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Abstract—The problem of conceptual optimization of Gener-
alized Nets (GNs) models is discussed. An overview of some
operators for complexity of GNs and relations with respect to
them is presented. Some new operators and relations are defined.
A GN model of a queuing system with finite capacity of the
buffer and server, and FIFO discipline of service of the requests,
is optimized with respect to some of the operators for complexity.

I. INTRODUCTION

O
NE of the first attempts to define a set of quantifiable

characteristics of a conceptual model; a measurement

of the characteristics together with a fixed measurement of

the decision-maker’s preferences are done in Oren [8]. The

proposed characteristics are: 1) size, 2) change pr. month, 3)

data description inaccuracy, 4) semantic relevance, 5) semantic

inaccuracy and 6) l/0-model size. Oren mentions that the

conceptual model characteristics may be quantified absolutely

or relatively and discusses the accuracy of quantifying the

characteristics. Examples are not given.

Another approach can be found in [10]: Conceptual mod-

elling is about abstracting a model that is fit-for-purpose and

by this we mean a model that is 1) valid, 2) credible, 3) feasible

and 4) useful. Some important features of the conceptual

models are:

• the model is designed for a specific purpose and with-

out knowing this purpose it is impossible to create an

appropriate simplification;

• simplifications are incorporated in the model to enable

more rapid model development and use, and to improve

transparency;

• assumptions are made either when there are uncertainties

or beliefs about the real world being modelled.
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The characteristics in [10] are not quantifying.

Eric [2] considers the Universe of Discourse (UoD), describ-

ing which classes of entities and propositions are important for

an application area. UoD consists of: functional and existence

dependencies, attributes, subtype-connections, classes, labels.

Let S be a concrete conceptual schema (diagram, model)

which is to be evaluated by a proposed evaluation function

of the following quality measures [2]:

• number of functional dependencies that hold in the UoD,

but which are not expressed in S;

• number of existence dependencies that hold in the UoD,

but which are not expressed in S;

• number of attributes and subtype connections in S;

• number of classes in S;

• number of labels of S.

In [6], considered Metrics for Structural Complexity are:

• number of associations – total number of associations in

a model;

• number of dependencies – this metrics is used to calculate

the total number of dependency relationships within the

class diagram;

• number of aggregations – it calculates the number of

aggregation relationships within a class diagram;

• depth inheritance tree – it calculates the longest path from

the class to the root of the hierarchy in a generalization

hierarchy.

Metrics for Modularity are [6]:

• Cohesion – this metric calculates the cohesion of different

modules;

• Coupling – it calculates the coupling between different

modules.

Many of the metrics above are difficult to be evaluated

automatically. In the present paper, we use a more formal

approach to metrics of structural complexity.

Generalized Nets (GNs, see [5]) are extensions of Petri Nets

([1]). For many types of Petri Nets and their extensions, it is

proven that the functioning and the results of their work can be

represented by an ordinary GN [4]. An important property of

the GNs is that one and the same process can be modeled by

more than one GN. As a result, a problem arises of choosing
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the most suitable GN model of a particular process among the

many possible.

In the present paper, we study the problem for conceptual

optimization of GN models. It is based on operators for

complexity of GNs some of which are defined in [4], while

some others are defined here for the first time. Relations of

inclusion with regard to the results of the work of GNs about

the operators are defined which allow a comparison of the

GN models to be made. The optimization is demonstrated for

a GN model of a queuing system with finite capacities of the

server and buffer, and FIFO (First-In, First-Out) discipline of

service of the requests. The choice of the model is justified by

the fact that many GN models of queuing systems exist (see

[9], [14], [15]).

II. ON THE CONCEPTS IN GENERALIZED NET MODELS

The GN is a relatively complex object. Detailed definition

of a transition of a GN, GN and the algorithms for transition

and net functioning can be found in [5]. The concepts of a

GN model can be divided into model description concepts

and graphical representation concepts.

First, we shall describe non-formally the elements used

in the graphical representation of a GN. GN’s places are

represented by
❥

.

Every transition of a GN contains transition’s conditions

which are graphically represented by

❄

.

Like Petri nets, GNs contain tokens which are transferred

from place to place through the arcs of the net. The arcs are

denoted by arrows in Fig. 1.

The names of the transitions and the places are also included

in the graphical representation of the GN model. They can be

very important for the understanding of the model by non-

specialists in the area of GNs and for the users in general.

To summarize, the concepts of a GN model which are

represented graphically are: transition, place, arc and the

names of the transitions and the places.

