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Abstract—We want to find a tree where the path length
between any two vertices on this tree is as close as possible
to their corresponding distance in the complete weighted graph
of vertices upon which the tree is built. We use the residual sum
of squares as the optimality criterion to formulate this problem,
and use the Cholesky decomposition to solve the system of linear
equations to optimize weights of a given tree. We also use two
metaheuristics, namely Simulated Annealing (SA) and Iterated
Local Search (ILS) to optimize the tree structure. Our results
suggest that SA and ILS both perform well at finding the optimal
tree structure when the dispersion of distances in the complete
graph is large. However, when the dispersion of distances is small,
only ILS has a solid performance.

I. INTRODUCTION

E WANT to find an edge-weighted tree that best
Westimates the complete weighted graph of distances
between vertices such that the discrepancy between the path
length between any two vertices in the tree, and their distance
in the complete graph, is minimized. To this end, we use the
residual sum of squares (RSS) as it is a typical optimality
criterion for these types of problems. We call the resulting
tree, the residual sum of squares optimal tree (RSSOT).
The underlying idea for this problem originates from three
areas: stock-correlation networks, phylogenetic trees [1] and
t-spanners [2] in graph theory. In the first two areas, several
algorithms have been proposed to build a network based on
the complete weighted graph of distances between stocks [3]-
[10] or species information [11]. In the third area, the problem
is similar to estimating the ¢-spanner tree of K,.

We take an approach similar to some investigations in
phylogenetic trees [11], but we have a different treatment of a
basic improvement step used in local search heuristics. Also, in
contrast to phylogenetic trees, we consider distances between
all vertices of the tree, not just leaves. We investigate two
metaheuristics—Simulated Annealing (SA) and Iterated Local
Search (ILS)—for this problem.

In Section II, we discuss how to optimize edge weights
of a given tree. In Section III, we use the aforementioned
metaheuristics to optimize the tree structure—find RSSOT—
and ultimately, Sections IV and V include our results and
conclusion respectively.
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II. SUB-PROBLEM: TREE WEIGHT OPTIMIZATION

For the complete weighted graph K,, = (V, E,d), we want
to come up with a weighted spanning tree T = (V, E,w)
where & C E such that the path length between any two
vertices on the tree best estimates the distance between them
in K. To be precise, we want to minimize the RSS between
path lengths in 7" and their corresponding edge distances in
K, such that

RSS (T, Kn) = Y (S (Pk) = i)’ (D
m,k
m<k
In the equation above, P, ; denotes the path connecting
vertices v, and vg, and S(Py, ;) denotes the sum of edge
weights on this path. For example, for the path P, =
(emaa €ab, €bes - -+ 5 edk)a S(Pm,k) = Wmqa + Wab + Whe + ... +
wqg. Thus, equation (1) can be reformulated as

RSS(T, Kn) = Z Z Wij — dm,k . (2)
m,k 1,J
m<k Ei,jEIJ)m,k

In order to find the edge weights for a given spanning tree,
we take the derivative of RSS with respect to the w;;’s, so
that % = 0. It gives us
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The equation above can be written as
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Fig. 1: An example of what matrix A and vector d look on
this tree

where «;; denotes the number of paths that edge e;; is on, and
Brsij denotes the number of paths on which both edges ¢;; and
ers are. The reason being each term (.)? in RSS denotes the
square error between a path length in 7" and its corresponding
edge distance in K,. We have (%)—equal to the number of
paths between each two vertices in 7—of these terms. Taking
the derivative with respect to a w;;, we are considering only
the terms (.)? that include the edge e;; which correspond to
the paths that include edge e;;. From equations (3) and (4),
we have the following n — 1 equations

ORSS
ersFeij
®)
m,k:ei; EPm i

m<k

The above linear system can be expressed in matrix form as
Aw = d, where the entries of matrix A are as follows. a;;
denotes the number of paths including the edge corresponding
to the ¢-th entry of the vector w where ¢ = j, and where
i # j, it denotes the number of paths including the edges
corresponding to the i-th and the j-th entries of the vector
w. Let us go through the following example to make it more
clear.

For the tree in Fig. 1, the system of equations is as below.

wo1

4 1 2 1
1 4 2 1 wo2 | _
2 2 6 3 Wo3 o
1 1 3 4 _UJ34
——
A _w (6)

do1 + di2 + d13 + dig
doo + di2 + dag + das

do3 + dog + do3 + d13 + dig + dog
dsq + dog + doa + di14

d

In the linear system above, the diagonal entries of A—aq1,
a2, a33 and ay4—are the number of paths passing respectively
through the edges eg1, €g2, €93 and es4. Also, for example, a2
is the number of paths passing through both edges ep; and eq2,
and as4 is the number of paths passing through both edges egs3
and esy4. In vector d, in the first entry—do +d12+d13+d14—
the indices correspond to the beginning vertex and end vertex
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of the paths that the edge e is on, and d;; is the distance
between the vertices v; and v; in the complete graph.

