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Abstract—In the present paper we evaluate European style
options with an exponential payoff function with an optimized
lattice rule based on a new optimal generating vector. A brief
introduction of the theory of lattice rule has been given. We
compare the performance of the new stochastic approach with
a new optimal generating vector for multiple integrals up to 50
dimensions.

I. INTRODUCTION

Computational finance is one of the most important topic

nowadays [4]. Nowadays Monte Carlo (MC) and quasi-Monte

Carlo (QMC) methods have become a popular computational

device for problems in finance [8]. The field of mathematical

finance is becoming more sophisticated and quantitative and

the scope of its applications is growing. The QMC methods

using special deterministic sequences achieve higher accuracy

and computational efficiency compared to the MC methods.

Applications of low discrepancy sequences to financial prob-

lems are studied in [3]. Options have been widely traded

since the creation of the organized exchange in 1973. The

famous Black-Scholes model provides explicit closed form

solutions for the values of the European style call and put

options. Besides the applications in option pricing, Monte

Carlo methods are also used in other problems in finance [2]

and other branches of science.
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Definition 1: A European call (put) option is a contract

which gives its holder a right, but not an obligation, to buy

(sell) predefined quantity of underlying asset S at a prescribed

time T (expiry date) at a prescribed exercise (strike) price E.

An American call (put) option is the same as the European

call (put), except that the American options can be exercised

at any time during their lifetime, not just at expiry.

The definitions of the risk neutrality and the risk-free

interest rate r can be found in [8].

II. DESCRIPTION OF THE OPTION PRICING PROBLEM

The value of an asset S as a function of time is modeled

by the stochastic differential equation

dS = µSdt+ σSdX, (1)

where σ is the volatility of the asset, characterizing the

fluctuations in the price, µ is the drift rate, which is a measure

of the average rate of growth of the asset price and dX
is the increment of a standard Wiener process. The well-

known Black–Scholes (BS) model for European call options

is described with the following partial differential equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2)

where r is the risk-free interest rate. The value V (S, t) of the

call option satisfies the final condition at the time of expiry

V (S, T ) = max(S − E, 0), where E is the strike price. The

boundary conditions of a Dirichlet type are as follows:

V (0, t) = 0, V (S, t) ∼ S − Ee−r(T−t), S → ∞.

The European put options satisfy the same BS equation (2)

with final and boundary conditions

V (S, T ) = max(E − S, 0),
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V (0, t) = Ee−r(T−t), V (S, t) ∼ 0, S → ∞.

The analytical solution of the BS equation for call options is

expressed in an explicit closed form as

V (S, t) = C(S, t) = SN(d1)− Ee−r(T−t)N(d2),

where

d1 =
ln(S/E) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 =
ln(S/E) + (r − σ2/2)(T − t)

σ
√
T − t

,

and N(z) is the cumulative distribution function of the stan-

dard normal distribution. Similarly, the European put options

price is computed with the formula

V (S, t) = P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1).

MC and QMC methods are suitable when the solution is

expressed as the expectation of a random variable, which is

the case of the risk-neutral evaluation formula for the European

options [8]:

V (S, t) = E
(

e−r(T−t)h(S(T )) | S(t) = S, µ = r
)

, (3)

where E is the expectation operator and h(S) is the payoff

function. The payoff function of the European option satisfies

h(S) = max(S − E, 0)

for the call option and

h(S) = max(E − S, 0)

for the put option.

Let’s deal with a European call option whose payoff de-

pends on k > 1 assets with prices Si, i = 1, ..., k. Each asset

is modeled by a random walk (1)

dSi = µiSidt+ σiSidXi,

where σi is the annualized standard deviation for the i-th asset

and dXi is an increment of a Brownian motion. The Brownian

motion is a special type Markov stochastic process, which has

the property dX ∼ N(0,
√
dt), where N(µ, σ) is the normal

distribution with mean µ and variance σ2.

Now suppose that at expiry time T , the payoff is given by

h(S′
1, . . . , S

′

k), where S′ denotes the value of the i-th asset

at expiry. Assuming risk neutrality, the value of the option

satisfies

V = e−r(T−t)(2π(T − t))−k/2(detΣ)−1/2(σ1 . . . σk)
−1

∫

∞

0

. . .

