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Abstract—It is well-known that determining the optimal num-
ber of guards which can cover the interior of a simple non-
convex polygon presents an NP-hard problem. The optimal guard
placement can be described as a problem which seeks for the
smallest number of guards required to cover every point in a
complex environment. In this paper, we propose an exact two-
phase method as well as an approximate method for tackling the
mentioned issue. The proposed exact approach in the first phase
maps camera placement problem to the set covering problem,
while in the second phase it uses famous state-of-the-art CPLEX
solver to address set covering problem. The performance of our
combined exact algorithm was compared to the performance of
the approximate one. According to the results presented in the
experimental analysis, it can be seen that the exact approach
outperforms the approximate method for all instances.

I. INTRODUCTION

T
HE ART gallery problem (AGP) dates back to the 1970s,

and it was one of the earliest and most significant prob-

lems in sensor placement [1][2]. The calculation of optimal

solutions for AGP is not only relevant from a theoretical

aspect, but it also has practical importance in architecture,

placement of radio antennas, urban planning, ultrasonography,

sensors, mobile robotics, and other branches of science and

industry [3]. In computational geometry, it presents a visibility

problem of placing at least one security guard to cover every

area of a museum or gallery [4]. Since the optimal camera

placement (OCP) problem represents the process of finding

the minimal number of cameras that are sufficient to cover

every point in the environment, we can say the both AGP and

OCP are very similar to each other. Art gallery problem in

the original form was based on determining smallest number

of security guards sufficient to see every point in an n-

sided two-dimensional polygon P with or without holes.

The scientists such as O’Rourke and Supowit, Lee and Lin,

Katz and Rpoisman, Schuchardt and Hecker have shown that

the process of looking for the smallest number of guards

who can surveillance any polygons (ordinary or orthogonal)

still presents an intractable NP-hard problem [5][6][7][8]. In

1975, Chvátal proved that only
⌊

n
3

⌋

cameras are sometimes

necessary and always sufficient to being covered the simple

polygons composed of n vertices [9]. For n-sided polygon

P with h holes, O’Rourke showed that it is necessary at

most
⌊

n+2h
3

⌋

vertex guards. On the other hand, Bjorling-

Sachs, Souvaine, Hoffmann and others have shown that it is

quite enough
⌊

n+h
3

⌋

guards to being covered polygons with

n vertices on the outer boundary which contain h holes inside

them [10][11]. The researchers Györi, Hoffmann, Kriegel and

Shermer have been shown that for the orthogonal polygons

with h holes always is sufficient
⌊

3n+4h+4

16

⌋

guards to being

covered [12]. By using the colouring technique which has been

used by Fisk [13] to prove the Chvátal result, the authors Avis

and Toussaint have developed O(n log n) time complexity

algorithm for camera placement in a simple polygon. However,

the number of cameras is not minimal. Also, Bjorling-Sachs

and Souvaine [10] proposed an O(n2) time algorithm for non-

optimal guards positioning in a polygon P with h holes.

The placement of visual sensors in two-dimensional space

can be modelled as AGP. Tasks such as surveillance require

observing the interior of a polygon with a minimum number

of sensors or cameras. This watching we call the interior

covering (IC). For other tasks, such as inspection and image-

based rendering, observing the boundaries of the environment

is sufficient. In this case, keeping the boundaries, we call the

edge covering (EC). Both interior covering and edge cover-

ing present NP-hard problem, and no deterministic (finite)

algorithms are known for tackling this type of issue. In this

paper, we propose two variants of algorithms such as an

exact two-phase algorithm as well as the approximate method

which participate in solving camera placement problem. For

the experimental study, we developed two versions of the

mentioned algorithms, to be able to process them in parallel

for both edges covering and interior covering. The first phase

of the exact two-phase approach serves for translating the

art gallery problem into the famous set covering problem

(SCP). In this phase, we will consider coverage of edges

as well as surveillance of convex components, i.e. triangles,

from which a polygon is composed. Also, in this phase, we

exploit preprocessing algorithms, i.e. algorithms for creating

a list of sets of vertices (components) that cover all vertices

(parts) of a polygon P when take into consideration edge

covering problem (interior covering problem). At the second

phase of the algorithm, for a list of sets obtained in the

previous step, we define a modified version of set covering

problem and solve it as a linear optimization problem (LOP)