The question is how do we count the number of paths
passing through one specific edge or two specific edges in
a tree effectively? Let us take one vertex of the tree as the
root vertex and consider the tree directed based on that vertex
where D; denotes the descendants of vertex v;. Also, c;; and
Bijrs are as defined in equation (4). To answer the first part of
the question—the number of paths passing through e;; where
vj € Di—ay; = (|Dj] +1) (n — (|D;| +1)). To answer the
second part of the question—to count the number of edges
passing through two edges—say, e;; and e,s where v; € D;
and v; € D,,

(1D + D)(IDs| +1) DjnDs =10
(Dl + 1) (n=(IDs|+1)) D;cDs (D
(|Ds| +1) (n— (/D] +1)) DsC D;.

61’]'7"3 =

It can be seen that only the number of descendants of the
bottom vertices of the edges e;; and e;j,, is factored in oy
and Bijrs.

After finding all entries of A, we can find the edge weights
by solving Aw = d. Yet, is the matrix A necessarily
invertible? In the following, we prove that not only is A
invertible, but positive-definite.

Lemma 1. A is a positive-definite matrix.

Proof. We define the function Z on a spanning tree 71" as
follows. For each edge e;;, we assign a variable v;;. Then we
2

define Z = ), > v | . We can see that the terms

m,k i,7
m<k \€ij€Pm i

()2 in Z are the same as those in RSS (equation (2)). The
only difference being the variables w;; are replaced with v;;
and the constants d;; are replaced with 0. Z can be written as
Z = v Bv > 0 where v is the vector of variables V5, and B
is a matrix whose entries are as follows. by, is the number of
terms (.)? in Z including the variable v;; assigned to the p-th
entry of vector v for p = g, and for p # g, by, is the number
of terms (.)? including both variables v;; and v, assigned
to the p-th and g-th entries of vector v. Since each term (.)?
denotes a path in T', we can say that b, is the number of paths
including the edge e;; assigned the p-th entry of vector v for
p = ¢, and for p # g, by, is the number of paths including
both edges e;; and e, assigned the p-th and g-th entries of
vector v. Thus, B = A, and since B is positive-definite, A is
also a positive definite matrix. O

Since A is positive-definite, we can use the Cholesky
decomposition of A in the form A = LLT where L is a
unique lower triangular matrix whose entries are computed
by equations (8) and (9). From there, we can solve Ly = d,
and then L"w = y to find the weights. In the following, we
discuss how to optimize the tree structure—find RSSOT.
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III. PROBLEM: TREE STRUCTURE OPTIMIZATION

So far, we discussed how we can find the edge weights for
a given tree based on the distances in the complete graph.
The question is, how can we find the tree with minimum
RSS? In other words, how can we optimize the tree structure
to find RSSOT? We can build n”~2 spanning trees on any
n number of labeled vertices. That means for as few as 50
labeled vertices, we can have roughly as many spanning trees
as the number of atoms in the known universe. Due to the large
scale of the problem, we make use of two metaheuristics—in
this case, Simulated Annealing (SA) and Iterated Local Search
(ILS)—to approximate the optimal tree. These are two of the
typical metaheuristics applied to such difficult optimization
problems. Below, we explain how to make a structure change
in a tree, and how to use SA and ILS to optimize the tree
structure based on the structure change.

A. Tree structure change for optimization

Before discussing SA and ILS on a tree, let us explain
how we make a change in the structure of a given tree in
order ot accept or reject the transition between two states. Let
T, be the tree at time ¢ and let us denote its corresponding
structure by T'(V, E). Let us also denote the structure after
change by T"(V, E')—the structure that we want to accept
or reject. For v; € V, we denote the neighbours of v; by
N(v;). We pick one edge e;; € E. Then we define set C' as
C = N(v;) UN(v;) \ {vi,v;}. We pick vi, € C uniformly at
random. If vy, € N (i), then E' = EU{e;}\{eir}; otherwise,
if vy € N(j), then E/ = EU {e;} \ {ejx}. We denote the
former structure change by SC(T, e;;, €k, €ix;) and the latter
by SC(T, eij, €ir, €jx). In SC(T, ., ., .), the second, third, and
forth terms are respectively the picked edge, the edge that is
added to, and the edge that is removed from the tree.

The other thing we investigate before discussing SA and
ILS algorithms on a tree is the change in matrix A and
vector d following the structure change in T'(V, E). Should
we recompute every entry of A and d after every structure
change? Let us define A’ and d’ as the matrix and vector
corresponding to T"(V, E').