∫

∞

0

h(S′
1, . . . , S

′

k)

S′
1 . . . S

′

k

exp
(

−0.5α⊤Σ−1α
)

dS′

1 . . . dS
′

k,

where

αi =
(

σi(T − t)1/2
)−1

(

ln(S′

i/Si)− (r − σ2
i /2)(T − t)

)

,

r is the risk-free interest rate and Σ is the covariance matrix,

whose entry with index (i, j) is the covariance dXi and dXj

of the k assets. We will consider the special case when the

payoff function is the exponent function which is important

for some application in finance, see [8].

III. DESCRIPTION OF THE NEW OPTIMIZED LATTICE RULE

Consider the quadrature formula

IN (f) =
1

N

N−1
∑

i=0

f(xi),

where PN = {x0, x1, . . . , xN−1}, xi ∈ [0, 1)s are the integra-

tion nodes of the formula.

The integration nodes, of the lattice rules proposed by

Korobov [6], are defined by the following formula:

xk =

({

kz1
N

}

,

{

kz2
N

}

, . . . ,

{

kzs
N

})

, k = 1, 2, . . . , N,

(4)

where N is the number of the nodes, z is an s-dimensional

generating vector of the lattice set and {a} = a − [a] is

the fractional part of a. The lattice rules with nodes (4) and

generators z are called ”rank 1” rules. The class Eα
s (c) is

defined by Koborov.

Definition 2: ([6]) We say that f(x) belongs to the class

of functions Eα
s (c) for α > 1 and c > 0, if f is a periodic

function with period 1 for every of its components xi, i =
1, 2 . . . , s, defined over the unit cube [0, 1]s and its coefficients

satisfy the following inequalities:

|a(m)| < c

(m1 . . .ms)α
,

where

m =

{

|m|, |m| 6= 0,
0, m = 0,

and the constant c does not depend on m1, . . . ,ms.

Theorem 1: ([1]) There exists an optimal choice of the

generating vector z, for which the error of integration satisfies

∣

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

k=0

f

({

k

N
z

})

−
∫

[0,1)s

f(u)du

∣

∣

∣

∣

∣

∣

∣

≤ cd(s, α)
(logN)β(s,α)

Nα
,

(5)

for the function f ∈ Eα
s (c), where α > 1 and d(s, α), β(s, α)

do not depend on N . Moreover, if N is a prime number, then

β(s, α) = α(s− 1).

The generating vector z, for which inequality (5) is satisfied,

is an optimal generating vector in the sense of Korobov. The

search over all possible s-dimensional lattice points z mod n,

requires a significant computational effort in high dimensions.

Thus, it is desirable to have efficient search schemes for

finding the good lattice points.
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A. An optimized lattice rule based on an optimal generating

vectors

For a given number of lattice points N , the performance of

the routine is affected by the choice of the generator vector z.

In 1981 Hua and Wang [5] generalized the Fibonacci numbers

for any dimension. We refer to the lattice method with a

generating vector

z =
(

1, F
(s)
l+1, ..., F

(s)
l+s−1

)

, nl = F
(s)
l , (6)

where F
(s)
j is the generalized Fibonacci number of dimension

s, as Fibonacci lattice rule (FIBO). The advantages of the

FIBO method are the linear complexity of the algorithm and

fast computation of the generating vector. We propose an

optimized lattice rule with a specific choice of the optimal

200-generating vector, constructed by Dirk Nuyens [7] in 2016

and the computation involves fast component by component

operations. The method is improved by generating the points

from a lattice sequence in base 2 in gray coded radical inverse

ordering. The algorithm for reversing the digits of an integer

number is computationally efficient. This optimal generating

vector has been applied for the first time to a problem is

computational finance and it gives superior results to the

stochastic approaches used up to now. Since the performance

of a lattice rule depends on the choice of the generator vectors,

the 200-dimensional optimal vector is an optimization over the

Fibonacci generalized vector (6).

IV. NUMERICAL EXAMPLES AND RESULTS

The experimental results include the evaluation of the mul-

tidimensional integrals

Is =

∫

[0,1]s

exp

(

s
∏

i=1

xi

)

dx1 . . . dxs. (7)

By expanding the exponential function in Taylor series and

integrating the terms (x1 · · ·xs)
n we obtain

∫

[0,1]s
exp

(

s
∏

i=1

xi

)

=

=
∞
∑

n=0

1

(n+ 1)sn!
=s Fs(1, · · · , 1; 2, · · · , 2; 1),

where pFq(a1, · · · , ap; b1, · · · , bq;x) is the generalized hyper-

geometric function

pFq(a1, · · · , ap; b1, · · · , bq;x) =
∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

and (c)n = c(c+1) · · · (c+n−1) is the Pochhammer symbol.