by using a standard mathematical tool to find the exact optimal

solution. The standard solving tool for such LOP is ILOG IBM

CPLEX Solver [14]. The set covering problem is an NP-hard
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problem in the strong sense, and many algorithms have been

developed for its solving [15]. The SCP is vital in practice,

as it has been used to model a broad range of problems

arising from scheduling, manufacturing, delivery and routing,

service planning, information retrieval, etc. [16][17]. The exact

algorithms are almost all based on branch-and-bound and

branch-and-cut [18][19]. Caprara et al. compared different

exact and heuristic algorithms for solving the SCP [20]. They

demonstrated that in practice, IBM ILOG CPLEX Solver is the

best exact algorithm for tackling set covering issue [21]. ILOG

CPLEX delivers high-performance, robust, flexible optimizers

for solving linear, mixed-integer and quadratic programming

problems (including mixed-integer quadratic constrained is-

sues). ILOG CPLEX optimizer has a modelling layer that

provides interfaces to C++, C#, Java, Python, Matlab, etc.

In this paper, we have used the layer Concert Technology

to integrate C# into the ILOG Optimization Studio, since all

routines for the first part of the exact approach were written

in C#. In order to show the power of proposed techniques, the

two-phase algorithm has been tested on 268 various randomly

generated simple nonconvex polygons. The results produced in

the experimental analysis were compared with the one reached

by our sub-optimal approximate algorithm, which we also have

been developed for comparison purposes. For both observings,

the experimental results show that tho-phase method is better

technique and yields the optimal solutions in a reasonable

amount of time.

The rest of the paper is organized as follows. For art

gallery problem (AGP), an approximate method for both edges

covering and interior covering of a simple nonconvex polygon

is described in Sect. 2. The details of our exact two-phase

algorithm are presented in Sect. 3. Experimental and compar-

ative results of applying different versions of the algorithms

for AGP are presented in Sect. 4. Finally, conclusions and

suggestion for future work are discussed in the last section of

the paper, Sect. 5.

II. AN APPROXIMATE METHOD FOR AGP

In this section, before we describe the approximate algo-

rithm for solving the AGP, we will briefly introduce some

additional notation to facilitate the exposure. For any two

distinct points v1 and v2 in the plane, we denote by v1v2
the segment whose two endpoints are v1 and v2. A planar

polygon P presents a closed plane figure whose boundary is

composed of segments vivi+1 (i = 0, 1, · · · , n − 1), where

vn = v0. Also, a polygon P is simple if it is not self-crossing

and has no holes. A planar polygon P is convex if it contains

all the segments connecting any pair of its points. A nonconvex

(concave) polygon P is a polygon that is not convex. In other

words, a polygon P is nonconvex if there are two points u

and w inside of P such that the segment uw is not entirely

contained in the P . Also, a concave polygon must have at

least four sides, and it always has at least one reflex interior

angle, that is, an angle with a measure that is between 180

degrees and 360 degrees exclusive. Any point u in P is said

to be visible from any other point w in P if and only if the
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Fig. 1. The whole hull of the polygon P has covered by vertices v5, v10
and v15, but the inner coloured part is not visible by them.

segment uw does not intersect the exterior of P as well it is

entirely contained in P . For any point u ∈ P , the set of all

points in P which are visible from a vertex u is called the

visibility region of u.

