
A comparison of evolutionary and simulated

annealing algorithms for bi-criteria

location-scheduling problem

Mirosław Ławrynowicz

Wroclaw University of Science and Technology

27 Wyb. Wyspianskiego St, 50-370 Wroclaw, Poland

Email: miroslaw.lawrynowicz@pwr.edu.pl

Grzegorz Filcek

Wroclaw University of Science and Technology

27 Wyb. Wyspianskiego St, 50-370 Wroclaw, Poland

Email: grzegorz.filcek@pwr.edu.pl

Abstract—A comparison of two heuristic algorithms solving
a bi-criteria joint location and scheduling (ScheLoc) problem
is considered. In this strongly NP-hard problem the sum of
job completion times and location investment costs are used
to evaluate the solution. The first solution algorithm (EV) uses
an evolutionary approach, and the second more time-efficient
algorithm (SA) is based on Simulated Annealing.

I. INTRODUCTION

I
N RECENT years, the location-scheduling problem, re-

ferred to as ScheLoc, and its applications have attracted

attention of many researchers (see e.g.[3], [5], [6], [10], [15],

[20], [22]) The ScheLoc has been considered for the first time

in [5]. Then it has been discussed and developed in many

works. They differ depending on a kind of location area, type

and number of machines, criterion evaluating a schedule of

jobs, as well as used solution algorithms. A majority of works

deals with a discrete area for the deployment of machines

where a finite set of available positions for machines is known

and given a priori, and a non-empty subset of this set is to be

selected, (e.g., [6], [17], [15]). The evaluation of job schedule,

noticed in the literature, is based on the makespan Cmax and

the sum of completion times
∑

Cj (see [21]). The criteria

serve in the analyzed works as the assessment of ScheLoc as

a whole. Some works include also other criteria for evaluation

of the deployment of machines, (e.g., [11], [15]). Let us

remind that the job scheduling sub-problem with different

release dates is strongly NP-hard for a single machine and

criterion
∑

Cj [16]. The other sub-problem is also NP-hard

when the deployment of machines is treated as a particular

case of the uncapacitated facility location problem (UFLP)

or p-median problem (e.g., [13]). In consequence, ScheLoc

which joins and extends those problems is at least as hard

and complex as each of them, thus Scheloc is strongly NP-

hard. This fact justifies the development of efficient heuristic

algorithms used to solve the problem. The ScheLoc problem

has been also extended to multiple criteria versions, e.g, in [17]

the expected value of
∑

Cj together with the total location

costs of machines is considered, and in [25], four criteria are

taken into consideration and solution algorithm, based on the

NSGA II approach, has been developed.

This paper deals with one of the bi-criteria version of the

ScheLoc problem. In this problem, it is assumed that a finite

number of jobs are deployed at given original locations in

a planar area. Every job has to be moved from its original

location to the position of the corresponding machine site

which is not known in advance. Then all the jobs moved to

the same machine are scheduled. In this problem the number

of machines is not given, but results from its solution. The

machines can be deployed only in the locations from a given

finite set, and not more then one machine can be launched

at each location. The solution is evaluated by two criteria:

the sum of jobs completion times and investment costs of

deployment of machines in particular locations. To solve this

strongly NP-hard problem (authors provide the proof in other

work), two heuristic solution algorithms have been adopted

and compared. The first algorithm (EV) is based on the

evolutionary ([2]) approach, and the second (SA) on Simulated

Annealing ([12]) approach. The algorithms are compared with

the use of hyper-volume indicator (see [14]) to evaluate the

quality of Pareto fronts obtained by the algorithms.

The remainder of the paper is organized as follows. The

mathematical model is provided in Section II, which is

followed by the presentation in Section III of the solution

algorithms. Section IV is devoted to the computational ex-

periments, which allowed us to evaluate the algorithms. Final

remarks complete the paper.

II. PROBLEM FORMULATION

We consider a set J = {1, 2, ..., j, ..., n} of n jobs, a set

A = {a1, a2, ..., aj , ..., an} of their origin locations where

aj = [a
(1)
j , a

(2)
j]T represents the location of job j. The job

j is characterized by execution time pj , ready time ρj , and

transportation speed vj . The job needs to be performed by

a single machine selected from a set of identical machines.