III. OPERATORS FOR COMPLEXITY OF GNS MODELS

Some operators for complexity of GNs are defined in [4].

Below, we briefly present some of them and propose new ones.

For arbitrary transition Z and arbitrary GN E (see [4]):

• φ1(E) = |pr1pr1E| is the number of the transitions of

the net;

• φ2(E) = |pr1pr1pr1E ∪ pr2pr1pr1E| is the number of

places of the net;

• φ3(E) = |pr1pr2E| is the number of tokens of the net;

• φ4(E) = |pr3pr3E| is the duration of the GN function-

ing;

•

φ5(E) =

∑

Z∈pr1pr1E

φ′
5(Z) =

|L′|
∑

k=1

|L′′|
∑

l=1

k·l

(

|L′|

k

)(

|L′′|

l

)

is operator for the complexity of the transitions of the

net;

• φ6(E) = max
α∈pr1pr2E

b(α) is the maximum number of

characteristics that the tokens can keep during the func-

tioning of the net;

• φ7(E) = |pr1pr4E| is the number of initial characteris-

tics of the tokens;

• φ8(E) =
∑

Z∈pr1pr1E

pr1Zpr2Z is the number of arcs of

the net;

• φ9(E) = | ∪Z∈pr1pr1E {l|l ∈ pr1Z&l ∈ pr2Z}| is the

number of places which are both intput and output for a

given transition, i.e., the number of loops. This operator

gives us information about the graphical representation

of the net.

• φ10(E) =

∑

r∈pr5pr1pr1E

|{ri,j |ri,j∈r&(ri,j=false∨ri,j=true)}|

∑

r∈pr5pr1pr1E

|{ri,j |ri,j∈r}|

is operator of determinacy, i.e., a ratio of the number of

elements of the IMs of the predicates of the transitions

with truth values “true” or “false” to the total number of

predicates.

• φ11(E) = |ΩE | is the number of concepts used to

describe the GN E;

• φ12(E) is the number of concepts used in the graphical

representation of the GN E.

Above, we denote by priA the i-th projection of the set A.

If φ is some operator for complexity, then using the relations

≈ and ⊏ defined in [4], we can define relations of inclusion

and equivalence between GNs with respect to the operator in

the following way:

Definition 1: E1 ⊢φ E2 ≡ (E1 ≈ E2&φ(E1) ≥ φ(E2)) ∨
(E2 ⊏ E1) .

Definition 2: E1 ≈φ E2 ≡ (E1 ≈ E2)&(φ(E1) ≥ φ(E2)) .

IV. OPTIMIZATION OF A GN MODEL OF A QUEUING

SYSTEM

Since different GNs can be used to model one and the same

process, it is important to determine which one is the best

with regard to the purpose of the modelling. As shown in

[4], a given GN can be modified through the operators over

GNs. As a result of the application of some of the operators,

the resulting net can have less (or more) transitions, places,

tokens, etc. Suppose we have a GN with high value of some

operator for complexity φi which we want to simplify. By

applying the operators to it, we can obtain a sequence of GNs

E,E1, ..., En such that

E ⊢φi
E1 ⊢φi

... ⊢φi
En . (1)

This process can continue until we obtain a GN with one

transition and two places, which would be minimal with

respect to the operator. However, such GN is not very useful.

Therefore, this process must be terminated at some point when

the last obtained GN is the most optimal one. Specifying the
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.
.
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✲
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✲
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✲
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Fig. 1. First GN model of a queuing system.

optimization criteria, for example the threshold value of the

corresponding operator for complexity, is a problem from the

methodological aspect of the theory of the GNs. The modeller

should determine the optimal number of transitions, places,

tokens, etc, of the GN which give the optimal values of the

complexity operator (or collection of operators).

A. First GN model of a queuing system

To illustrate the optimization of a GN, we consider a

queuing system [3] consisting of buffer and server with finite

capacities and FIFO (First-In, First-Out) discipline of service

of the requests by the server. GN models of queuing systems

with various disciplines of service of the requests are described

in [14], [15]. A comparison between the GN approach to

the conceptual modelling of queuing systems and the Service

Systems theory approach is made in [9]. Below we use some

of the results presented in these papers.

First, we propose a detailed GN model of a queuing system

with graphical representation shown in Fig. 1. It corresponds

to a detailed conceptual model of queuing system proposed in

[9], which uses elements of Service Systems Theory.

The GN consists of 7 transitions and 14+Nq places where

Nq is the capacity of the buffer. The transitions represent the

following functions of the queuing system:

• Z1 represents the process of generating of requests.