In the following of this section, we will describe the

approximate method. Let set V denotes the vertices of a

simple non-convex polygon P which contains n vertices, i.e.

|V | = n. Assume that vertices of a given polygon P are

labeled by v1, v2, · · · , vn. Also, let F (P, u) denotes the set

of all points of P which can be observed from a point u. If

the point u is a vertex of the polygon P , i.e. exists some index

k ∈ {1, 2, · · · , n} such that u = vk, then we call the subset

F (P, u) of P fan Fk, where the vertex vk denotes the fan

vertex of the set Fk. On the other hand, let u is not a vertex

of the polygon P . Then, the set F (P, u) is called a region

under surveillance from the point u.

By taking into account these definitions, the main idea of

our approximate method we will describe below is to being

maximized fans. At the beginning of the method, we determine

such fan Fi1 that covers the most vertices of the polygon P

and set the number i1 as the index of the first guard (camera).

After that, we update the remaining sets Fj by removing from

them all the elements which appear in the set Fi1 , i.e. we

make difference Fj ← Fj \Fi1 for all fans. After this, the set

Fi1 becomes empty, so it is no longer considered. For non-

empty updated fans Fj , we repeat the same procedure as at the

beginning of the algorithm, i.e. we select the fan Fi2 which

has the most elements, and then take that index i2 be the index

of the second guard. It is clear now that the guard with index

i1 covers more vertices than the guard with the index i2. By

repeating the mentioned procedure, we can note that after a

certain number of iterations, all fans Fi will be empty, which

is an indicator for the end of the algorithm. Also, generated
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TABLE I
THE FAN’S CALCULATION BY USING THE INDEXES OF COMPONENTS WERE COVERED BY THE VERTICES OF THE POLYGONS.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

v1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
v2 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0
v3 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0
v4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v5 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0
v6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0
v8 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
v9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v10 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0
v11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
v12 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0
v13 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0
v14 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
v15 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
v16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
v17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

numbers i1, i2, · · · , ik were sorted in descending order, where

k denotes the number of guards required to cover the boundary

of the polygon P . Based above described procedure for a

seeking a smallest number of guards to cover vertices of a

simple nonconvex polygon P , the necessary steps of the vertex

observing problem has summarized by Algorithm 1. From the

pseudo-code presented in Algorithm 1, we can see that the

method stops when all fans become empty. In other words,

since the union of fans Fi (∀i = 0, 1, · · · , n− 1) denotes the

vertices indexes of a polygon P , it is easy to conclude that the

algorithm terminates as soon each vertex vi has covered. Since

a simple polygon P has been compounded of the segments

vivi+1, and the mentioned algorithm can cover all vertices vi
of P , i.e. all endpoints of the segments vivi+1, immediately

follows that proposed method can being exploited for edge

covering (EC).

Algorithm 1 Approximate Method For Vertex Covering (VC)

1: Set ng ← 0, G← ∅, where ng is a number of guards and

G is their list. Initialize the list of all fan’s indexes with

F ← {0, 1, · · · , n− 1}.
2: For each vertex vi (i = 0, 1, · · · , n− 1) determine fan Fi

by adding indexes of vertices vj ∈ P (vj 6= vi) into Fi

which are completely visible from the vertex vi.

3: while ng 6= n do

4: From the list F , find the fan that has most elements and

denotes its index by i.

5: Put to the list G the vertex (guard) vi ∈ P which was

referred to the biggest founded fan Fi from the previous

step.

6: From all fans Fj remove the elements which were

appeared to the set Fi, i.e. Fj ← Fj \ Fi (∀j 6= i).
7: Set ng ← ng + |Fi| and remove the index i from the

list F .

8: end while

From the pseudo-code presented in Algorithm 1, we can

see that time complexity of our approximate method is pro-

portional with O(n3) since the determination of fans Fi (i =
0, 1, · · · , n−1) is the most expensive step and it costs O(n3).
More precisely, to examine which vertices are covered by an

arbitrary vertex vi of a polygon P , we first connect vertex vi
with the nonadjacent vertices vk (k 6= i− 1, k 6= i, k 6= i+1),

thus n − 3 segments were obtained. Then in time O(n2) we

check whether the generated segments intersect n−2 segments

(segments vi−1vi and vivi+1 are not examined) which lie

on the boundary of a polygon P . Since a polygon P has n

vertices, then a total number of checks in the worst case is

equal to (n− 3)(n− 2)n, which is proportional to O(n3).