The machines’ prospective locations should be selected from

a set B = {b1, b2, ..., bi, ..., bµ} of µ possible locations where

bi = [b
(1)
i , b

(2)
i]T. It is assumed that the number m, 1 ≤ m ≤ µ

of employed machines is not a priori known.

Let us introduce a binary vector y = [yi]
T
i=1,µ

where yi =

1(0) if the location bi is selected for the deployment of a

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 251–255

DOI: 10.15439/2020F91

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 251

machine taken from the set of identical machines (otherwise).

Consequently, the index i denotes a machine deployed at the

location bi. Let the schedule of jobs be represented by a three-

dimensional binary matrix x = [xjik] j,k=1,n

i=1,µ

in which current

entry xjik is equal 1(0) if the jth job is scheduled on the

ith machine as the kth (otherwise). A performance of job j
by machine i follows its transportation at a distance d(aj , bi)
between locations aj and bi if yi = 1. The transport needs

time rj(x, y) = ρj + 1
vj

∑n
k=1

∑µ
i=1 d(aj , bi)yixjik, which

is interpreted as a release date for the job j. The pj is the

execution time of the job on the machine.

The evaluation of decisions x and y is done with the use of

two criteria. The first one is the sum of completion times of

all the jobs

q(1)(x, y)
∆
=

∑µ

i=1

∑n

k=1
yiCik(x, y) (1)

where the auxiliary variable Cik(x, y) stands for the comple-

tion time of a job performed by the ith machine as the kth

and depends on decision variables via constraints (5) and (6).

The second criteria used is the total cost of all locations used

by machines

q(2)(y)
∆
=

∑µ

i=1
ciyi (2)

where ci is the location cost of bi.
The decision variables x and y must satisfy the following

constraints:
∑µ

i=1

∑n

k=1
xjik = 1, j = 1, 2, ..., n, (3)

∑n

j=1
xjik ≤ yi, i = 1, 2, ..., µ, k = 1, 2, ..., n, (4)

Cik(x, y) ≥
∑n

j=1
(rj(x, y) + pj)xjik,

i = 1, 2, ..., µ, k = 1, 2, ..., n,
(5)

Cik(x, y) ≥ Ci,k−1(x, y) +
∑n

j=1
pjxjik,

i = 1, 2, ..., µ, k = 2, 3, ..., n,
(6)

1 ≤
∑µ

i=1
yi ≤ µ, (7)

∑n

j=1
(xj,i,k+1 − xjik) ≤ 0,

i = 1, 2, ..., µ, k = 1, 2, ..., n− 1,
(8)

yi, xjik ∈ {0, 1}, j, k = 1, 2, ..., n, i = 1, 2, ..., µ. (9)

Constraints (3) and (4) ensure that each job is performed on

one position of a single machine in a launched location. The

job j assigned to a single machine cannot start before its

release date or completion time of the job scheduled to the

same machine before j, what ensure constraints (5) and (6).

The constraint (6) guarantees that the number of launched

locations is between 1 and µ. To limit the number of equivalent

solutions represented by matrix x, (8) is present. The last

constraint defines the decision variables domains.

In consequence, the following bi-criteria optimization prob-

lem, referred to as BC_ScheLoc (Bi-Criteria ScheLoc), is

solved. Given n, A, B, µ, pj , vj , ρj , ci, j = 1, 2, ..., n,

i = 1, 2, ..., µ find the schedule of jobs x and the locations

of machines y minimizing a vector of criteria q(x, y) =
[q(1)(x, y), q(2)(y)]T subject to constraints (3)-(9). Let us

point out that the resulting from the optimisation number

of used machines m can be calculated using the formula

m =
∑µ

i=1 yi.

III. SOLUTION ALGORITHMS

Considered bi-criteria optimization problem, as it was stated

in the Introduction, is strongly NP-hard. Hence, the general

schemes of an evolutionary approach [2] and the Simulated

Annealing metaheuristic [12] with some improvements are

used.

