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Abstract—Long Range (LoRa) is a low powered wide area
communications technology, which uses radio frequencies in
the industrial, scientific and medical (ISM) band to transmit
data over long distances. Due to these properties, i.e., the long
range and little restrictions on deployment and use, LoRa is
a good candidate for building an asset tracking application
on, for example targeting search and rescue operations. This
paper describes the development and testing of such a prototype,
using commercial off-the-shelf Internet of Things (IoT) consumer
devices and a proprietary mesh protocol.

The prototype enables distributed position tracking utilizing
the Global Positioning System (GPS), a gateway to the Internet, a
server for data storage and analysis, as well as a Web application
for visualizing position tracking data. The devices are small,
and our tests have included both personnel on foot carrying
the equipment, as well as having the devices on vehicles.

Index Terms—Internet of Things, Wireless mesh networks,
Web services

I. INTRODUCTION

EXISTING technologies such as cellular networks offer

rapid communication across fair distances, but are limited

in their scope of operation. Large cellular towers have limited

range and rely on extensive infrastructure to provide service,

and consequently it is expensive to maintain and expand this

type of network. Due to their isolated nature they are also

susceptible to a single point of failure [1], [2].

A mesh network circumvents many of these limitations

through its distributed design. Perhaps most crucially, a mesh

communications network is not reliant on a central station or

site. A distributed solution can provide connectivity in near

any location, even those without any existing infrastructure. It

will also be more resilient to network failure than a centralized

solution, because it has no single point of failure. If a network

node is destroyed or otherwise left inoperative, remaining units

in the network are adaptable and will continue to provide

service. Finally, the hardware required to deploy a Long

Range (LoRa) mesh network is inexpensive and accessible [3].

This enables swift propagation of a large number of devices,

which is essential to establish a robust distributed network. The

tradeoff for the advantages of long range and low power use

is primarily the low rate of data transfer that LoRa offers [4].

The properties of mesh networks make them particularly

suitable for certain applications where traditional communica-

tions infrastructure is impractical or insufficient. Examples of

application areas include asset tracking, sensor data dissemina-

tion, and low bandwidth communication in case of exhaustive
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infrastructure failure. Due to the low cost and accessibility

of the necessary hardware, these, as well as many other

applications, are both feasible and pragmatic using affordable

commercial off-the-shelf (COTS) devices [5].

A notable example of this is search and rescue operations

in areas with challenging geography, such as Norwegian

mountain ranges. These areas may not have reliable access

to cellular networks, which leaves crucial primary communi-

cation channels unavailable. In order to perform a successful

search, for instance when looking for a missing hiker in the

mountains, it is important to know which area the rescue

personnel is currently in (current position) as well as which

areas have been searched already (history of positions). An

application for location tracking using a LoRa mesh network

could provide this, while simultaneously producing a detailed

map of all regions of the area searched so far. In this paper, we

pursue a prototype implementation of such a search and rescue

system, built on COTS Internet of Things (IoT) consumer

devices and a proprietary mesh protocol.

The remainder of the paper is organized as follows: Sec-

tion II outlines the scope of our work, whereas Section III

gives an overview of the technologies involved in the pro-

totyping effort. Section IV discusses the design and imple-

mentation of our software. The tests we performed using our

prototype are summarized in Section V. Section VI presents

the analysis of our findings, leading up to a summary of results

in Section VII. Section VIII presents related work. Finally,

Section IX concludes the paper.

II. PROTOTYPE SCOPE

The purpose of our work was to develop and test an initial

prototype for search and rescue operations, with the main

focus being a distributed network for geographical tracking.

To achieve this, we limited our scope to COTS IoT products

to build an affordable, highly portable and easily deployable

system. Hence, we chose to focus on LoRa, since the protocol

offers long range communications while at the same time

being battery efficient. LoRa is also one of the few choices

out there that you can deploy with few limitations, as it is not

reliant on commercial infrastructure, as opposed to e.g., NB-

IoT and Sigfox [6]. Due to this, our prototype system uses the

LoRa protocol to send messages between devices in a mesh

network. The functionality scope is limited to each device

reporting its position using its onboard Global Positioning

System (GPS).