• Z2 represents the blocking of the requests when the buffer

has reached its capacity.

• Z3 determines the way of service of the requests, i.e.,

with waiting or without waiting.

• Z4 represents the service of the requests without delay,

when the server has not reached its capacity.

• Z5 represents the service of the requests with waiting,

when the server has reached its capacity.

• Z6 represents the function of the buffer of the queuing

system.

• Z7 represents the function of the server of the queuing

system.

A special naming system of the important places in which

tokens of the GN collect the values of the parameters of the

Z1

❄

Z2

❄

Z3

❄

Z4

❄
l1

❧

l2

❧

l3

❧

l4

❧

lbws

❧

lws,1

❧

lws,Nws

.

.

.

❧

lws

❧
ls

❧

l5

❧

✲✲

✲ ✲✲

✲

✲✲

✲✲

✲

✲✲

✲

✲✲

✲

✲

Fig. 2. Second GN model of a queuing system.

queuing system is used. Six types of tokens are used in the

model.

Let E1 be the GN shown in Fig. 1. Then φ1(E1) = 7,

φ2(E1) = 14 + Nq, φ3(E1) = 6, φ7(E1) = 6, φ8(E1) =
24 + 4Nq, φ9(E1) = 6,

φ10(E1) =
17 +Nq

24 + 4Nq
,

φ11(E) = 6, φ12(E) = 5.

B. Second GN model of a queuing system

The GN E1 represents the most detailed representation

of a queuing system with FIFO discipline of service of the

requests. Here, we modify this model by substituting the

three transitions Z3, Z4 and Z5 with a single transition which

represents the function of the buffer. The new GN is shown

in Fig. 2.

Transitions Z1 and Z2 are the same as in the first GN

model. Transitions Z3 and Z4 are different compared to the

first GN model. Transition Z3 represents the function of the

buffer. Transition Z4 represents the function of the server.

The waiting places of the buffer are represented by places

lws,1, lws,2, ..., lws,Nws, where Nws is the buffer capacity and

place lws is used to store the values of the parameters of the

buffer device. Four types of tokens are used in the model.

Let E2 be the GN described above. Then we have:

φ1(E2) = 4, φ2(E2) = 8 +Nws, φ3(E2) = 4, φ7(E2) = 4,

φ8(E2) = 12 + 4Nws, φ9(E2) = 4,

φ10(E2) =
8 + 2Nws

10 + 4Nws
,

φ11(E2) = 6, φ12(E2) = 5. Since Nq = Nws, because the

buffer capacity is the same in both GNs, we obtain E1 ⊢φi
E2

for i = 1, 2, 3, 7, 8, 9, 11, 12.

C. Third GN model of a queuing system

In the previous two GN models, the transitions representing

the function of the buffer have one place for every waiting

place of the buffer. For queuing systems with low buffer

capacity this is a convenient representation, especially with

regard to the graphical representation. For queuing systems

with large buffer capacities (or infinite) that is not optimal
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Fig. 3. Third GN model of a queuing system.
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Fig. 4. Fourth GN model of a queuing system.

representation. It is possible to substitute the waiting places

with one place, as in the third GN model shown in Fig. 3.

Let E3 be the GN shown in Fig.3. The operators for com-

plexity have the following values: φ1(E3) = 4, φ2(E3) = 9,

φ3(E3) = 4, φ7(E3) = 4, φ8(E3) = 16, φ9(E3) = 4,

φ10(E3) = 5/8, φ11(E3) = 6, φ12(E3) = 5. Therefore, we

have E2 ⊢φi
E3 for i = 1, 2, 3, 7, 8, 9, 11, 12.

D. Fourth GN model of a queuing system

The third GN model can be further optimized if we use

the extension of the ordinary GNs – Generalized Nets with

Characteristics of the Places (GNCP, [11]). The places which

can obtain characteristics are presented with two concentric

circles in the graphical representation of the net in Fig. 4.

Now, only one type of tokens is used.

Let E4 be the GN shown in Fig. 4. Then, we have:

φ1(E4) = 4, φ2(E4) = 6, φ3(E4) = 1, φ7(E4) = 1,

φ8(E4) = 6,φ9(E4) = 1, φ10(E4) = 1/2, φ11(E4) = 6,

φ12(E4) = 6. In this case, the relations E3 ⊢φi
E4 for

i = 1, 2, 3, 7, 8, 9, 10, 11.

