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Abstract—The inherent knowledge discovery problem regard-
ing networks that represent complex real world phenomenon is
a popular research topic. Specifically, in social network analysis
(SNA), several community discovery techniques with various
approaches have been put forward to distinguish closely related
entities. Identifying the relevant techniques to utilize based on
the context of the application is a key difficulty researchers face.
In this study we propose a methodology for classifying these
techniques, visualize a prototype, and analyze the performance
and quality of selected approaches over a real world call detail
record (CDR) data set.

Index Terms—community discovery, community detection al-
gorithms, visualization, CDR

I. INTRODUCTION

O
NE of the many applications of networks is community

discovery. Intuitively, community ensues entities that are

closer to each other within any arbitrary group, than outside it.

Closeness maybe defined by common properties, similar roles

or various measurements made on entity interaction. In a net-

work, entities can be characterized by nodes and interactions

among them can be embodied using edges. Despite the huge

literature available on communities represented in a network,

scholars do not have an agreement on what a network with

communities corresponds to. However, the widely accepted

definition is the planted l-partition model [1]. In this model

pin and pout signify probability of each node being connected to

nodes in its group and different groups respectively. If pin >

pout the network has communities present otherwise, the graph

is random.

Community discovery within a network of such description

can be viewed as maximizing the number of edges between

any k groups within that community and minimizing the

number of edges outside each of those groups. In terms

of nodes, it can also be expressed as a generalization of a

data mining problem that is analogous to unsupervised node

clustering. But this definition doesn’t account for nodes re-

lational behavior. Different community discovery applications

and algorithms use diverse and specialized interpretations for

community detection. Consequently, there are many types

of community discovery algorithms. They mainly constitute
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varying definitions based on node relationship and the defini-

tion of a community. Therefore, we propose a methodology

for classifying different community discovery techniques in

social network analysis (SNA) in order to narrow down the

multitude of available methods. After that, we present a case

study on a large scale call detail record (CDR) data set

using the selected approaches. The selected approaches are

implemented and evaluated based on a strategic ground truth

definition for unlabeled data sets. Moreover, the performance

and scalability of the selected algorithms are tested on both

CDR and YouTube data sets. As part of the experimental

study we also develop a visualization software that illustrates

networks and discovered communities.

The rest of this paper is organized as follows. Section II

reviews literature, Section III introduces the methodology used

in choosing community discovery methods, on Section IV a

prototype of discovered communities visualizer is presented,

Section V defines different metrics in order to evaluate the

performance of community discovery algorithms over larger

scale social network and CDR data sets and Section VI

summarizes the results obtained and possible future works.

II. LITERATURE REVIEW

Community detection techniques have been widely used for

variety of purposes. Among these SNA is a common applica-

tion. Social-based metaheuristic optimization algorithms have

been used in order to identify overlapping communities [2]

[3]. Moreover, recognized communities can pertain to improve

performances of other operations. For instance, community

discovery is used to boost low accuracy ranking algorithms in

identifying top information spreaders [4].

In SNA and other applications, visualization tools have been

made with their own individual variations. While hierarchical

community structure and fence-sitting nodes visualization is

performed on [5], there are also tools that use some nuance of

Newman’s modularity optimization algorithm for clustering,

prior to visualization [6], [7]. CDR data has been impactful in

the analysis of varying models and its application is growing

exceedingly. Among these usages, urban sensing and planning

[8], [9], traffic engineering [10], [11], predicting energy con-

sumption [12], improved churn prediction using both CDR

data and community detection [13] can be cited. Graph data
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analysis have been studied in different research fields such as

provenance field [14]–[22]. Provenance graph is mainly used

to understand the data lineage. Different from previous work in

provenance research filed, in this study, we focus on analysing

graph data to identify the sub networks.

III. METHODOLOGY

The variety of community discovery algorithms are more

diversified by their abilities to support different types of

networks. The main categories to consider would be their

capability to support data sets that are directed or weighted

and whether or not communities overlap.

