adoption 

challenges experienced globally and by practitioners in 

South Africa (SA). The synthesized challenges were used as 

the independent variables of the model. The first iteration of 

the Conceptual Framework (CF) known as SACDM 

generated 19 independent factors that are used to evaluate 

Scrum adoption as the dependent factor. Some of the 

independent factors included organizational structure, 

organizational culture, teamwork, experience, 

communication, collaboration, complexity, compatibility, 

and the relative advantage of the Scrum framework. This CF 

is a custom model adapted from the Diffusion of Innovation 

(DOI) theory and a study of the adoption of new technology 

by [17]. The descriptions of each of the independent and 

dependent variables can be obtained from the “Scrum 
adoption challenges detection model: SACDM” open-access 

paper [16]. 

To be able to identify the factors that contribute 

significantly to the adoption of the Scrum framework, there 

was a need for testing and evaluation of the CF. This was 

presented in another paper entitled “Factors that contribute 
significantly to Scrum adoption” [18] which described the 

process behind the three iterations of the CF that lead to the 

factors of significance. During the second iteration of the CF, 

SACDM was renamed as Scrum Adoption Challenges 

Conceptual Framework (SACCF). The online survey 

questionnaire serving as a Likert-type scale gathered 

response data from 78 questionnaire items. The Likert-type 

scale was used to record the perceived outcomes of Scrum 

adoption within the organisation, team and individually. The 

questionnaire design used in the previous paper is accessible 

online (https://bit.ly/scrumchallengessurvey). The sample 

consisted of Scrum practitioners working within South 

African organizations. The research design took the form of 

a narrative review and survey questionnaire. For the research 

analysis a set of 207 valid responses to this survey was used 

to perform Exploratory Factor Analysis (EFA) and 

Cronbach’s alpha analysis, which confirmed the validity and 

reliability of the questionnaire as the measuring instrument. 

EFA further revealed that the factors can be reduced from 19 

to 14 independent variables. Fig. 1 depicts the 14 factors 

with Scrum adoption as the dependent variable. The results 

from the correlational and multiple linear regression (MLR) 

statistics were used to identify factors that have a significant 

linear relationship with Scrum adoption. Factors revealed as 

significant were the management of the Scrum sprint, and the 

complexity and relative advantage of the Scrum framework. 

The details of the analysis results and findings can be 

obtained from the “Factors that contribute significantly to 
Scrum adoption” open-access paper [18]. 

Using quantitative analysis on Scrum adoption the authors 

were able to test nineteen research hypotheses in a chapter 

entitled “Quantitative Analysis of the Scrum Framework” 

[19]. Four hypotheses were shown to be statistically 

significant to Scrum. These hypotheses are the following; 

1. Sprint Management: There is a significant linear 

(positive correlation) relationship between Sprint 

Management and Scrum adoption. 

2. Change Resistance: There is a significant linear 

(negative correlation) relationship between Change 

Resistance and Scrum adoption.  

3. Relative Advantage: There is a significant linear 

(positive correlation) relationship between Relative 

Advantage and Scrum adoption.  

4. Complexity: There is a significant linear (negative 

correlation) relationship between Complexity and 

Scrum adoption. 

The three papers just described allowing us to firstly, 

build a conceptual model and test the reliability and validity 

of the model as a CF. Secondly, the authors further found 

significant factors that contribute to Scrum adoption. These 

factors were quantitatively analyzed using correlation 

coefficients and MLR. Thirdly, thereafter, we could test the 

research hypotheses. To contribute further to the research 

field the authors want to incorporate predictive analytics on 

projects using Agile methodologies. This research paper, 

therefore, looks at developing the capability for teams and 

organizations to predict Scrum adoption using predictive 

analytics. 

The factors discussed above form part of the feature 

engineering process, which is a pre-requisite to the ML 

model building. To build and test the ML models the sample 

data had to be split between the training set and test set. For 

both the training set and test set, Scrum adoption (dependent 

variable) and the features (independent variables) are added 

as arguments to the model. The following code sample adds 

the features and Scrum adoption to the train_test_split 

function of the scikit-learn machine learning library for 

Python (1). 
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X_train, X_test, y_train, y_test = train_test_split(      (1) 

features, adoption, test_size=0.3, random_state=4) 

 

In the code sample, the random state was set for testing and 

replicability (random_state=4). The dataset was split into a 

69.57% training set and 30.43% test set. Before training the 

models it was important that the data was normalized and 

that all assumptions had been met. These assumptions are the 

assumption of normality of residuals, the assumption of no 

autocorrelation of residuals, the assumptions of linearity and 

homoscedasticity, and the assumption of no 

multicollinearity. 

The Bayesian Information Criterion (BIC) is a model 

selection criterion for a finite list of models [20]. Weakliem 

[21] critiques BIC for excessively favouring simple models 

in practice, however, we used it because BIC is a widely 

used and popular criterion for model selection in linear 

regression. The lower the BIC value the better the model. 

The BIC equation can be defined as (2); 

 

).ˆln(2)ln( LknBIC                      (2) 

 

1. =the data points. 