Although the edge covering of a polygon is essential in

image processing as well as in other applications, in this

paper, we investigate the interior covering of a simple polygon.

It is especially important to highlight here that there is a

difference between the edge covering of a polygon and its

interior covering. Namely, the number of guards necessary

to cover the boundary of a polygon is not always sufficient

to cover its overall interior, as can be seen in Figure 1.

Conversely, it is always valid. For example, for the polygon

has been shown in Figure 1, to perform its interior covering

it was required exactly four guards such as v5, v8, v12, and

v15, which represents the optimal number of guards. On the

other hand, guards such as v5, v10 and v15 can only cover

the boundary of the polygon P , because it remains uncovered

shaded triangle.

Before we perform interior covering of a nonconvex simple

polygon P , we will address a polygon decomposition into a

set of convex components Ck such that their union is the entire

region of P . Now, interior covering (IC) can be modelled as

a seeking the smallest number of guards required to cover

the building components Ck such that their union is a whole

polygon P . As earlier, in terms of fans, we define that fan Fi

contains the indexes of components that can be covered by the

vertex vi. It is easy to note that each component belongs at

least one of the fan so that the entire region of P is covered.

The method shown in Algorithm 1 can also be exploited for
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interior covering of a polygon by modifying its step 2 as

follows. Instead of vertex covering, we will now visit the

components, i.e. at the fan Fk, we will add those indexes of

components that the vertex vk can visit. In this way, we get

the algorithm for interior covering (IC) of a simple nonconvex

polygon.

Algorithm 2 The Exact Two-Phase Approach For Interior

Covering (IC)

1: Determine a triangulation of of n sided nonconvex sim-

ple polygon P . Let us denote the obtained triangles as

components C1, C2, · · · , Cn−2.

2: For each vertex vi (i = 0, 1, · · · , n − 1), determine the

fan Fi by adding indexes of components Cj into Fi which

are completely visible from the vertex vi.

3: Create the matrix A from the content of fans Fi.

4: Make preprocessing and reduce the number of rows for

the matrix A.

5: Apply CPLEX solver to generate the smallest number of

guards necessary for interior covering of a polygon.

6: Visualize the founded guards.

III. AN EXACT TWO-PHASE APPROACH FOR AGP

In this section, we will describe in detail our exact two-

stage algorithm designed to solve the Art Gallery Problem

(AGP). First of all, in the first stage, we will transform the

art gallery problem to the well-known Set Covering Problem

(SCP). After that, in the second stage, we will apply prominent

CPLEX solver to address the adjusted set covering problem

obtained in the first stage.

A. The mapping of the AGP on the SCP

In order to map the art gallery problem to the set covering

one, we will first divide the interior of a polygon P into a

set of nonoverlapping convex parts. There are several ways

how to perform dividing a simple closed nonconvex poly-

gon into nonoverlapping convex sub-polygons or pieces [22].

In this paper, partitioning a polygon into convex parts has

obtained by exploiting triangulation. To efficiently perform

triangulation, we have implemented a very efficient algorithm

whose time complexity is proportional to the O(n log n) [23].

This algorithm consists of two steps. In the first step, we

made a partition of a simple polygon with n vertices into

monotone pieces in O(n log n) time, while in the second

step, we triangulated monotone pieces (polygons) in linear

time O(n). The above steps together imply that any simple

nonconvex polygon P can be triangulated in O(n log n) time.