Lemma 2. Suppose we have the structure change
SC(T,eij,.,.) resulting in tree T'(V,E'). All the entries
of A and A’ are the same except the rows and columns
corresponding to e;;. So are all the entries in d and d’
except the entry corresponding to e;;. Thus, we only need to
recompute the entry in d, and the rows and columns in A
corresponding to e;;, to obtain A" and d’.

Fig. 2: Tree T(V, E) before the structure change with picked
edge e;; connecting components C; and Cs, and randomly
picked vertex v, € C

(a) Tree before structure change
i

(b) Tree after structure change

Fig. 3: Demonstration of the structure change
SC(T, e;j,€ix,ej,). Only v; has a different number of
descendants in 7" than it has in 7.

Proof. Consider the tree T'(V, E)) in Fig. 2 on which we want
to make the structure change based on the picked edge e;;
and vy, € C—C as defined above. « and [ are as defined
in equation (4) for T(V, E), and the equivalents of them are
o' and g’ for T'(V, E'). If v, € N(v;) \ {v;}, the structure
change is SC (T, €;5, €ir, €jk)-

Let us look at T'(V, E) as a directed tree with the root vertex
v;—Fig. 3a. This tree before and after the structure change is
illustrated in Fig. 3. Consider the subgraph S = G(V, E") in
T'(V, E')—Fig. 3b—where E” = E’\ {e;j,e;x} . It can be
seen that every vertex but v; in this subgraph has the exact
same descendants in 7" as they have in T'. Thus, since E” C
E’ and E” C E and based on the calculation of o and 3
in Setion II, we can say that the number of paths that pass
through any edge or any two edges in E” is the same in T
and T". Similarly, regarding e;, € E' and ej;, € E, of, = ai;
and B.,,, = Bjrrs for all e,5 € E”. Hence, we see that e;; is
the only edge for which a;j # o, and ngm # Bijrs Where
ers € ENE'\ €.
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B. Simulated Annealing (SA)

As mentioned above, let us say the structure of the tree
at time ¢ is T(V, E)—T; + T(V,E). Let us also denote
RSS(T',K,) and RSS(T, K,) by RSS’ and RSS respec-
tively. Starting from a random initial tree structure T, we
make the transition from T} < T(V, E) to Ty1 < T'(V, E')
in either of the following two cases:

1) RSS' < RSS
2) P (BSSSESS 1) < random(0,1) if RSS' > RSS .

Otherwise, T;11 + T. In the above, random(0, 1) denotes
a number picked uniformly at random in the interval (0,1).
The second case accepts the new tree structure with a worse
RSS value with a certain probability. P(RSS’, RSS,t) =

ag RSS'—RSS
—az(In )" F=par==

ae , and it can be seen that the probability
of accepting RSS’ > RSS decreases with time t. The
parameters a1, ae and as are tuned according to how often
we are willing to accept a transition with a larger RSS’ than
RSS, and such that accepted RSS’ values roughly converge
for a large t.

C. Iterated Local Search (ILS)

In ILS, we make the transition from T} < T to Tyy1 < 1"
only if RSS’ < RSS—so far, it is a descent-only algorithm.
However, in contrast to a descent-only algorithm, when we
get stuck in a local minimum, we restart the algorithm—by
modification of the current local minimum—to a new tree
structure. Basically, ILS consists of the following two steps:

1) Modification of the current local minimum by kicking
it far enough from its current basin
2) Descent to get to a new local minimum.

We want to try every possible structure change to make sure
the function RSS is stuck at a local minimum. To this end,
for any picked edge e;;, the number of structure changes
that we can make depends on |C;| = |N(v;) \ {v;}| and
|C;] = |N(v;) \ {v;}|- If we remove the edge e;; from T,
the resulting graph G(V, E \ {e;;}) consists of two trees T;
and T; where v; € T; and v; € T;. We assume the average
degree of a tree to be two; thus, we assume the degree of both
v; and v; to be 2. With this assumption, the number of possible
structure changes based on the picked edge e;; is four, so for
the whole tree, we estimate the number of possible structure
changes at 4n. If we try structure changes on a tree uniformly
at random, the average number of times that we need to try
all possible structure changes is 4nH,,—based on the well-
known Coupon collector’s problem—where H,, is the 4n-th
harmonic number defined as Hj = Zle % That is why we
set 4nHy, as the threshold to determine the algorithm is stuck
at a local minimum.

IV. RESULTS

We applied SA and ILS as described in Section III to
evaluate the performance of these two metaheuristics in dif-
ferent scenarios. We evaluated whether bias towards smaller
edges—picking an edge e;; with a smaller weight for the tree
structure change SC(T, e;5, ., .) with higher probability—has
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Fig. 4: Dispersion of sample of size 50 in Tables I and II

any advantage in SA over no bias—picking e;; uniformly at
random—in SA. After extensive experiments, we found that
biased SA in general has a slight advantage over unbiased SA,
so in the following, SA refers to biased SA.