The last GN is the optimal representation of a queuing

system, in the sense that it has the least acceptable number

of transitions and places. It is possible to further reduce the

number of transitions and places but some of the concepts of

the queuing system will not be presented. The text conceptual

description of a queuing system has 4 concepts which must

be presented in the graphical representation of the GN model.

These are: generator, blocked waiting requests branch, buffer

and server. All of them are presented in the fourth GN.

V. CONCLUSION

The conceptual model optimization needs appropriate in-

dicators of quality. They have to be objective and evaluated

predominantly automatically, if we want to design optimiza-

tion algorithms performed by computer. Most of the existing

indicators are subjective. In [7], all of the 10 proposed concep-

tual modeling evaluation criteria are subjective. The proposed

indicators here are suitable for computer evaluation.

The operators for complexity and the relations defined over

GNs with respect to these operators are a base for conceptual

optimization of GN models. The operators for complexity

and the relations over GNs should be generalized to allow

comparison of conceptual models based on the GNs theory

with conceptual models in Service Systems Theory.

The comparison of conceptual models presented in different

languages, e.g., comparison of conceptual models based on

the GNs theory with conceptual models in Service Systems

Theory is an extremely challenging task.

REFERENCES

[1] C.-A. Petri, Kommunication mit Automaten. Ph.D. Thesis, Univ. of Bonn,
1962.; Schriften des Inst. fur Instrument. Math., No. 2, Bonn, 1962.

[2] C. F. Eick, A Methodology for the Design and Transformation of
Conceptual Schemas, Proceedings of the 17th International Conference

on Very Large Databases.Barcelona, September, 1991, 25-34.
[3] G. Giambene, Queuing Theory and Telecommunications, Springer US,

2nd Edition, 2014, https://dx.doi.org/10.5555/1205907.
[4] K. Atanassov, Generalized Nets, World Scientific, Singapore, London,

1991, http://dx.doi.org/10.1142/1357.
[5] K. Atanassov, On Generalized Nets Theory, Prof. M. Drinov Academic

Publ. House, Sofia, 2007.
[6] K. Mehmood, S. Cherfi, I. Comyn-Wattiau, Data quality through

conceptual model quality - reconciling researchers and practitioners

through a customizable quality model. Published in ICIQ 2009
(http://mitiq.mit.edu/ICIQ/Documents/IQ%20Conference%202009/
Papers/2-C.pdf)

[7] M. L. Loper, L. G. Birta, G. Arbez, Lessons from a concep-
tual modeling exercise. Proceedings of the 2012 Winter Simu-

lation Conference.C. Laroque, J. Himmelspach, R. Pasupathy, O.
Rose, and A.M. Uhrmacher, eds. 978-1-4673-4780-8/12/ l’2012 IEEE,
http://dx.doi.org/10.1109/WSC.2012.6465215

[8] O. Oren, A method for optimization of a conceptual model,1984 IEEE
First International Conference on Data Engineering, Los Angeles, CA,
USA, 1984, 126–132, http://dx.doi.org/10.1109/ICDE.1984.7271264

[9] S. Poryazov, V. Andonov, E. Saranova, Comparison of Four Conceptual

Models of a Queuing System in Service Networks, Proc. of the 26th
National conference with international participation TELECOM 2018,
Sofia, 25-26 October, 2018, 71-77.

[10] S. Robinson, Conceptual Modelling: Who Needs It?, SCS M&S Maga-
zine - 2010 / n2 (April)

[11] V. Andonov, K. Atanassov, Generalized nets with characteristics of the
places, Compt. rend. Acad. bulg. Sci., vol 66, 12, 2013, 1673–1680.

[12] V. Andonov, Reduced generalized nets with characteristics of the
arcs,Issues in Intuitionistic Fuzzy Sets and Generalized Nets, vol 14,
2018/19, 25–35.

[13] V. M. Vishnevskiy, Theoretical foundations of computer networks plan-

ning, Tehnosfera, Moscow, 2003. (in Russian)
[14] Z. Tomov, M. Krawczak, V. Andonov, E. Dimitrov, K. Atanassov,

Generalized net models of queueing disciplines in finite buffer queueing

systems, Proceedings of the 16th International Workshop on Generalized
Nets, Sofia, 10 February, 2018, 1-9.

[15] Z. Tomov, M. Krawczak, V. Andonov, K. Atanassov, S. Sime-
onov, Generalized net models of queueing disciplines in finite buffer

queueing systems with intuitionistic fuzzy evaluations of the tasks,
Notes on Intuitionistic Fuzzy Sets, Vol 25, 2019, No 2, 115-122,
https://doi.org/10.7546/nifs.2019.25.2.115-122.

226 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