The mesh network itself is self-healing and not reliant on

any infrastructure. Internet is not needed, granted that the
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Fig. 1. Prototype system high-level architecture

back-end is available locally. However, for the prototype we

deployed the back-end on the Internet, so here one of our

devices needs Internet connectivity. These devices that connect

to the Internet are referred to as border routers. Border routers

should receive coordinate data from the whole mesh network,

and forward it to a database web server application program-

ming interface (API). The web server is responsible for storing

the data persistently in a database. Finally, the location data

should be displayed in a frontend web application. In addition

to the location data, the application should show the nodes’

roles within the network (for debugging), historic positions

of nodes (can be toggled on or off, an important feature of

the search and rescue application), as well as other relevant

metadata collected by the system (used for prototype and

protocol evaluation purposes).

Figure 1 illustrates the system architecture. Here, green

circles are routers in the mesh network. The orange circle

has the special role of the border router, and is responsible for

forwarding data from the mesh network to the web server

hosting the API and database. Note that even though the

figure only shows one border router, there may be multiple

for redundancy. In our implementation, a router that is in

range of a pre-defined WiFi network SSID and manages to

connect to it, automatically becomes a border router. The

system needs at least one border router to function as expected,

since otherwise the data flow to the database will be disrupted.

The mesh network operates on the COTS IoT products over

LoRa, whereas the remainder of the system is deployed on the

Internet using a Web service API.

III. TECHNOLOGY BACKGROUND

The COTS products we chose were the Lopy4 [7] and

Pytrack [8] from Pycom LTD., since these devices provide

an inexpensive IoT prototyping platform for developing with

Python. Also, the devices have GPS support as well as sev-

eral protocols, including LoRa, WiFi, Bluetooth, and Sigfox.

Below we present some key properties of the LoRa protocol,

followed by a brief introduction to PyMesh [9], which is the

mesh network implementation we used in our prototype.

A. LoRa

LoRa is a proprietary physical layer specification that

enables a chip with an inexpensive crystal to have high

sensitivity, and provides long range wireless transmission with

low data rate and low energy usage. The industrial, scientific,

and medical (ISM) frequency band that LoRa devices operate

on is 915 MHz in the US and 868 MHz in Europe [10].

TABLE I
RELEVANT EU 868 FREQUENCY BAND DATA RATES

Data rate SF/Chirp rate Indicative physical bit/s Payload size

DR5 SF7/125kHz 5470 242 bytes
DR6 SF7/250kHz 11000 242 bytes

LoRa devices achieve long range due to the transceiver’s

ability to filter on the constant chirp signals, which enables the

device to detect and lock to the LoRa signal. A chirp signal

is a rapid increase or decrease in radio frequency over time.

The LoRa protocol uses variations of these chirps to establish

a connection and encode transmitted data [4].

1) Data rate: The data rate is a direct result of the chirp

rate used for transmission. A higher chirp rate enables LoRa to

encode more data in the same amount of time. A key advantage

of LoRa is its ability to demodulate multiple simultaneous

signals at the same frequency if the LoRa devices use different

data rates [11]. This increases the capacity of a single LoRa

device and enables them to communicate with a large number

of devices simultaneously if necessary, as long as the adaptive

data rate functionality is enabled. This could however be

problematic for continuously moving devices, because higher

data rates reduce their range and could prevent their signal

from reaching a neighboring device in the network.

2) Spreading factor: Spreading factor (SF) is a parameter

in the LoRa protocol that directly affects battery usage, range

and how often a device can transmit a message. SF adjusts the

number of chirps (the data carrier in the signal) that are sent

per second. A lower SF indicates that more chirps are sent per

second, whereas a higher SF implies a lower chirp rate. Send-

ing data of the same length with a high SF will create a longer

transmission time (known as airtime). More airtime forces the

modem to run for a longer duration, and therefore consume

more energy. SF is graded on a roughly exponential scale

between 7 and 12, where each step is equivalent to doubling

the airtime for each unit data and an approximate increase of

2.5 dB in signal strength. A SF of 12 would have the greatest

range because the receiving device has more opportunities to

sample the signal. Another consideration is that longer airtime

result in fewer opportunities to send data (since each message

takes longer to transmit). LoRa supports several different data

rates (DR). A payload of 11 bytes using a DR0 configuration

would only be able to send data roughly once every 2 minutes

following appropriate government regulations.

For the sake of our prototype, we experimented with two

different data rates: DR6 (which is the default for PyMesh)

as well as DR5. Details of these DR are shown in Table I.

Lower DR than 5 have decreasing payload sizes, that possibly

could affect the performance of the mesh network. Our own

prototype data format only has a payload of 53 bytes, and

should theoretically (not tested) be usable all the way down

to DR3, which offers a payload of 53 bytes.