Overlapping community discovery refers to a node’s ability

to be a member of multiple communities at the same time.

On the other hand, in non-overlapping community detec-

tion, no two or more communities share a common node.

The computational complexity of non-overlapping community

discovery algorithms is generally good because of the deducted

operation of identifying nodes that are a member of multiple

communities.

In real world SNA community discovery is unsupervised

i.e. there is no ground truth data to justify the acquired

results. And most community discovery algorithms just as

other unsupervised learning processes, involve hyper parame-

ters and initialization procedures that may lead to degenerate

results or local minima / maxima. The additional diverse

approaches explained thus far point out that careful selection

of community discovery algorithms is necessary for increasing

the quality of obtained results. Therefore, from the above

broadly classified approaches, we believe researchers should

aim to identify algorithms that are suitable for their data set

and the respective outcome required.

Considering this application driven proposition, in this case

study, we identify two models that are prominent in terms of

their approach and relevancy to SNA.

These approaches are III-A Diffusion Model and III-B

Motif-based Model. As it will be self-evident, we aim to take

advantage of the different perspective these two approaches

provide on community definition and detection.

A. Diffusion Model

One of the main approaches of community detection algo-

rithms is Diffusion. Algorithms that take on diffusion model

are not only used in community discovery, but also in viral

marketing and churn analysis.

Group of nodes that are clustered through propagation of the

same or similar properties summarizes community detection

using this model [23], [24]. For example, in social network

of a university, similarity among students may be defined by

their common hobbies or lessons. These common information

make nodes densely connected thus, creating a community.

Similarity and shared information is also the basis of influence

a node has in its community.

This approach makes the analysis of group dynamics appar-

ent since the behavior of nodes is very closely related to the

influence that drives it. For instance, if a highly influencer node

leaves a network, eventually, it affects the existence of other

nodes of the same community. And what is more, there is a

high possibility that the community it belongs to scatters since

the influencer node was crucial. Likewise, a node is attracted

to a community that is more similar to itself.

B. Motif-based Model

In the above community detection approach, low-level con-

nectivity can be seen as a theme. On other hand, motif-based

approaches aim to address insights that can be gained by

considering high-level connectivity. These methods achieve

this through detecting dense subgraphs that appear in the

network a lot more than those in a randomized network. The

substructures are defined by a distinct pattern of interaction

between nodes. The implication being that these sets of

nodes within the hypergraph reflect a specific function or

relationship.

Network motifs were first proposed by [25] and can be

formally denoted as M = {VM, EM} where VM is a set of

m nodes and EM is a set of edges between m − 1 (line

motif) and
m(m−1)

2 (clique motif) in the motif M [26]. But

generally a network motif consists between 3-8 number of

nodes [27]. This is because higher-order motifs are structurally

complicated.

There are many variations implemented on this core ap-

proach that seek to enhance different defects or achieve a

certain goal [26], [28], [29].

This perspective of over-watching the organization of a net-

work for community detection must be incorporated with other

techniques that advance towards addressing the negligence of

lower-order connectivity and enhance the ability to find multi-

layered motifs.

IV. PROTOTYPE

To demonstrate community discovery in a network we use

Dash [33] Python framework for web applications that extends

Cytoscape.js [34] and renders it. Fig. 1 shows a visualization of

Label Propagation algorithm over a Twitch data set described

in Section V-A. The shape of the networks represented in

this figure can be adjusted using an interactive graphical

user interface (GUI). Moreover, from the GUI, the user can

choose among the two algorithms mentioned so far and other

example data sets. After selection of these preferences, the

network is rendered in the user’s browser along with basic

statistical, centrality and network defining properties. Due to

space limitation these details are omitted in the figure. The

network depicted on the left shows the original network and

on the right we see the community substructure of nodes that

belong to a selected community.