∫

[0,1]3

exp(x1x2x3) ≈ 1.14649907. (8)

∫

[0,1]5

exp(

5
∑

i=1

0.5aix
2
i (2 + sin

5
∑

j=1,j 6=i

xj)) ≈ 2.923651, (9)

where ai = (1, 0.5, 0.2, 0.2, 0.2).

∫

[0,1]8

exp(

8
∑

i=1

0.1xi) = 1.496805. (10)

∫

[0,1]20

exp(

20
∏

i=1

xi) ≈ 1.00000949634. (11)

We also compare the performance of the methods on a 50
dimensional integral:

I50 =

∫

[0,1]50

exp

(

50
∏

i=1

xi

)

. (12)

We evaluate his reference value by expanding the exponential func-
tion in Taylor series and integrating the terms (x1 · · ·x50)

n we obtain

∫

[0,1]50
exp

(

50
∏

i=1

xi

)

=

=

∞
∑

n=0

1

(n+ 1)50n!
=50 F50(1, · · · , 1; 2, · · · , 2; 1),

where pFq(a1, · · · , ap; b1, · · · , bq;x) is the generalized hypergeo-
metric function

pFq(a1, · · · , ap; b1, · · · , bq;x) =

∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

and (c)n = c(c+ 1) · · · (c+ n− 1) is the Pochhammer symbol.
The experimental results are presented in the Tables below. Each

table includes the relative error of the QMC method, the CPU-time
and the number of integration nodes. We compare the performance
of the optimized lattice rule (OPT), the Fibonacci based lattice rule
(FIBO) and two other stochastic approaches Adapt for the well-
known adaptive stochastic approach and Sobol for the well know
Sobol quasi-random sequence.

Table I
THE RELATIVE ERROR FOR 3 DIMENSIONAL INTEGRAL

N OPT time Adapt time FIBO time Sobol time

19513 1.93e-5 0.01 3.21e-4 2.21 4.69e-4 0.02 4.98e-5 0.56
35890 3.18e-6 0.04 6.55e-5 6.41 5.46e-6 0.06 1.56e-5 1.45
66012 2.65e-6 0.07 5.12e-5 9.86 5.34e-6 0.11 8.11e-6 2.31
121415 9.16e-7 0.12 5.11e-5 15.4 5.34e-6 0.12 3.08e-6 3.80
223317 8.01e-7 0.20 9.34e-5 24.2 1.73e-6 0.22 2.05e-6 6.13

Table II
THE RELATIVE ERROR FOR 3 DIMENSIONAL INTEGRAL

time,s OPT Adapt FIBO sobol

0.1 9.16e-7 8.67e-4 1.32e-6 3.21e-4
1 6.37e-7 2.96e-5 3.22e-7 8.21e-5
2 4.22e-7 5.45e-4 2.06e-7 2.96e-5
5 1.84e-7 1.14e-4 1.47e-7 5.00e-6
10 6.09e-8 6.56e-5 3.89e-7 2.71e-6
20 1.57e-8 2.04e-5 1.53e-8 1.88e-6

The Adaptive Monte Carlo gives the worst results, because its
strength is when the integrand has some pecularities. Sobol is
suitable for non-smooth functions and it is outperformed by the
other methods in low dimensions (Tables I,II,III,IV). The accuracy
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Table III
THE RELATIVE ERROR FOR 5 DIMENSIONAL INTEGRAL

N OPT time Adapt time FIBO time Sobol time

13624 6.72e-5 0.02 1.89e-3 2.33 9.59e-4 0.03 1.76e-4 0.56
52656 1.53e-5 0.06 2.31e-3 6.18 6.96e-4 0.06 5.05e-5 1.45
103519 8.48e-6 0.09 2.01e-3 9.94 8.72e-5 0.13 2.70e-5 2.52
203513 6.25e-6 0.15 3.42e-4 16.2 8.04e-5 0.25 7.57e-6 6.07
400096 8.16e-7 0.40 9.12e-4 45.6 7.26e-5 0.50 2.52e-6 10.63

Table IV
TIMES FOR 5 DIMENSIONAL INTEGRAL

time,s OPT Adapt FIBO sobol

0.1 3.07e-6 1.34e-2 7.26e-5 8.22e-4
1 1.32e-6 2.44e-3 2.28e-5 2.91e-4
5 1.13e-6 4.93e-4 5.94e-6 1.71e-5
10 5.47e-7 1.88e-3 3.85e-7 1.79e-5
20 3.52e-7 2.71e-4 7.49e-7 4.96e-6