A. Algorithm EV

The proposed algorithm uses a general evolutionary ap-

proach. The next subsection provide information about en-

coding of the chromosome, and used selection, mutation, and

crossover operators, as well as stop condition.

1) Encoding: A chromosome E = (em1 , ..., emµ , esµ+1, ...,

esµ+n, e
job
µ+n+1, ..., e

job
µ+2n)

∆
= ((em), (es), (ejob)) encoded as

a three-part sequence represents a candidate solution (y, x).

It contains binary values em and es along with integer values

from the set J for ejob. The binary values emi directly represent

yi and allow calculating m. The value of
∑t

l=1 e
m
l = i

calculated for every emt = 1 indicates the index i of the

machine deployed at location t. The following mappings

decode the optimization variable y and the number of launched

locations (machines) m:

y = fy (E) = [emi]
T
i=1,µ , (10)

m = fm (E) =
∑µ

t=1
emt . (11)

The m−1 ‘1’s in es located at positions wi, i = 1, 2,..., m−1
and referred to as indices of separation specify the division

of the set of all jobs into m subsequences of jobs assigned

to individual machines. Namely, the ith index of separation

indicates the first position of the (i + 1)th subsequence of

ejob representing jobs assigned to the machine deployed at

the opened location pointed out by the (i + 1)th in order ‘1’

in es. The first subsequence of jobs in ejob, assigned to the

machine pointed out by the first in order ‘1’ in em, starts at

ejobµ+n+1. Consequently, the three-dimensional binary matrix x
can be retrieved from E by the mapping:

x = fx (E) =












xj,i+1,k =























1, if

j = ejobµ+n+wi+k−1,

k = 1, 2, ..., wi+1 − wi,
w0 = 1,
i = 0, 1, ...,m− 1,

0, otherwise.













(12)

The algorithm searches solutions iteratively and indepen-

dently for each subproblem that takes into account the fixed

number of machines. It starts with the generation of an

252 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

initial population S̃i =
{

Ẽil

}

l=1,αi

of size αi, i = 1, 2, ..., µ,

which cardinality

∣

∣

∣
S̃i

∣

∣

∣
= αi is equal for each subproblem.

The creation of solutions is made by uniformly setting the

values within the genome with the assumption about the

Hamming distance between each pair of chromosomes higher

than ϑ. This diversification strategy helps to avoid premature

convergence during the initial iterations.
2) Evolutionary operators: The Stochastic Universal Sam-

pling method for equally weighted criteria is employed for

the selection process [1]. Next, the chromosomes undergo a

parallel crossover with the use of two different operators with

the probability ϕc = 0.95 [4]. For the binary parts, the Count-

Preserving Crossover (CPC-2) operator is applied [8]. For

the integer part, the Order-based Crossover Operator (OX2)

recombines solutions [23]. The Simple Inversion Mutation

operator (SIM) changes the integer part of E with probability

ϕm = 0.01 [7]. The binary parts of E are randomly modified

by the Swap Mutation (SM) operator [19].

Finally, the stop condition is fulfilled if there is no im-

provement of solutions representing the Pareto front through

Γ consecutive iterations. The parameter Γmax restricts the

maximal number of iterations for each subproblem.

B. Algorithm SA

The generation of the initial solutions set I involves a

randomly assignment of all the jobs to each possible number

of machines 1, 2, ..., µ. For s ∈ {1, 2, ..., µ}, the different

initial solutions are created K times, |I| = Kµ. The time

of performing computations is constrained by rmax and the

cooling schedule T (i) = T (0) − γi where i stands for the

current iteration index, γ is the adjustable parameter and,

the initial temperature T (0) chosen experimentally so that an

acceptance probability of worse solutions is close to one in

the first iteration [9], [12]. The set S(i) stores each best found

(non-dominated in Pareto’s sense) pair (x, y) of the decision

variables. The new solution (x̃, ỹ) referred to as a neighboring

solution of (x, y) is determined by reassignment of all the

jobs being processed on the β (adjustable parameter) machines

providing the largest sum of completion times:

∑n

k=1
yswCswk(x, y) ≥

∑n

k=1
ysw−1

Csw−1k(x, y) ≥ ...