The cone shaped circular figure depicts hierarchy based on

connectivity i.e., the most inner nodes found at the center have

the most number of edges. Similarly connectivity decreases

going out further in to the outer arcs. Fig. 2 zooms in on the

most inner circle of the network and discovered community

substructures. In fig. 2 (left) Node 166 (colored red to show

membership) on the network can be identified as one of the
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Fig. 1: Twitch data set visualization (Left). Discovered Com-

munity (Right).

most well connected nodes therefore, it is depicted at the very

center of the network. And as anticipated, as shown in fig. 2

(right), the same node is at the center of it’s community.

Fig. 2: Node 166 in the network (Left). Node 166 in the its

Community (Right).

V. EVALUATION

A. Data Set

In this paper we have used two test data sets. The first

is a small Twitch [36] data set of 7126 nodes and 35324

edges for visualizing a prototype of a network and discovered

communities. The second is a YouTube data set provided by

[35]. It defines over 1.1 million nodes as YouTube users and

almost 3 million edges represent user friendships. We use

this data set for evaluating our ground truth method that is

later used in the case study. Both data sets can also be found

Stanford Network Analysis Project (SNAP) [32]. The CDR

data set is a weighted edge list that consists of over 1.8 million

number of nodes and almost 1.6 million number of edges.

B. Algorithm Selection

In order to implement the selected approaches in Section III

over the unlabeled CDR data, we have picked two algorithms.

Each of these algorithms are selected because they provide a

unique advancements on top of the core approaches described

and to take advantage of both lower-order and higher-order

community detection. These algorithms are:

1) Label Propagation [30]: Each node in the network has

a label attached that denotes its community membership. A

node in the network joins a community based on the maximum

number of neighbors that have a particular label. Therefore,

the label propagates through the network quickly and at the

end, each node will have been assigned a label. Consequently,

nodes with the same label are clustered together as a member

of one community. The time complexity of this algorithm is

O (m+ n) where n and m are number of nodes and edges.

2) Edge enhancement approach for Motif-aware community

detection (EdMot) [31]: This method fundamentally performs

just as explained in Section III-B with measure improvements

that other motif-based approaches neglect. That is, the frag-

mentation problem which is resulted from isolated nodes. This

algorithm addresses this issue by deriving a clique from each

partitioned module and rewiring the original network. This

solution is shown to have increased the quality of higher-order

community detection. The time complexity of this algorithm

is O (m1.5 + n log n) where O (m1.5) is the time required to

find triangle motifs.

C. Data Input and Output

Data input and output format in the case study is made

to be uniform for simplicity and consistency. A network that

represents a data set is described as an edge list just as shown

in Table I . After fitting the graph with the selected model,

the output is a list of nodes that are indexed by a community

id as shown in Table II.

TABLE I: Edge List Representation of a Social Network

From Node To Node Weight (if applicable)

1 6 290
2 7 79
3 545 388
4 210 12
... ... ...

TABLE II: Example Community Membership Output

Community id Member nodes

1 1, 2, 4, 5. . .
2 3, 7, 8, 9. . .
3 6, 10, 11. . .
... ...

D. Ground Truth Definition

In our work, since we aim to discover communities from

unlabeled CDR data set, we use intersectional communities

as ground truth. Specifically, let CL and CM be a set of

all communities discovered by Label Propagation and EdMot

respectively, then ∀Cl ∈ CL and ∀Cm ∈ CM, we compute the

agreement ratio defined as:

Agreement(Cl, Cm) =

∣

∣ (Cl ∩ Cm)
∣

∣

∣

∣ (Cl ∪ Cm)
∣

∣−
∣

∣ (Cl ∩ Cm)
∣

∣

× 100

(1)

Subsequently, those common communities with an agree-

ment threshold τ > 40% are included in the set of inter-

sectional ground truth communities CG. Once ground truth

is determined, output of each algorithm, CL and CM , is

evaluated against CG using a matrix as shown in Table III.
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During evaluation (1) is applied by replacing CL with CG

when evaluating CM and vise versa.