Table V
THE RELATIVE ERROR FOR 8 DIMENSIONAL INTEGRAL

N OPT time Adapt time FIBO time Sobol time

16128 1.79e-6 0.04 1.10e-5 12.6 8.08e-4 0.03 8.87e-5 0.13
32192 1.56e-6 0.05 3.32e-5 33.3 1.03e-4 0.07 5.42e-5 0.58
64256 8.01e-7 0.08 4.65e-5 54.2 5.03e-5 0.11 2.34e-5 2.49
128257 6.22e-7 0.13 8.25e-6 88.3 8.13e-6 0.14 4.45e-6 6.36
510994 3.21e-7 0.34 7.07e-6 233.6 5.95e-6 0.57 3.32e-6 19.45

Table VI
TIMES FOR THE 8 DIMENSIONAL INTEGRAL

time,s OPT Adapt FIBO sobol

1 2.18e-7 6.34e-4 5.34e-6 2.02e-5
2 1.32e-7 1.58e-4 2.57e-6 2.73e-5
5 9.03e-8 1.44e-4 1.52e-7 8.88e-6
10 5.00e-8 6.61e-5 3.45e-6 5.23e-6
20 2.55e-8 2.77e-5 1.82e-7 2.11e-6

Table VII
THE RELATIVE ERROR FOR 20 DIMENSIONAL INTEGRAL

N OPT time Adapt time FIBO time Sobol time

2048 2.84e-6 0.02 1.14e-2 8.6 8.22e-5 0.03 8.44e-4 0.13
16384 1.04e-6 0.12 4.96e-4 60.3 3.12e-5 0.13 6.82e-5 1.68
65536 9.21e-7 0.91 9.75e-4 474.2 1.36e-5 1.17 8.34e-6 8.69
131072 6.15e-7 2.13 1.25e-5 888.3 8.85e-6 2.34 3.77e-6 14.36
524288 5.33e-8 8.13 1.96e-6 2356 2.15e-6 8.34 1.91e-7 57

Table VIII
TIMES FOR THE 20 DIMENSIONAL INTEGRAL

time,s OPT Adapt FIBO sobol

1 9.14e-7 1.58e-3 1.48e-5 3.25e-5
2 1.08e-7 1.028e-3 9.17e-6 3.97e-5
5 5.87e-8 8.58e-4 5.19e-6 1.45e-5
10 3.56e-8 4.02e-4 1.73e-6 2.71e-6
20 1.23e-8 1.13e-4 1.38e-7 1.76e-6

of the FIBO method and it has comparable execution time (Table
2). The Fibonacci lattice rule is the fastest method but its accuracy
is lower than the accuracy of the lattice rules with increasing
the dimensionality of the integral (Tables V,VI) and Sobol QMC
becomes more accurate than FIBO (Tables VII,VIII). In highest
dimension the optimized stochastic approach OPT has the lowest

Table IX
THE RELATIVE ERROR FOR 50 DIMENSIONAL INTEGRAL

N OPT time FIBO time Sobol time

210 2.88e-7 0.05 6.23e-4 0.08 8.88e-5 3.5

212 1.88e-7 0.17 1.55e-4 0.35 8.88e-5 16

216 5.44e-8 2.14 9.72e-5 5.21 8.88e-5 73

220 4.28e-8 17.65 6.08e-5 32.76 8.88e-6 276

Table X
TIMES FOR THE 50 DIMENSIONAL INTEGRAL

time,s OPT FIBO sobol

1 9.14e-8 1.58e-3 1.48e-5
2 3.68e-8 1.028e-3 9.17e-6
5 2.67e-8 8.58e-4 5.19e-6
10 3.34e-9 4.02e-4 1.73e-6
20 1.53e-9 1.13e-4 1.38e-7

relative error and a very high accuracy regardless of the dimension.
(Table IX,X). The main advantage of the presented algorithms is
their linear computational complexity with respect to dimension,
while the deterministic methods suffer from the so-called curse of
dimensionality and they become impractical in higher dimensions.
The best performance of the optimized method is explained by the
choice of the optimal generating vector, whose computation uses fast
component-by-component operations. To summarize the optimized
lattice rule gives the best results in terms of lowest relative errors
and higher computational efficiency.

V. CONCLUSION

The applications of optimized lattice rules to the problem of option
pricing is studied in the paper. The experimental results from Tables
show that the optimized lattice rule with the special choice of the
optimal generating vectors has the best performance with respect to
relative error and computational time. The progress on the problem
of option pricing and the computational finance area is closely
related to the development of reliable algorithms for multidimensional
numerical integration.
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