≥
∑n

k=1
ys1Cs1k(x, y), β < w, ∀l∈{sw,sw−1,...,s1}(yl = 1),

(13)

to the nearest β unoccupied feasible locations. The machines at

new locations ỹsk , ỹsk−1
, ..., ỹsβ receive the jobs from the set

J̃ = {j ∈ J : xjlk = 1, k = 1, 2, ..., n, l = sw, sw−1, ..., sβ}.

The reassignment preserves a greedy approach and requires

|J̃ | steps. At each step, the job j ∈ J̃ is assigned in such a

way that (2) is minimized with the exclusion of non-chosen

jobs from J̃ . The neighboring solution (x̃, ỹ) ∈ N(x,y) replaces

(x, y) ∈ S(i) only if the dominance condition is met:

E(x, y, x̃, ỹ) =











true,
q(1)(x̃, ỹ) < q(1)(x, y)

∨ q(2)(ỹ) < q(2)(y)

false, otherwise

. (14)

Consequently, the decisions (x̃, ỹ) may undergo fur-

ther changes only if the acceptance probability
(

1 +

exp(Dist(x̃,ỹ)−Dist(x,y)
T (i))

)−1
exceeds a value of the acceptance

threshold Λ and Dist(x, y) means the Euclidean distance from

the ideal point (0, 0). The introduced probability function is

the modified version of the function described in [18] that

enables an evaluation of a bi-criteria solution.

Finally, the iteration count depends directly on the initial

temperature T (0). Moreover, the calculation time is con-

strained by the parameter rmax.

C. Tuning procedure

The tuning procedure has been conducted for each dataset,

which is based on the offline approach described in detail

in [24]. Three parameters of the EV with restricted domains

of their possible values have been selected for tuning: αi ∈
{100, 150, ..,350, .., 500}, α̃ = {0.6αi, 0.7αi,0.8αi, 0.9αi},

Γ ∈ {20, 30, ..,50, .., 80}, where the default values are marked

by bold types. The default values of other parameters have

been assumed as follows: ϕc = 0.95, ϕm = 0.01, Γmax =
3500, ϑ = 0.1(n + µ). Analogously, three parameters of the

SA have been selected for tuning: γ ∈ {0.85,0.9, 0.95, 0.99},

T (0) ∈ {102, 103,104, 105}, β ∈ {30,50, .., 100}. The

default values of other parameters have been assumed as

follows: rmax = 15 min, K = 20, Λ = 0.5.

IV. COMPUTATIONAL EXPERIMENTS

The purpose of the conducted computational experiments

is the comparison of the EV and SA. Research includes the

detailed analysis of Pareto fronts generated by the developed

algorithms. The definition of quality indices and the instance

generation assumptions in Subsection IV-A is followed by the

evaluation in Subsection IV-B All the computations have been

made using a PC with AMD Ryzen Threadripper 2970WX

equipped with 32GB of RAM. The EV and SA have been

implemented in the Haskell language.

A. Foundations of computational experiments

The parameters values have been randomly generated ac-

cording to the uniform distribution. The locations of jobs aj ,

and available locations for machines bi, have been drown from

set [0, 1000], job processing times pj from {20, 21, ..., 50},

costs of machine locations ci from {70, 71, ..., 139}. The

speed of job j movement can be calculated with the formula

vj = 350/pj . We have also assumed the domains for the

number of jobs n and the number of available locations for

machines µ as {25, 50,...,150} and {5, 10, ..., 25}, respec-

tively. Finally, ρj = 0 for all the jobs.