Furthermore, (1) also solves the label assignment problem in

discovered communities. That is, when evaluating community

detection algorithms in such a way, there is high likelihood that

community id assigned to the output of an algorithm having

a high agreement ratio to a community in the ground truth

labeled differently. For instance, sets of nodes labeled as C2

from Table III, are highly similar to C0 in the ground truth

data. This is due to various approaches each algorithm uses

and there is no computationally inexpensive way to control

the label assignment problem.

TABLE III: Ground Truth Agreement Evaluation Matrix

Algorithm Output

C0 (3,4,7,8) C1 (2,3,4,5,7) C2 (1,2,4,5)

G
ro

u
n

d
T

ru
th C

0

14.28% 50% 100%

C
1

50% 42.84% 12.5%

C
2

16.66% 33.3% 40%

In this arbitrary example, in Table III, we assume nodes

(1,2,4,5) ∈ C0, (2,3,7,8,9) ∈ C1 and (4,5,6) ∈ C2 as the

ground truth CG.

E. Evaluation Metrics

We have summarized our result matrix for different algo-

rithm comparisons using three metrics. These are of impor-

tance in order to measure algorithms success rate.

1) The number of correct communities: For a community

detection algorithm output, an agreement ratio of p along a

ground truth agreement comparison matrix column k (i.e.,

single community), we set a threshold value t, such that if

pk > t then the community detected is accepted as successful.

The total number of correct communities η from an algorithm

is considered as the first metric.

2) The rate of correct communities per number of ground-

truth communities: For a number of ground truth communities

NG and correctly identified communities η, the rate of correct

communities discovered is ρ = η
NG . This allows for precision

evaluation.

3) The mean agreement rate of correct communi-

ties: For communities discovered above the threshold

value t (C1, C2, ..., Cn) with respective agreement rate of

(A1, A2, ..., An), we evaluate the mean agreement rate µ =
(A1,A2,...,An)

n
. This metrics permits us to measure the mean

correctness of discovered communities. Even though identified

communities are above the set threshold value, evaluating the

average agreement rate against the intersectional ground truth

communities summarizes an algorithms success well.

Moving forward for better presentation of results, we will

use the symbols described in Table IV to represent the above

metrics.

TABLE IV: Symbol Representation of Metrics

Symbol Corresponding Metric

NG Number of intersectional ground truth communities

ν Number of discovered communities

η Number of correct communities
t Correctness threshold

ρ Rate of correct communities per
number of ground-truth communities

µ Mean agreement rate of correct communities

F. Performance Evaluation

In order to run the following experiments, Amazon EC2

Linux version 5.3.0-1019 instance with 31GB of RAM was

used.

TABLE V: Accuracy Performance

YouTube CDR*
Metrics EdMot Label P. EdMot Label P.

NG 4114 16908

ν 9451 62790 253589 50589

η, t > 50% 2754 4100 11882 16908

ρ 66.94% 99.65% 70.27% 100%

µ 76.47% 99.58% 66.74% 99.98%

* communities with number of nodes < 4 were removed.

Fig. 3 shows the time performance and standard deviation

over 30 runs.

Fig. 3: Time Performance Analysis for YouTube and CDR

Data sets..

VI. CONCLUSION AND FUTURE WORK

Community discovery in unlabeled real world data sets is

subjected to a lot of uncertainty due to its inherit unsupervised

nature. Although many promising advances are made contin-

uously, there is room for improvement. In the scope of this

study, in order to increase the quality of acquired results, we

have shown that selective and context-driven methodology is

necessary. And the results demonstrate intersectional ground

truth can be used to strengthen the available community

discovery algorithms by enforcing correctness through double

approval scheme. For instance, from the 50,589 number of

communities originally found by Label Propagation in the

CDR data set, 16,908 of them were approved by EdMot with

average intersectional ground truth agreement rate of 99,98%.

This can be interpreted as it has successfully discovered 16,908

number of communities.
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In the future, this work can be utilized in order to improve

churn prediction models in the telecommunication sector by

identifying influential entities.
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