B. PyMesh

PyMesh is a LoRa based mesh network technology consist-

ing of a firmware and library that we obtained from Pycom
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TABLE II
DEVICE ROLES IN THE PYMESH NETWORK

Role Explanation Color

Router Most devices in the network will usually
be routers. Routers are devices with Green
neighbors, that are capable of forwarding
data towards a border router.

Leader The leader device is responsible for
distributing addresses within the Purple
network and making other devices
aware of where the nearest border
router is located.
There is always a single Leader
in each network partition, which
is dynamically self-elected.

Child The child role is given to devices
located on the edge of the network White
graph. These devices are not located
in a path to neighboring nodes and
will therefore never forward data
from other devices.

Border Router The border router role is assigned to
devices with an Internet connection. Orange
There can be multiple border routers
in the mesh network. Ultimately,
these devices are responsible for
forwarding data from the mesh to a
web server through the Internet. A
border router may simultaneously
act as router or leader as well,
depending on the network.

under a time-limited developer’s license. Their technology

is implemented using OpenThread [12] which is an open

source implementation of the IPv6-based networking protocol

Thread [13]. PyMesh was developed by Pycom to enable LoRa

MAC addresses to be used over IPv6, and therefore enable

an OpenThread mesh network to operate over LoRa. PyMesh

removes the need for static gateways, which decentralizes the

network’s infrastructure and makes it more flexible.

PyMesh will automatically assign a Pycom device to one

of four different network roles — leader, border router, router

or child (see Table II). The role of a device changes continu-

ously based on several factors, the most important being the

radio-link strength between devices (Received Signal Strength

Indication (RSSI)). The assignment of roles creates a link local

address for every PyMesh device directly connected to another

device, as well as a mesh local address for every device in the

same network. This enables all LoRa messages to be routed

efficiently through the mesh network to a device capable of

forwarding it out of the network (border routers), as well as

updating mesh information on other devices.

IV. DESIGN AND IMPLEMENTATION

Our prototype uses a client-server architecture. The system

has two clients, the PyMesh border router and the frontend

web application, and a web server providing the API endpoints

and persistent storage. The server interfaces with the clients in

different ways: The PyMesh border router sends data from its

devices to the server, while the frontend application requests

data from the server. Both methods use a Representational

State Transfer (REST) API over HTTP. Below we outline the

central parts of the prototype. It should be noted that even if

the Pycom devices support multiple network protocols, we are

only using the LoRa and WiFi capabilities in our prototype.

For the complete description of software development method-

ology and a more detailed system architecture, see [14].

A. PyMesh

There are eight components in the software we built on

PyMesh:

1) Unit: The Unit component is the most important com-

ponent, since it is responsible for managing and calling

the other components. The methods in Unit are called

from the special main.py file, which is automatically

executed when a device is powered on. The component

is responsible for ensuring the device is checking for an

Internet connection at regular time intervals, setting up

the correct role for the device, collecting and making

sure data is packed correctly, and finally forwarding it

to either another device if it is not a border router, or to

the server API if it is.

2) WiFi: The WiFi component is responsible for trying to

connect the device to a specified WPA2 secured WiFi

network if it can find a connection. It has a method

for returning if the device has a connection, that Unit

uses to determine if the device should act as a border

router or not. WiFi is the only protocol we support in

the prototype at the moment for bridging a border router

to the Internet.

3) Setup: The Setup component handles the configuration

of the device depending on whether it is a regular router

or a border router. It is also responsible for initializing

the PyMesh configuration on the device making it a part

of the network.

4) Callback: The Callback component handles message

forwarding depending on whether it is a regular router

or a border router when receiving a message. If it is a

regular router the package will be forwarded throughout

the network until it reaches a border router. When data

reaches a border router the Callback component will

trigger a method in Unit in order to send the package

out of the PyMesh network to the server.

5) DataPacker: The DataPacker component is responsible

for retrieving the data from the GPS component and

packaging the data into a format which is suitable for

sending through both LoRa and HTTP to the API.

Most of the data is provided by the GPS component,

but the DataPacker is also responsible for fetching the

MAC address and the node type (role) of the device.

The component translates the data between the static

byte packet format we have defined (see Figure 2) and

standard Python dictionaries in order to enable this.

Fig. 2. Our packet format for LoRa GPS transmissions
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6) GPS: The GPS component handles everything related

to the Pytrack GPS. When Pytrack has a GPS fix, this

component returns the necessary data to the DataPacker

component. The data consists of positional information

like longitude and latitude, as well as satellite accuracy

and the number of satellites available. It also synchro-

nizes the GPS time with the Real Time Clock (RTC)

on the device for timestamping the data packets. If the

GPS component cannot find a fix, it will continuously

attempt to establish a connection as long as the device

is powered on.