The application of triangulation on any simple nonconvex

polygon P composed of n vertices produces n−2 triangles, i.e.

n− 2 convex components C1, C2, · · · , Cn−2. By introducing

these components, optimal coverage of a polygon interior has

reduced to seeking the smallest number of guards which can

see all components. In order to determine those guards, we

will first create fans Fj (j ∈ {1, 2, · · · , n}) for each vertex

vj . In the context of components, arbitrary fan Fj contains

the indexes of components which are visible from the vertex

vj . In the following, we consider the creating of 15 fans for

a simple non-convex polygon shown in Figure 1. It is easy to

see that for vertex v1 fan F1 has indexes 1, 2, 13, 14, since

the vertex v1 covers the components (triangles) C1, C2, C13,

C14. In Table I, for each vertex vj (j = 1, 2, · · · , n), we have

presented calculated fans Fj in the form of rows. For example,

with respect to the vertex v1, the fan F1 has indexes 1, 2, 13,

and 14.

From the structure of data shown in Table I, it is easy to

notice that an optimal covering of a polygon can be made

by exploiting the adjusted version of the set-covering problem

(SCP). The adjusted version of the SCP can be defined as

follows. Let A = (ai,j) be an zero-one matrix of n × n − 2
size. We say that a row i covers a column j if holds aij = 1.

Let I = {1, 2, · · · , n} and J = {1, 2, · · · , n− 2} be the row

set and column set, respectively. The SCP needs determining

the minimum subset I ′ ⊂ I such that each column j ∈ J is

covered by at least one row i ∈ I ′. A mathematical model for

the adjusted SCP is defined as follows

Minimize f(x) =

n
∑

i=1

xi (1)

subject to

n
∑

i=1

aijxi ≥ 1, ∀j ∈ J (2)

xi ∈ {0, 1}, ∀i ∈ I (3)

From Eq. 1 immediately implies that we have to minimize

the number of guards (number of the selected rows), where

xi = 1 if the row i is in the solution and xi = 0 otherwise.

Each column j is covered at least by one row i. The SCP

constraints guarantee this.

Fig. 2. The OPL Code For Solving Simplified SCP.

After we have described the mechanism for optimal interior

covering of a simple nonconvex polygon, its realization is

carried out by the method whose necessary steps were sum-

marized in the pseudo-code of Algorithm 2. From the pseudo-

code, we can see that the overall time complexity of this
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approach is proportional to O(n3). Although this approach

for both interior covering (IC) and edge covering (EC) has

the same time complexity, there is a slight difference in the

specified number of evaluations during their execution, which

will be seen in the experimental analysis. Also, for both

types of coverage, the preprocessing remained more costly in

time compared to the finding of an optimal solution by using

CPLEX solver.

B. The preporcessing of the adjusted SCP

It is well-known that preprocessing is a superior technique

to accelerate the solving process by reducing the instance sizes

additionally. There are a lot of preprocessing methods in the

literature for the SCP [18]. In this paper, to reduce the instance

size, i.e. the size of the matrix A, we apply methods such as

row domination and row inclusion. The row domination can

be defined as follows. We say that row i is dominated and

can be removed from the matrix A if its columns Ji can be

covered by other rows. In Table I, we can see that row 14 is

dominated by rows 1 and 15, and it can be removed. Also,

rows 1 and 17 are dominated by row 15, so they should be

dropped. After the elimination of the rows from the matrix A,

it was reduced on only six rows. Therefore, it consists of rows

with indices 3, 5, 8, 12, 13 and 15. Row inclusion means that

if a column j is covered by precisely one row after the above

domination, then it row is included in an optimal solution. It

can be noted that matrix A whose data has been shown in

Table I before processing had 17 rows, and after processing it

has only six rows.

C. The application of CPLEX solver on the adjusted SCP

The second phase of our proposed approach was based

on solving of the adjusted set covering problem (ASCP).