2. =the number of parameters estimated by the model. 

3. =the maximum value of the likelihood function of 

the model. 

 

For this paper, the authors used three models to test the 

prediction accuracy; the transformed logarithmic (log) 

adoption model, full feature set adoption model and the 

transformed log with omitted features adoption model. Each 

of these three models are using the MLR ML statistical 

analysis technique using the 14 explanatory variables to 

predict Scrum adoption as mentioned earlier. 

The full feature set model includes the fourteen features 

(over-engineering, relative advantage, recognition, 

experience, teamwork, specialization, escalation of 

commitment, compatibility, resource management, customer 

collaboration, complexity, training, sprint management, 

organizational behaviour) to predict Scrum adoption. The 

transformed log model normalized the skewed data and 

includes the full feature set to predict Scrum adoption. The 

transformed log with omitted features model also normalized 

the skewed data, however, three of the fourteen features 

(experience, recognition, and compatibility) have been 

excluded from the feature set to predict Scrum adoption. The 

BIC value is -0.88 for the log adoption model, and -15.72 for 

the log with omitted features adoption model. 

V.   RESULTS 

To remind the reader, the prediction of Scrum adoption 

referred to as adoption going forward, is the focus of this 

paper. Fig. 1 displays the correlations of the feature set. The 

stronger the correlation the darker the displayed colour. The 

negatively phrased questions of features sprint management, 

teamwork, and over-engineering were recoded (identified by 

the r prefix). 

 

Some of the relationships between the features and their 

significance are discussed below.  

1. A positive and significant relationship between 

Relative Advantage and Adoption (r=0.66, 

p<0.001). The correlation was moderate to strong 

in strength. 

2. A positive and significant relationship between 

Recognition and Organizational Behaviour (r=0.66, 

p<0.001). The correlation was moderate to strong 

in strength. 

3. A positive and significant relationship between 

Relative Advantage and Compatibility (r=0.64, 

p<0.001). The correlation was moderate in 

strength. 

4. A positive and significant relationship between 

Customer Collaboration and Training (r=0.51, 

p<0.001). The correlation was moderate in 

strength.  

5. A positive and significant relationship between 

Resource Management and Organizational 

Behaviour (r=0.64, p<0.001). The correlation was 

moderate in strength. 

6. A positive and significant relationship between 

Teamwork and Sprint Management (r=0.71, 

p<0.001). The correlation was strong in strength. 

7. A positive and significant relationship between 

Complexity and Relative Advantage (r=0.51, 

p<0.001). The correlation was moderate in 

strength. 

8. A positive and significant relationship between 

Resource Management and Training (r=0.39, 

p<0.001). The correlation was weak to moderate in 

strength. 

9. A positive and significant relationship between 

Resource Management and Recognition (r=0.48, 

p<0.001). The correlation was moderate in 

strength. 

10. A positive and significant relationship between 

Compatibility and Adoption (r=0.50, p<0.001). 

The correlation was moderate in strength. 
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Fig.  1 The Feature correlation heat map. Displays the relationship between the features and Scrum adoption. 

The first model is the full feature set model which has an 

actual and predicted adoption correlation of 0.75. Fig. 2 

displays the actual and predicted adoption and Fig. 3 depicts 

the residuals. The 95% prediction interval is 4.83 and 1.98 

for the upper and lower bound in the full feature set adoption 

model, respectively. 

For the second model, Fig. 4 displays the actual and 

predicted adoption correlation for the log transformation, 

while Fig. 5 displays the residual and predicted values. The 

actual and predicted log adoption correlation is 0.73. The 

95% prediction interval is 3.80 and 3.01 for the upper and 

lower bound in the log adoption model, respectively. 

The third model is transformed using log adoption and 

simplified by dropping three features, namely, experience, 

recognition, and compatibility, as mentioned earlier. Fig. 6 

depicts the transformed and simplified model while the 

residuals of this model are displayed in Fig. 7. The actual 

and predicted log adoption with omitted features correlation 

is 0.73. The 95% prediction interval is 3.79 and 3.01 for the 

upper and lower bound, respectively, in the log adoption 

with omitted features model. 

Table I displays the R-squared (R2), and the Mean 

Squared Error (MSE) for each of the three ML predictive 

models. The R2 is a statistical measure of the variance of the 

predicted values divided by the variance of the data [22]. A 

0% R2 value indicates that the models explain none of the 

variability of the data, in other words, it is worse than 

predicting the mean. A 100% R2 value indicates that the 

model explains all the variability of the data. The R2 

equation divides the sum of the squares due to regression by 

the total sum of squares (3). 

 

                           (3) 

                    

 

The MSE criterion calculates how close the regression line is 

to the data points by taking into account the predicted value 

of the observation and eliminates the arbitrariness associated 

with the residual sum of the squares [23]. Put in another way, 

the MSE equation measures the average squared error of our 

predictions where  is the actual output and  is the model's 

prediction (4). The lower the MSE value the lower the 

variance of error. 

 

                      (4) 
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Fig.  2 The normal probability plot for the untransformed full feature set 

model. The assumption of normality of residuals was met because the 

actual and predicted adoption residuals were approximately linear. 