7) Light-emitting diode (LED): The LED component is

a helper component which is most useful in debugging

and showing the user what process is happening. It is

useful for observing what role the device is assigned

to or when the device is trying to establish an Internet

connection. Figure 3 shows the meaning of the LED

colors. The device cycle starts with the LED blinking

yellow (WiFi color code) if it is not connected, or the

LED being on constantly if it has a connection and is

acting as a border router. The cycle ends with a constant

color representing the role a device has in the PyMesh

network at that time.

Fig. 3. LED colors assigned to roles and when WiFi is connecting/connected

8) Node Type: The Node Type component contains con-

stants with the different roles in the PyMesh network and

corresponding LED colors in Figure 3. It is responsible

for encoding PyMesh role definitions in the data format

used by the DataPacker and API (i.e., the Type field

shown in Figure 2).

B. Backend

We designed the backend architecture to be light weight

and intuitive. There are three entities in the data model,

Coordinate, Node and GaiaCoordinate. The GaiaCoordinate

entity is implemented on the server for testing purposes, to

hold data from the Gaia app [15] we used for GPS comparison,

as further discussed in Section V. Each Pycom device will

have a unique MAC address, which will be linked to the Node

data-model. The Coordinate entity will store each coordinate

that it receives from the mesh-network, and link this coordinate

to the corresponding Node. The GaiaCoordinate entity will

also link its coordinates to a node to be able to visualize a

reference in the frontend after testing. The backend consists

of two Django-apps [16], which are called “core” and “api”.

The core-app contains what can be considered the business-

logic and is closer to the database. The api-app defines a REST

API which both the frontend and Pycom devices can use.

TABLE III
PYCOM DEVICE FIRMWARE, SMARTPHONES, OPERATING SYSTEMS AND

APP VERSIONS

Pytrack firmware pytrack0.0.8.dfu

LoPy4 firmware LoPy4-1.20.2.r1

Pycom devices Pycom A (Mac 4),
Pycom B (Mac 5),
Pycom C (Mac 3),
Pycom D (Mac 7),
Pycom E (Mac 6)

Samsung Galaxy J3 SM-J330F One UI version 1.1,
Android version 9,
WPA2 WiFi hotspot

Huawei P20 EML-L29 EMUI version 9.1.0,
Android version 9,
Gaia GPS version 2020.3

Samsung Galaxy S20+ SM-G986B/DS One UI version 2.1,
Android version 10,
Gaia GPS version 2020.3

Server Ubuntu 18.04.3 LTS,
GNULinux 4.15.0-76-generic x86 64

C. Frontend

The frontend was written in React [17], and uses a com-

ponent hook based architecture. Its structure can be divided

roughly into two parts, the map for geographic visualization

of node positions, and the supplementary user interface for

orienting within the application as well as accessing more

advanced functions. API hooks are responsible for providing

the necessary data for components, which it fetches from the

server-side REST API. In order to improve performance and

reduce complexity, request parameters such as filtering and

search are offloaded to the server. Responses are provided

in a Java Script Object Notation (JSON) format, specifically

GeoJSON [18] for coordinate data, which, with minimal

processing can be visualized in our frontend.

V. TESTS

We wanted to test PyMesh functionality in practice, to see

how it would perform as the data carrier for our search and

rescue application. The hardware and software we used is

summarized in Table III. The goal of our system testing was

to gather data to investigate certain metrics:

• Average packet loss and packet loss by range for DR5

and DR6

• Average range for DR5 and DR6

• Average GPS accuracy in meters

• GPS accuracy over time in meters

To have an additional source of GPS tracks, we chose to

use the Gaia GPS app [15], which includes functionality to ex-

port recorded tracks as easily interpretable Comma Separated

Values (CSV) files. This made it easy to perform analysis on

gathered data from our system and import Gaia tracks directly

into our database and web page for comparison.

Before a test, each Pycom device participating is connected

to a power source. When booting they have to be minimum

two meters apart and not be started simultaneously, in order

to prevent a PyMesh connectivity issue (this occurs due to

LoRa transceiver saturation and subsequent mesh initialization
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Fig. 4. Photo of our Pycom C node.

failure). A phone with 3G/4G is used as a WPA 2 WiFi

hotspot, and the device is placed near the Pycom device

that should become a border router. Once all devices get a

GPS fix (this can take between 5 and 15 minutes depending

on the location), the test can begin. The total setup time is

approximately 15 minutes to ensure all devices get a GPS fix,

and the test will begin when the recording on the Gaia app

tracking is initialized. It should be noted that we do not use an

external GPS antenna, which would likely give us a location

fix more rapidly. The only external antenna used is for LoRa,

both GPS and WiFi in our nodes use the built-in antennas (see

Figure 4 for a picture of one of our fully assembled nodes).