We compared the performance of SA and ILS based on
running each of them ten times over the complete graph—
where the distances in K, are derived from stock-correlation
data. See Tables I and II for a performance comparison of SA
and ILS. In these tables, in each of the 10 runs, we ran each
algorithm—SA and ILS—on trees with sizes of 20, 30, and
50 respectively for 10 minutes, two hours, and 18 hours. The
values in the tables are for the minimum RSS value found
in its corresponding run—according to which we evaluate the
performance of the algorithm. In Table I, it can be seen that the
performance of ILS is much better than that of SA. However,
in Table II, we can see that there is no apparent difference
between SA and ILS performance.

The reason for performance inconsistency of SA in Tables I
and II seems to be the dispersion in distances of the complete
weighted graph used in each of them. For example, for tree of
size 50 in each table, dispersion of distances in the complete
weighted graph is illustrated in Fig. 4 with a histogram.
It can be seen that for distances with high dispersion, SA
and ILS have a similar performance while for distances with
low dispersion, ILS maintains a solid performance, but SA
performance sharply decreases. We got the same result by
running SA and ILS on the trees of many other complete
weighted graphs of distances. It is noteworthy that for distance
values with low dispersion, both the biased and unbiased SA,
where the biased SA picks lightweight edges with a higher
probability, have a poor performance. The reason possibly
being, when distance values are close to each other, smaller
distance values are not considerably smaller than the large
distance values—giving no edge to biased over unbiased.

V. CONCLUSION

We have presented a scheme to optimize the edges weights
and structure of a tree to approximate a complete weighted
graph using a measure involving the path distances in the tree.
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TABLE I: SA vs ILS on a complete weighted graph with low dispersion of distances. For each tree, the metaheuristic with a
better performance has been highlighted.

Tree size
20 30 50
Run sa | ws sa | ws SA ILS
1 5201951597 | 4.84414153 | 9.501749520 | 8.4082242 | 24.8579367 | 16.8823573
2 821566953 | 4.84414153 | 11.66835384 | 8.4082242 | 267081655 | 16.8823573
3 7797470793 | 4.84414153 | 11.16650355 | 7.97443788 | 19.6536142 | 16.8823573
4 6.875995126 | 4.84414153 | 11.66835384 | 7.97443788 | 25.5941918 | 16.8823573
5 6.875095126 | 4.84414153 | 8.408224203 | 7.97443788 | 26.284257 | 16.8823573
6 6019906558 | 4.84414153 | 12.98053771 | 7.97443788 | 30.2829204 | 16.8823573
7 7016393465 | 4.84414153 | 103933439 | 7.97443788 | 34.8261135 | 16.8823573
8 7016393465 | 4.84414153 | 11.80185307 | 7.97443788 | 31.0322914 | 16.8823573
9 4844141529 | 52919516 | 13.02265027 | 7.97443788 | 31.1982311 | 16.8823573
10 | 7016393465 | 4.84414153 | 10.58531443 | 7.97443788 | 26265805 | 16.8823573
Average | 6.697031065 | 4.88892254 | 11.12058844 | 8.06119515 | 27.6703536 | 16.8823573

TABLE II: SA vs ILS on a complete weighted graph with high dispersion of distances. For each tree, the metaheuristic with
a better performance has been highlighted.

Tree size
20 30 50
Run sa | s sa | s sa | us
1 575665216 | 5.75665216 | 127055242 | 12.8162316 | 32.18863674 | 31.8890846
2 575665216 | 575665216 | 127055242 | 12.7495148 | 31.78033885 | 31.8140415
3 575665216 | 5.75665216 | 127464911 | 12.8550396 | 31.68615883 | 31.8986455
4 575665216 | 5.75665216 | 127055242 | 12.8345686 | 320511834 | 31.9636283
5 575665216 | 5.75665216 | 127055242 | 13.0379292 | 31.65783212 | 31.6641679
6 575665216 | 5.75665216 | 127055242 | 12.832506 | 32.07947769 | 31.7900896
7 575665216 | 5.75665216 | 127615612 | 12.8750193 | 31.91069847 | 32.0325964
8 575665216 | 5.75665216 | 127055242 | 12.8785592 | 32.00314739 | 32.2380063
9 575665216 | 575665216 | 127055242 | 12.7207733 | 31.96688445 | 31.9796543
10 593707406 | 5.75665216 | 127207733 | 12.8472376 | 31.93720134 | 31.792651
Average | 5.77469435 | 575665216 | 12.7167495 | 12.8447379 | 3192615593 | 31.9062565

We have proposed a very efficient way of computing modifi-
cations to the tree that assist with local search metaheuristics,
and evaluate the performance of two of these: SA and ILS.
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