The adjusted set covering problem in IBM ILOG CPLEX

Optimization Solver [14] is presented in the form of a binary

integer programming problem, as we can see in Figure 2. From

the code shown in Figure 2, we can note that the matrix A

is being generated in the first phase of our algorithm. At the

same time, the vector x is a decision binary vector whose

components are being determined by CPLEX solver. On the

beginning of the algorithm, CPLEX solver set the content of

the vector x to zero. CPLEX solver by using techniques such

as branch-and-bound as well as branch-and-cut, it is capable

of determining an optimal solution just over several seconds,

as we will see in the experimental analysis. For the polygon

drawn in Figure 1, after the execution of CPLEX solver, the

content of the vector x becomes this one x =[0 0 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0], where ones (1) indicate that the vertices

v5, v8, v12, v15 are covered in case of interior covering. If we

first make the elimination of rows, and after that, we apply

CPLEX solver on the remaining rows of the matrix A, we

will see that the size of vector x is reduced from 17 to 6, so

the final solution x now has this form: x =[0 1 1 1 0 1].

IV. EXPERIMENTAL RESULTS

In this experimental study, we compare two groups of

deterministic algorithms for solving both edges covering (EC)

Fig. 3. Randomly generated simple nonconvex polygons with 50 vertices.

and interior covering (IC) of a simple nonconvex polygon. The

goal of our proposed methods was to minimize the number

of cameras required for polygon coverage. The proposed

techniques have been thoroughly tested to assess the quality of

the results. In the first group of deterministic algorithms, there

are exact methods, while the second group encompasses the

approximated techniques. The algorithms have been applied

to 268 various randomly generated simple nonconvex poly-

gons. The simple nonconvex polygons have been produced

with our random polygon generator developed for purposes

of this paper, whose implementation details we omit. The

interested reader can refer to similar random polygon generator

(RPG) [24][25]. The examples of randomly generated simple

nonconvex polygons with 50 edges are shown in Figure 3.

Each instance is called RI-k-i, where k denotes the size of

the ith instance. The coordinates of points (x, y) are chosen

from the interval [0, 500]. Through the experimental evalua-

tion, we assess the applicability of four algorithms for the

AGP. The proposed approaches have been implemented in C#

programming language, where two exact two-phase methods

in their second phase use IBM ILOG CPLEX Optimizer 12.10

to address set covering problem expressed in the form of

binary integer programming (BIP). This optimizer is being

called from C# in conjunction with the Concert Technology.

In order to evaluate time efficiency and the coverage rate of the

proposed algorithms, a comparison test was performed using

a PC with an Intel Core i7-3770K @3.5GHz with 64GB of

RAM running under the Windows 10 x64 operating system.

In Table II, for the purpose of checking the quality of

obtained solutions as well as computational times, four algo-

rithms were selected and tested through 8 groups of randomly

generated polygons, where each group was composed of five

randomly generated polygons containing 20, 40, 60, 100, 300,

500, 1000, and 2000 vertices, respectively. From obtained

simulation results shown in Table II, we can see for edge

covering (EC) problem that approximate method is slightly

faster than the exact two-phase method for almost all groups

except for the next to last group which contains 1000 vertices.

ADIS ALIHODZIC ET AL.: AN EXACT TWO-PHASE METHOD FOR OPTIMAL CAMERA PLACEMENT IN ART GALLERY PROBLEM 219



TABLE II
THE AVERAGE NUMBER OF GUARDS AND MEAN TIME PROCESSING PROVIDED BY THE EXACT AND APPROXIMATE ALGORITHMS FOR 40 RANDOMLY

DISTRIBUTED INSTANCES.

INTERIOR COVERING (IC) EDGE COVERING (EC)

Two-phase approach Approximate approach Two-phase approach Approximate approach

Random Number Time Number Time Number Time Number Time

instances of guards (sec.) of guards (sec.) of guards (sec.) of guards (sec.)