At this point, testing can commence. When a test session1

is finished, all Gaia GPS logs have to be exported from the

phone manually, transferred to a computer and parsed into the

database. This makes the trail visible in the web application.

The raw log file is also uploaded to the source code repository

to be accessible to our analysis scripts.

A. Limitations

The COVID-19 pandemic severely impacted our collabora-

tion. The quarantine rules posed a major obstacle in gathering

data for analysis. Initially, we had planned to test together and

gather data with all five devices we had bought, but this was no

longer possible. Because of the pandemic, we were not able to

do testing with all the Pycom devices simultaneously. Further,

we encountered a hardware issue of one of the devices. Rather

than replacing the faulty node as we would have aimed to do

under normal circumstances, we instead opted to attempt to

attempt to repair it so that we could continue our tests. In

spite of this we managed to perform some tests and gather

useful data, using up to three Pycom devices at a time, which

were located in Trondheim. The remaining two devices were

1We define a test session as a number of tests in an urban or rural environ-
ment with a given data rate. A test session may also include transportation
to and from the given environment to gather data for GPS accuracy analysis.
The main goal of a test session is to gather data for packet loss as a function
of the distance to a border router, or to test the limit in range to a border
router. The test sessions are summarized for brevity in this paper. For complete
information on all test, see [14].

Fig. 5. PyMesh trail (blue) on top of Gaia (red) for tests 1 and 2.

in another city, and the team member with access to those were

in quarantine, so they were used for software development, but

not any of the range tests.

Within these limitations, we performed the test series out-

lined below.

B. Test session 1

This session took place in Trondheim city and the priority

was to measure packet loss at various distances, so as to

investigate the range of the communication system. The Gaia

GPS trail and Pycom trail for both tests 1 and 2 can be seen

in Figure 5. All test were performed with DR6.

1) Test 1: Range: Since this was the first range test we

slowly increased the distance to the border router while

maintaining line of sight. After Pycom D was out of range

on Elgeseter bridge and returned back in range, the devices

renegotiated and switched roles (Pycom D was a router but

was assigned to the leader role).

2) Test 2: Range: After the first range test was complete,

a new Gaia recording was started to now measure packet loss

with buildings between the Pycom devices. At the end of the

test, Pycom D had an error where the LED was blinking yellow

rapidly, indicating an error. The test was concluded soon after.

C. Session 2

This testing session took place in the rural outskirts of

Trondheim. The testing environment was challenging for the
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Pycom devices, since there is a lot of vegetation that blocks the

line of sight. Terrain height differences made it more difficult

to correctly measure the packet loss with respect to distance.

All tests were performed with DR6.

1) Test 6: Rural Forest: Once the test started, both devices

already had high GPS accuracy because they had been running

for over 30 minutes. We walked up a forest path and lost

connection due to a mountain crest in the way, but regained

connection once Pycom D was in higher terrain and vegetation

decreased. We experienced no issues, and Pycom D recon-

nected quickly once it returned in range.

2) Test 7: Rural Forest: This test started in a different

direction on a steeper path with more trees between the

devices. At the top of the hill the path flattened out and the

network was subjected to more vegetation than just trees. The

packet loss at this location was high, and we noticed that

Pycom D had an issue where the LED was rapidly blinking

yellow, similar to the one in test 2. It was later discovered that

the Pycom D USB connector was loose. This hardware issue

can be attributed to the faults seen on this node, since it would

affect the power supply. Later, we soldered the connector back

on, which improved the stability of this node.

D. Session 3

During this session we tested routing between three devices.

The session was conducted in Trondheim city. The test con-

sisted of two team members with one device each, as well as a

border router. The border router was located outside a window

on the fourth floor, and did not move during the test. The test

was performed using DR6.

1) Test 8: Routing: Some issues occurred approximately

10 minutes into the test where both devices lost connection to

the network, causing the test to be paused briefly. After some

time both devices managed to reestablish their connection to

the mesh network, and testing resumed. The two participants

in the test walked together until maximum range was reached

to the border router. Afterwards, one member continued to

walk in the same direction with their device, while the other

stayed stationary. Routing worked well between these devices.