Let us introduce a Pareto front PF
∆
= (ql =(q

(1)
l , q

(2)
l) :

q
(1)
l−1 < q

(2)
l)

l=1,L, which is an L-element sequence of points,

resulted from the run of solution algorithm. We distinguish

within PF the point qλ, which is the closest to (0, 0) according

to the Euclidean distance Dist =

√

(q
(1)
λ)

2
+ (q

(2)
λ)

2
. The

values of qλ express the trade-off between (1) and (2). For

evaluation we propose a well-known hypervolume indicator

GRZEGORZ FILCEK, MIROSŁAW ŁAWRYNOWICZ: A COMPARISON OF EVOLUTIONARY AND SIMULATED ANNEALING ALGORITHMS 253

TABLE I
DEPENDENCE OF IH.EV AND IH.SA ON µ AND n

(µ.n)
IH.EV IH.SA 1− (IH.SA/IH.EV)

Max Min Avg Max Min Avg Avg

(5,25) 0.794 0.703 0.763 0.760 0.686 0.733 0.039

(5,50) 0.779 0.711 0.756 0.757 0.702 0.740 0.021

(5,75) 0.721 0.654 0.702 0.706 0.621 0.656 0.066

(5,100) 0.736 0.661 0.711 0.740 0.678 0.714 -0.004

(5,125) 0.701 0.655 0.682 0.718 0.681 0.701 -0.028

(5,150) 0.727 0.659 0.703 0.712 0.643 0.687 0.023

(15,25) 0.807 0.745 0.780 0.778 0.702 0.734 0.059

(15,50) 0.769 0.699 0.739 0.761 0.691 0.736 0.004

(15,75) 0.708 0.645 0.679 0.712 0.649 0.688 -0.013

(15,100) 0.687 0.622 0.667 0.697 0.622 0.681 -0.021

(15,125) 0.717 0.636 0.683 0.699 0.629 0.659 0.035

(15,150) 0.735 0.659 0.704 0.707 0.621 0.673 0.044

(25,25) 0.691 0.636 0.655 0.667 0.612 0.632 0.035

(25,50) 0.713 0.649 0.673 0.689 0.617 0.635 0.056

(25,75) 0.699 0.624 0.651 0.669 0.587 0.641 0.015

(25,100) 0.689 0.603 0.639 0.699 0.609 0.646 -0.011

(25,125) 0.667 0.599 0.634 0.670 0.603 0.639 -0.008

(25,150) 0.706 0.631 0.671 0.688 0.617 0.649 0.033

TABLE II
DEPENDENCE OF DistEV AND DistSA ON µ AND n

(µ, n)
DistEV DistSA (1−DistSA/DistEV)*100%

Max Min Avg Max Min Avg Avg

(25,25) 951 934 945 957 927 945 0.01

(15,25) 952 934 940 944 918 933 0.71

(5,25) 985 944 970 981 952 965 0.48

(25,50) 1959 1915 1934 1971 1896 1936 -0.11

(15,50) 1931 1896 1916 1929 1875 1905 0.56

(5,50) 2886 2824 2858 2942 2791 2867 -0.34

(25,75) 2986 2909 2942 3018 2920 2971 -0.98

(15,75) 3089 2991 3043 3037 2980 3017 0.84

(5,75) 6191 5995 6074 6314 5927 6131 -0.94

(25,100) 3978 3929 3954 4035 3882 3961 -0.18

(15,100) 4866 4753 4821 4730 4530 4662 3.29

(5,100) 10810 10312 10500 10915 10241 10508 -0.08

(25,125) 5388 5149 5251 5365 5146 5278 -0.53

(15,125) 7076 6987 7046 7077 6686 6927 1.68

(5,125) 16352 16021 16135 16465 15686 16102 0.20

(25,150) 7042 6977 7011 7090 6631 6903 1.53

(15,150) 9976 9859 9902 9984 9396 9635 -0.53

(5,150) 23477 22844 23059 23781 22205 22897 0.70

IH [14] and Dist as quality indices. Indicator IH uses

normalized values of criteria and measure the part of the

criteria area weakly dominated by an evaluated Pareto front

PF. Its analytic formula is IH =
∑

l∈1,L

(1−q̄
(1)
l)(q̄

(2)
l−1 − q̄

(2)
l)

where q̄
(2)
0 = 1, q̄

(i)
l = q

(i)
l /q

(i)
max, i = 1, 2 are normalized

values of both criteria for PF. Normalization is done with

q
(2)
max =

∑µ
i=1 ci, and q

(1)
max = max

i∈{1,2,...,µ}

{

max
j∈{1,2,...,n}

n ∗

(ρj + 1
vj

∑n
k=1

∑µ
i=1 d(aj , bi))

}

+
∑n

j=1(n + 1 − j) ∗ psj ,

where the processing times ps1 ≥ ps2 ≥ ... ≥ psn are sorted

in descending order. Increasing value of the IH arranges a

greater area of dominated solutions and an evenly Pareto front.