RI- 20-1 4 0.19 5 0.01 3 0.01 4 0.00

RI- 20-2 3 0.19 4 0.01 3 0.19 4 0.00

RI- 20-3 2 0.02 3 0.01 2 0.17 3 0.01

RI- 20-4 3 0.02 4 0.01 3 0.18 4 0.00

RI- 20-5 3 0.19 4 0.01 3 0.01 4 0.00

RI- 40-1 5 0.06 7 0.05 5 0.15 6 0.02

RI- 40-2 6 0.19 7 0.04 6 0.03 7 0.02

RI- 40-3 6 0.19 7 0.05 5 0.16 7 0.02

RI- 40-4 7 0.06 8 0.04 7 0.03 8 0.02

RI- 40-5 6 0.14 7 0.05 6 0.16 7 0.02

RI- 60-1 9 0.12 11 0.15 8 0.13 9 0.06

RI- 60-2 9 0.19 11 0.12 8 0.08 10 0.07

RI- 60-3 11 0.13 12 0.11 9 0.08 10 0.05

RI- 60-4 10 0.13 12 0.10 10 0.12 11 0.06

RI- 60-5 9 0.14 11 0.13 8 0.12 11 0.07

RI- 100-1 14 0.37 16 0.36 12 0.38 14 0.24

RI- 100-2 15 0.40 17 0.31 14 0.23 15 0.19

RI- 100-3 16 0.37 18 0.27 14 0.21 16 0.19

RI- 100-4 14 0.38 19 0.36 12 0.24 15 0.19

RI- 100-5 15 0.37 17 0.36 13 0.21 16 0.14

RI- 300-1 40 5.48 44 4.86 35 3.65 38 3.82

RI- 300-2 46 4.44 52 4.28 42 2.99 46 3.15

RI- 300-3 44 4.46 50 4.10 37 3.19 39 2.96

RI- 300-4 43 5.03 50 4.22 36 3.64 43 3.57

RI- 300-5 42 4.44 50 4.83 37 3.20 42 3.26

RI- 500-1 77 16.31 87 13.99 66 12.08 75 10.57

RI- 500-2 70 15.20 85 12.80 63 11.02 72 9.81

RI- 500-3 71 17.29 77 14.77 62 13.20 68 11.43

RI- 500-4 73 16.11 87 13.73 62 12.37 77 10.75

RI- 500-5 72 12.87 83 11.48 63 8.58 74 7.90

RI- 1000-1 148 74.09 162 73.92 129 60.92 147 66.20

RI- 1000-2 143 77.38 155 76.96 125 61.06 138 70.30

RI- 1000-3 141 82.21 154 83.04 120 69.34 137 80.68

RI- 1000-4 145 85.95 161 77.50 133 55.98 154 59.68

RI- 1000-5 140 93.73 155 92.02 124 75.53 141 81.98

RI- 2000-1 296 639.77 322 643.25 260 579.70 293 570.81

RI- 2000-2 303 618.68 335 621.49 265 561.08 305 548.73

RI- 2000-3 292 682.25 318 687.29 253 624.10 280 602.25

RI- 2000-4 285 455.22 318 445.97 254 398.18 291 385.15

RI- 2000-5 291 567.14 316 547.54 249 511.58 290 478.43

More precisely, the approximate method requires 3012.26

seconds to process all instances of polygons from all groups.

On the other hand, the exact two-phase method costs 3072.93

seconds, which is 60.67 seconds more in comparison with

the approximate method. In the sense of quality solutions,

i.e. in the sense of the smallest number of guards, the exact

two-phase method outperformed approximate method for any

groups of instances. Namely, the exact method requires only

2566 guards (cameras) to cover all polygons from all eight

groups, while the approximate method allocates 1558 cameras

more, i.e. it needs 4124 cameras. Particularly superiority

comes to the fore with an increase in the size of vertices.

In practice for the case of observing a polygon consisting

of 2000 vertices, e.g. in this paper if we take the randomly
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TABLE III
THE AVERAGE NUMBER OF GUARDS AND MEAN TIME PROCESSING PROVIDED BY THE EXACT AND APPROXIMATE ALGORITHMS FOR 228 RANDOMLY

GENERATED INSTANCES.