After a short while an issue occurred where Pycom D did not

send its own data. In spite of this issue we were able to test

routing successfully.

E. Session 4

This session took place approximately 10-15 minutes from

Trondheim center, in the area previously used for session 2.

Two members of the team took part in the session, each with

their own device, as well as the border router. Two tests were

conducted during this session. The border router was placed

in a static position. All tests were performed using DR5.

1) Test 9: Rural Forest: This test used the same route as

test 6 and both devices were assigned the router role. At

the point furthest away from the border router, both devices

lost connection to the mesh network and could not reconnect.

There seemed to be a hardware or firmware issue causing the

devices to be unable to reconnect. Saturation could also be a

factor causing the issue, but this is uncertain – it may well be

that we encountered the known issue described here [19].
2) Test 10 and 11: Rural Forest: These tests used the same

route as test 7. Both devices were assigned the router role.

This time the members walked in different directions. Due to

an error one of the devices was powered off during some of the

test, causing a gap in GPS data until the device was powered

on again. Unlike test 9, the device quickly reestablished its

connection to the mesh network and the rest of the test was

performed without issues.

F. Session 5

The session was conducted in Trondheim city, and the goal

was to test range and routing. Two members of the team

participated, each with their own device, and the border router

was placed at a static location. All tests used DR5.
1) Test 14: Range: This test started with both members

walking together in the same direction, in an attempt to find

the distance where they would lose connection to the mesh

network. During the test both devices had the role of router.

After walking approximately 850 meters, connection between

the devices and the border router was lost. Both routers

managed to reconnect to the network afterward. At this time,

the border router experienced an unknown issue leading to

corrupt data being sent to the server, so the test was concluded.

It should be noted that this issue occurred only this once, so

we were unable to further investigate this error.
2) Test 15: Range: This test took place with two devices

in a car, where one had the role of router while the other was

a leader. The goal was to test how far away the devices could

be from the border router when buildings blocked the line

of sight. The test started with a few smaller buildings where

both devices managed to send data without problems. The

range from the border router and size of buildings increased

as the test went on, until connection was lost. This test was

completed without any issues, and the range from the border

router was quite good considering the amount of tall buildings

blocking the signal path.
3) Test 16: Routing: This test took place in the same area

where we tested routing during session 3. The test followed

the same procedures as session 3, with both team members

walking together for a while, and then one member remaining

at a stationary position while the other walked further away.

In contrast to test 8, this time both devices seemed to be

able to transmit their data without any issues. The max range

achieved with routing during this test was also much greater

than in test 8. The device furthest away from the border router

managed to reestablish its connection to the network after it

was lost, and data was therefore also gathered on its way back

to the border router. This is the longest and most stable test

throughout all testing sessions.

VI. ANALYSIS

The following sections present graphs, plots and images of

data from our analysis of the PyMesh network. The graphs

describe various relationships related to packet loss and accu-

racy.
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A. Considerations

We used a collection of scripts that we developed to perform

analysis on the data we gathered during testing. During the

testing process we did not do logging on-device due to the

increased workload and complexity this would cause, which

meant that we lacked coordinate data for lost packets. In order

to generate better distance metrics we used linear interpolation

between the most recent data point before the loss, and the

first one after. This allowed us to estimate the position of lost

data packets. Because the devices are continuously moving,

we divided the data up to 14 distance ranges to facilitate

estimation of packet loss by distance. For the sizes of our

data sets this number worked well for visualizing trends

accurately without excessive variance. We used the haversine

formula [20] to calculate distances between coordinates.

Another consideration was the use of Gaia coordinates to

measure GPS accuracy of the system. The Gaia tracker did

not log coordinate data frequently enough to precisely match

every mesh network coordinate with a “ground truth” position.

In order to work around this, we allowed a maximum of 10

seconds disparity between timestamps for most tests, and we

found this acceptable due to the low distance we would usually

move during this time. This allowed us to not lose too many

data points while still ensuring that our analysis was valid

within the restrictions of these considerations.

B. Environments

Figure 6 illustrates a clear difference between walking in a

city with high buildings and limited signal strength compared

to line of sight. Tall buildings influence the range and packet

loss of a device. DR5 and DR6 differ about 100 to 150 meters

in maximum range. DR5 has a significantly lower packet loss

at distances under 700 meters.

Figure 7 shows how the environment and distance affects the

packet loss of LoRa transmissions. The tests were conducted

in the city (left) and the forest (right). Tests 1 and 9, as well as

test 2 and 10, used the same routes, making it a better graph to

compare between DR5 and DR6 in challenging environments.