In effect, the IH is desired to be close to 1. Smaller Dist
values are preferred as the trade-off point is then closer to the

reference point (0, 0).

B. Results of experiments

The evaluation of the EV and SA comprises the comparison

of quality indices calculated for Pareto front PFEV generated

by the EV with the corresponding indices calculated for

Pareto front PFSA generated by the SA. Additionally, we

apply processing time T ime as the performance indicator.

The indices calculated for the EV and SA are marked by the

subscripts EV and SA. The values of both criteria and quality

indices are presented in Tables I-II, where the Avg, Min, and

Max mean average, minimum, and maximum, respectively.

Each value is obtained through 30 independent runs of the EV

and SA. Table I presents the Avg, Min, and Max values of the

indicator IH for the EV and SA, and comparison between

them in average as 1 − (IH.SA/IH.EV). With reference to

this indicator, both algorithms have achieved similar results

as values in the last column are very small (the difference

254 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

TABLE III
DEPENDENCE OF COMPUTATIONAL TIMES (IN MILLISECONDS) TEV AND TSA ON µ AND n

(µ, n)
TEV TSA TEV/TSA

Min Max Avg Min Max Avg Avg

(5,50) 8246 10281 9124 6016 6804 6287 1.45

(5,150) 27526 32046 30822 20397 22219 21016 1.47

(15,50) 36251 40403 38900 17005 17664 17211 2.26

(15,150) 96155 102302 98669 44753 45996 45256 2.18

(25,50) 75371 104258 85577 28089 30676 29232 2.93

(25,150) 159050 181497 172228 57998 59936 59268 2.91

between algorithms does not exceed 6, 6% in favour of the

EV). In majority of analyzed instances, the EV algorithm

outperforms SA, but it cannot be concluded that EV is better.

For some instances, the SA gets better results for all the

indicators. The analysis of Table II shows that both algorithms

have reached similar results and there is no possibility to

indicate the better approach. However, the SA has ensured

better results in most cases. The slight differences between the

both algorithms do not exceed 3.3% on average. In addition,

the comparison of computation times illustrated in Table III

shows that the SA has surpassed the EV. In some cases, the

EV has been about 3 times slower than SA, and the difference

increases along with the size of the problem instance.

V. FINAL REMARKS

The primary contribution of this study deals with the

analysis of evolutionary and mataheuristic-based approaches

for the bi-criteria Scheloc problem. Two algorithms have been

developed and evaluated with the use of the hypervolume

IH, Dist and T ime indicators. As the SA has ensured faster

execution times, it is strongly recommended for the critical-

time applications. In addition, the minimal distance from the

highly preferable point (0, 0) has been mainly delivered by

the SA. On the contrary, the evenly arranged Pareto fronts

have been provided by the EV. Although the unambiguous

interpretation of execution times, the better algorithm cannot

be clearly chosen on the basis of the IH and Dist indicators.

Finally, further research may include other criteria or seeking

for more efficient approximation schemes.

REFERENCES

[1] J. E. Baker. Reducing bias and inefficiency in the selection algorithm.
In Proceedings of the Second International Conference on Genetic

Algorithms on Genetic Algorithms and Their Application, pages 14–21,
Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[2] K. Deb. Multi-objective optimization using evolutionary algorithms,
volume 16. John Wiley & Sons, 2001.

[3] D. Elvikis, H. W. Hamacher, and M. T. Kalsch. Simultaneous scheduling
and location (ScheLoc): the planar ScheLoc makespan problem. Journal

of Scheduling, 12(4):361–374, 2009.

[4] J. J. Grefenstette. Optimization of control parameters for genetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics,
16(1):122–128, Jan 1986.