INTERIOR COVERING (IC) EDGE COVERING (EC)
Two-phase approach Approximate approach Two-phase approach Approximate approach

No. rand. Size Mean no. Mean Mean no. Mean Mean no. Mean Mean no. Mean

instances (n) of guards time (s) of guards time (s) of guards time (s) of guards time (s)

30 20 3.43 0.13 3.77 0.01 3.07 0.11 3.53 0.00

30 40 6.23 0.13 7.03 0.05 5.77 0.13 6.40 0.02

28 60 9.07 0.16 10.04 0.12 8.11 0.13 9.21 0.06

23 80 12.22 0.21 13.43 0.15 10.52 0.15 12.09 0.10

25 100 14.88 0.36 16.28 0.32 13.44 0.24 14.88 0.18

24 200 29.50 1.80 33.04 1.60 25.54 1.08 29.38 0.84

21 300 44.00 4.37 48.90 4.28 39.05 3.16 43.00 3.14

24 400 58.83 8.65 66.08 7.89 51.46 6.17 57.67 6.25

23 500 72.35 15.41 81.17 13.56 63.78 11.68 72.13 9.97

generated polygon such as RI-2000-5, we make earnings of 41

cameras. These earnings are not only referred to money for

purchasing of additional cameras as well as on the savings of

other resources. For example, each object covered by cameras

requires electricity to power them, as well as specific hardware

resources, such as external memory, which is used to store

images (usually 30 frames per second) obtained via cameras

daily. Based on the number of guards necessary to cover the

boundary of a polygon, we can conclude that the approximate

method is not able to find the global optimum. In contrast,

the exact two-phase approach is capable of doing it in a short

period. We have earlier shown on the example of the polygon

shown in Figure 1 that edge covering (EC) is not the same

as interior covering (IC). Namely, more guards are needed to

perform interior covering compared to edge covering as we

can see in Table Table II. For instance, in the case of polygon

RI-2000-1, the exact two-phase method needs 296 cameras

for interior covering, while it costs only 260 cameras for edge

covering. Based on the results shown in Table II, we can note

that also for interior surveillance of the polygon, the exact

method yields a better solution (a smaller number of guards).

On the other hand, the approximate approach is usually get

trapped in some local optima, and as a consequence of it does

not generate the optimal number of cameras.

In order to show the real robustness of the proposed

methods, we tested them for a reasonably large dataset, i.e.

for a dataset composed of 228 randomly generated simple

nonconvex polygons, and the results obtained were saved in

Table III. The simulation results show that the exact method

gets in average better quality solutions compared with the

approximate one for all sizes of the polygon. Other words, for

both interior coverage and edge coverage, the mean number of

cameras increases linearly concerning the size of vertices (n),

so that a growth rate of the cameras being noticeably slower in

the exact method compared to the price of growth generated by

the approximate comparative approach. Also, by considering

produced experimental results in Table III, we can conclude for

all versions of polygon coverage, both exact and approximate

methods are comparable in terms of CPU execution time, so

that the approximate method being negligibly faster than the

exact one.

Based on the experimental analysis, it can be concluded

the exact method presents an appropriate practical tool that

with a minimal number of cameras can cover the interior of

the polygon as well as its hull, which has direct applications

in security systems, computer graphics, computer vision, and

other branches of industry.

V. CONCLUSION

In this paper, we studied the problem of guarding a simple

nonconvex polygon and proposed four versions of algorithms

for its solving. Quality of the proposed methods was tested

throughout 268 randomly generated instances. Based on the

obtained results, it can be concluded that our exact two-phase

algorithm is convenient for this task, and it produces excellent

overall performance. Also, our two-phase approach proved to

be robust, in the sense that it was able to tackle different

instances from a broad range of randomly generated. Since

the first phase of our two-phase method is computationally

expensive, in future work, we will investigate the efficient

techniques in order to tackle these drawbacks. This further

says that the improvements of the two-phase algorithm can be

achieved. Also, we will consider other types of polygons with

and without holes, such as orthogonal polygons, Von Koch

polygons, and so for.
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