The spikes in this graph for forest test 1 (blue) and forest test 9

(green) have the same reduction at about a 125 meter distance,

as well as a gradual increase towards 225 meters. Graphs 2

and 10 are less similar, but beyond 100 meters their trends are

comparable. The graph indicates that DR5 could handle the

challenging vegetation much better before a high packet loss

occurred.

C. Routing

Our analysis showed interesting differences in potential max

range and packet loss using multiple routing devices. The left

graph in Figure 8 shows the packet loss differences between

DR5 and DR6. The graph (left) shows the same spikes and

dips where both tests were closing in on max range. The

increase in packet loss is a result of the distance between the

devices. The graph to the right shows all the moving Pycom

devices participating in each test. We can see that instability

of Pycom D at around 350 meters (Test 8, red line) amplified

the resulting packet loss for Pycom B at around 800 meters

(Test 8, green line). These spikes occurred at the same time,

but at different distances.

Our DR5 tests do not display the same level of amplification

as DR6 due to device instability. The increase in packet loss

beyond 1000 meters for Pycom B (Test 16, blue line) is a

result of the device being at a greater distance to Pycom D,

than Pycom D is to the border router, Pycom C. See Table IV

for accurate distances and Figure 11 for an illustration of the

Pycom device positions for Test 16.

D. GPS accuracy

Figure 9 presents the difference in GPS accuracy between

the Gaia GPS app and Pycom devices (note that three outliers

are omitted from the graph in order to ensure readability). We

see a clear trend in the increase of GPS accuracy over time for

these tests, although the data set for this graph is small. For

this test the Pycom devices are being transported in a vehicle

that can travel long distances between each reported PyMesh

location. This will influence the GPS accuracy.

Figure 10 shows the distribution and average GPS accuracy

for all tests performed in urban and rural environments. The

forest tests lasted shorter (up to about 20 minutes), but still

had better accuracy overall. This is a result of the open

environment making it possible to have more satellite fixes

simultaneously. The city tests have an average accuracy of

approximately 12 meters. Note that because this graph spans

a duration of 50 minutes it does not show the initial increase

in accuracy after booting up a device. The tests also had a 15

minute setup time to ensure higher accuracy.

VII. RESULTS

The average packet loss with line of sight for DR5 was

35.1% (336/957) with Pycom D and B, and 32.25% (158/490)

for Pycom B alone. This metric was calculated using all tests

performed on DR5 (not including accuracy tests). The average

packet loss for DR6 was 51.47% (263/511 packets). Due to

the hardware instability of Pycom D and the lower amount of

data points we consider this metric less reliable than that of

DR5.

For short distances below 50 meters we observed a mini-

mum packet loss of approximately 25% for DR5 and 30% for

DR6 in forest environments. The packet loss of DR6 increased

at a greater rate in shorter distances compared to DR5 in

challenging environments. Our tests achieved a maximum

range of 608.46 meters for DR6 and 880.88 meters for DR5.

This effectively shows a 272 meter increase (44.7%) for DR5

with a direct line of sight, as shown in Table IV.

The PyMesh routing functionality creates an effective dou-

bling in range (up to 1633.37 meters), as shown in Figure 11

and Table IV. Hierarchical routing in a PyMesh network makes

it possible to have up to 2.437 square kilometer coverage per

Pycom device in a flat environment, as shown in Figure 11.

The average accuracy was approximately 12 meters in urban

environments and 10 meters in open forest environments.
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Fig. 6. Packet loss in different city environments on DR6 (left) and DR5 (right)

Fig. 7. Packet loss by distance for challenging urban (left) and rural (right) environments

There is a large amount of variance (Figure 10), and achieving

a high accuracy usually takes around 15 minutes (Figure 9).

DR5 has provided better performance in terms of both

packet loss and range compared to DR6 in our tests. The

effect of different data rates on the stability of the PyMesh

network itself (not the GPS tracking we perform), is difficult

to conclude based on our testing due to hardware issues and

amount of data gathered. We think that using DR5 shows

promise, and would recommend further research with respect

to its stability with a larger number of devices in a PyMesh

network.

VIII. RELATED WORK

The NATO Research Task Group (RTG) IST-147 titled

”Military Application of Internet of Things” examined ap-

plying COTS civilian IoT approaches for military purposes.