[5] H. Hennes and H. Hamacher. Integrated Scheduling and Location

Models: Single Machine Makespan Problems. Report in Wirtschafts-
mathematik. Univ., Fachbereich Mathematik, 2002.

[6] C. Heßler and K. Deghdak. Discrete parallel machine makespan
ScheLoc problem. Journal of Combinatorial Optimization, 34(4):1159–
1186, 2017.

[7] J. H. Holland. Adaptation in Natural and Artificial Systems: An In-

troductory Analysis with Applications to Biology, Control and Artificial

Intelligence. University of Michigan Press, 1975.
[8] Y.-C. Hou and Y.-H. Chang. A new efficient encoding mode of genetic

algorithms for the generalized plant allocation problem. Journal of

Information Science and Engineering, 20:1019–1034, 09 2004.
[9] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon.

Optimization by simulated annealing: An experimental evaluation; part
i, graph partitioning. Operations research, 37(6):865–892, 1989.

[10] M. T. Kalsch. Scheduling-Location (ScheLoc): Models, Theory and

Algorithms. Verlag Dr. Hut, 2009.
[11] M. T. Kalsch and Z. Drezner. Solving scheduling and location prob-

lems in the plane simultaneously. Computers & Operations Research,
37(2):256–264, 2010.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[13] J. Krarup and P. M. Pruzan. The simple plant location problem: Survey
and synthesis. European Journal of Operational Research, 12(1):36 –
81, 1983.

[14] M. Laszczyk and P. B. Myszkowski. Survey of quality measures
for multi-objective optimization. Construction of complementary set of
multi-objective quality measures. Swarm and Evolutionary Computa-

tion, 48:109–133, 2019.
[15] M. Ławrynowicz and J. Józefczyk. A memetic algorithm for the discrete

scheduling-location problem with unrelated executors. In Proc. of 24th

Int. Conf. on Models and Methods in Automation and Robotics MMAR,
pages 158–163, 2019.

[16] J. K. Lenstra, A. R. Kan, and P. Brucker. Complexity of machine
scheduling problems. In Annals of discrete mathematics, volume 1,
pages 343–362. Elsevier, 1977.

[17] M. Liu, X. Liu, E. Zhang, F. Chu, and C. Chu. Scenario-based heuristic
to two-stage stochastic program for the parallel machine ScheLoc
problem. International Journal of Production Research, 57(6):1706–
1723, 2019.

[18] Z. Michalewicz and D. B. Fogel. How to solve it: modern heuristics.
Springer Science & Business Media, 2013.

[19] I. M. Oliver, D. Smith, and J. R. Holland. Study of permutation crossover
operators on the traveling salesman problem. In Genetic algorithms and

their applications: proceedings of the second International Conference

on Genetic Algorithms at the Massachusetts Institute of Technology,

Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987.
[20] B. Piasecki and J. Józefczyk. Evolutionary algorithm for joint task

scheduling and deployment of executors. In: Automation of Discrete

Processes. Theory and Applications, Silesian University of Technology,
1:169–178, 2018.

[21] M. Pinedo. Scheduling: theory, algorithms and systems development,
volume 29. Springer-Verlag NY, 2012.

[22] M. Rajabzadeh, M. Ziaee, and A. Bozorgi-Amiri. Integrated approach in
solving parallel machine scheduling and location (ScheLoc) problem. In-

ternational Journal of Industrial Engineering Computations, 7(4):573–
584, 2016.

[23] G. Syswerda. Scheduling optimization using genetic algorithms. Hand-

book of genetic algorithms, pages 332 – 349, 1991.
[24] E.-G. Talbi. Metaheuristics: from design to implementation, volume 74.

John Wiley & Sons, 2009.
[25] S. Wesolkowski, N. Francetić, and S. C. Grant. TraDE: Training device

selection via multi-objective optimization. In 2014 IEEE Congress on

Evolutionary Computation (CEC), pages 2617–2624. IEEE, 2014.

GRZEGORZ FILCEK, MIROSŁAW ŁAWRYNOWICZ: A COMPARISON OF EVOLUTIONARY AND SIMULATED ANNEALING ALGORITHMS 255