 

 
Fig.  3 The Scatterplot for the untransformed full feature set model. The 

assumptions of linearity and homoscedasticity were met because the 

residual and predicted values did not curve or funnel out. 

 

 
Fig.  4 The normal probability plot for the log adoption model. The 

assumption of normality of residuals was met because the actual and 

predicted adoption residuals were approximately linear. 

 

 
Fig.  5 The Scatterplot for the log adoption model. The assumptions of 

linearity and homoscedasticity were met because the residual and predicted 

values did not curve or funnel out. 

 

 
Fig.  6 The normal probability plot for the log adoption with omitted 

features model. The assumption of normality of residuals was met because 

the actual and predicted adoption residuals were approximately linear. 

 

TABLE I. 
ML PREDICTIVE MODELS 

Adoption Model R-squared R-squared % MSE 

Transformed log 

model 

0.527 52.7 0.039 

Full feature set model 0.564 56.4 0.507 

Transformed log with 

omitted features 

model 

0.527 52.7 0.038 
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Fig.  7 The Scatterplot for the log adoption with omitted features model. 

The assumptions of linearity and homoscedasticity were met because the 

residual and predicted values did not curve or funnel out. 

VI. DISCUSSION OF FINDINGS 

The preprocessing and feature engineering of the response 

data as described in the research methodology section 

allowed us to build and evaluate three machine learning 

(ML) models. The three models were not an exhaustive 

collection of predictive models as this approach was beyond 

the scope of this research paper. We wanted to investigate 

whether different models which include transformations and 

simplified feature sets can predict Scrum adoption with less 

variance and error, in other words, at what prediction 

accuracy. 

The three models evaluated in this study was the log 

adoption model, full feature set adoption model, and the log 

with the omitted features adoption model. As mentioned in 

the results, the R-squared (R2) value measures how close the 

data are to the regression line, and the Mean Square Error 

(MSE) measures the average of the square of the errors. 

The full feature set adoption model has a moderate 

variance value of 0.564, explaining more than half of the 

model instances. The closer the R2 is to 1 usually the greater 

the prediction accuracy. This model also has an MSE value 

of 0.507, indicating a high error rate as the error value is 

closer to one. 

The log adoption model is a transformation of the full 

feature set model. This model has an R2 value of 0.527 with 

a 0.039 MSE value. It is immediately evident that the log 

model is a better model for adoption prediction accuracy 

because of the MSE being closer to zero while the R2 value 

is greater than 0.5 and less than 0.6, similar to the full feature 

set model. 

The third model is the log with the omitted features 

adoption model. This model simplified the feature set by 

removing three of the fourteen features. The three features 

are experience (p-value=0.929), recognition (p-

value=0.969), and compatibility (p-value=0.820) due to 

their high p-values. The higher the p-values, the less 

significant of a factor it is to adoption. With the three 

features removed the R2 value is 0.527 and the MSE is 

0.038. 

The transformed log with omitted features model is, 

therefore, the best-fit prediction model even though it gives a 

marginally lower error level than the log model. We are 

fairly confident that we can improve upon the prediction 

accuracy with a greater randomized sample. Further, we can 

improve upon the best-fit model by developing a model with 

lower variance and MSE. 

VII. CONCLUSION 

This research paper reports on the development of ML 

models to predict the accuracy of Scrum adoption based on a 

feature set derived from a survey questionnaire's response 

data. The sample size of 207 response data was used to train 

and test the prediction models. Data cleaning and 

preprocessing was required before the models could be 

trained and tested. We trained each of the three models with 

approximately 70% of the dataset while 30% was used to test 

the models. The three prediction models was a full feature 

set adoption model, transformed logarithmic (log) adoption 

model, and a transformed log with omitted features adoption 

model. The adoption model with the highest prediction 

accuracy was the transformed log with omitted features 

model with an R2=0.527 and MSE=0.038. The full feature 

set model was the least accurate when looking at the 

combination of R2=0.564 and MSE=0.507. Implications of 

these findings, while still preliminary, allows researchers and 

practitioners to gain a better understanding into which 

features are potentially significant to predicting Scrum 

adoption. Researchers could compare our findings against 

their own and modify their modelling techniques. 

Limitations of this research are threefold. Firstly, the 

training and test split used in this research paper for the 

dataset has been reported previously as displaying biases 

[24]. Secondly, the model evaluation measure of R2 being 

used for goodness-of-fit of the models are one of many 

metrics used for prediction model evaluation. Thirdly, 

additional model validation techniques such as bootstrap 

sampling has not been used in this preliminary research. 

Additional research, therefore, could implement the 

bootstrap aggregating technique to improve the stability and 

accuracy of the ML algorithms. Metrics such as max error, 

mean absolute error, the median squared error could be used 

to further evaluate prediction accuracy. Using a larger 

randomized sample would improve the predictive accuracy 

of the models used within this research paper. Further 

research could develop a logistic regression model with a 

larger dataset to predict Agile project outcomes, modifying 

the conceptual framework and methodology as required. 
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