Typically, the use case was centered around a humanitarian

assistance and disaster relief (HADR) coalition operation in a

Smart City, where IoT information from the city could be used

as additional sensor input to the military situational awareness

and hence Command and Control (C2) systems [21]. Follow-

ing that group’s conclusion in 2019, this work now continues

in NATO RTG IST-176 titled ”Federated Interoperability of

Military C2 and IoT Systems”. That group continues work

on Smart Cities, but also broadens the scope to include

such use cases as our recent work on crowdsourcing and

crowdsensing [22].

For instance, Mekki et al. [6] have performed a comparison

of Low Power Wide Area Networking technologies, including

LoRa. They point to LoRa’s main strengths being battery

lifetime, capacity, and cost. In their view, LoRa will serve as

the lower-cost device, with very long range (high coverage),

infrequent communication rate, and very long battery lifetime.

Further, LoRa will also serve the local network deployment

and the reliable communication when devices move at high

speeds. They identify the following application areas as suit-

able for using LoRa: Smart farming, manufacturing automa-

tion, smart buildings, and tracking for logistics.

LoRa is a building block of LoRaWAN [10], which adds

security and the means to organize a LoRa network with one

or more gateways bridging LoRa to other networks, e.g., the

Internet. The military application aspect of LoRaWAN has

been investigated by Michaelis et al. [24], who used the USA

version of LoRaWAN in the 915 MHz band to track vehicles

in an urban environment (downtown Montreal, Canada). Their

findings show a usable range of LoRaWAN of up to 5 Km

under the conditions tested. In the case where buildings

obstructed the line of sight, packet loss increased and the ef-
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Fig. 8. Packet loss by distance routing DR5 vs DR 6 summary (left) and all devices (right)

TABLE IV
DISTANCES BETWEEN GPS POINTS (CALCULATED USING [23]). FROM LEFT TO RIGHT: PYCOM B TO D (DR5), PYCOM D TO C (BORDER ROUTER)

(DR5), PYCOM B TO C (DR5), PYCOM D TO C (DR6, TEST 1).

Pycom B to D Pycom D to C Pycom B to C Pycom D to C

GPS 1 Latitude 63.43307 63.41855 63.41855 63.418652
GPS 1 Longitude 10.39128 10.39625 10.39625 10.396535
GPS 2 Latitude 63.42521 63.42521 63.43307 63.424006
GPS 2 Longitude 10.39349 10.39349 10.39128 10.394009

Distance apart 880.88 meters 753.18 meters 1633.37 meters 608.46 meters

Fig. 9. GPS accuracy over time

Fig. 10. Aggregated GPS accuracy over time

fective range was shorter, around 2.5 Km. However, to the best

of our knowledge, this and other such studies (e.g., [25] which

presents a similar experiment with comparable results) all rely

on LoRaWAN. We are not aware of any prototype similar to

ours as described in this paper, that performs tracking using

commercial IoT devices over a LoRa mesh network.

IX. CONCLUSION AND FUTURE WORK

Our prototype uses PyMesh and LoRa to enable you to eas-

ily track the location of assets anywhere in the world, though

under the limitation that one node, a border router, needs to be

within range of a preexisting cellular network. The remaining

nodes can operate without other coverage than the LoRa mesh

network. Once the necessary software is installed the solution

is easy to employ, even without technical knowledge. The

prototype includes a modern web application that is intuitive

and easy to use, and is supported on all major platforms

including mobile. From our tests, the software performed as

expected and could be a tool for asset tracking in search and

rescue operations. Our findings show that though the Pycom

units we used with PyMesh exhibited a shorter range than

previous experiments conducted with LoRaWAN (see, e.g.,

[24], [25]), it should be noted that in our experiment all nodes

were equally capable, whereas the LoRaWAN experiments had

a dedicated, more capable gateway deployed. Still, coupling

LoRa with PyMesh on the Pycom units effectively doubled

the operating range, as we found, due to the multi-hop and

routing capabilities of the mesh network.

For future work, it would be interesting to experiment with

more units in a larger network. The scalability of the network

was not specifically investigated by us so far, since we had

a limited amount of nodes available. Since we found that of
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Fig. 11. Theoretical coverage with routing, in difference to coverage with no routing (only orange circle). Taken at approximately max distance (test 16).

the data rates we tested, DR5 has provided better performance

in terms of both packet loss and range compared to DR6, we

would like to perform more extensive tests with DR5. Also,

it would be interesting to try adding additional features to

the prototype, like short, pre-defined messages, in addition to

the tracking we have implemented now. Such a messaging

capability would nicely complement the tracking features,

making the prototype much more versatile for asset tracking,

search and rescue, and possibly HADR operations.
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