
Capturing the Evolution of Service-oriented

Systems with Architectural Decisions

Szymon Kijas

Warsaw University of Technology

Warsaw 00-661, Poland

Email: szymon.kijas@pw.edu.pl

Andrzej Zalewski

Warsaw University of Technology

Warsaw 00-661, Poland

Email: a.zalewski@elka.pw.edu.pl

Abstract—Software evolution is becoming ever more impor-
tant. SOA is nowadays a well-established and popular software
technology. Because of its properties, such as loose-coupling
between services and their reconfigurable composition, SOA is
an architecture that is particularly suitable for rapidly evolving
systems. However, the research on the evolution methodologies
for SOA systems is rather scarce. We present a model called
MAD4SOA, developed in order to support and capture the
evolution of service-oriented systems. Architectural decisions are
the first class entities that represent the evolution of a service-
oriented system. They are accompanied by a set of relations
between model entities and formal integrity constraints. The
suitability of the MAD4SOA model has been validated using
the real-world example of a system operated in a clearing house
company.

I. INTRODUCTION

S
ERVICE-ORIENTED architectures assume that software

systems should be built out of services that are loosely-

coupled (easily changeable!) and composable into reconfig-

urable business processes. This is a great support to systems

evolvability. SOA is certainly one of the software technology

answers to the rising speed of software evolution. It is now a

well-established software technology. Although there are com-

prehensive methodologies specially crafted for development of

SOA systems, RADM [6], Erl’s approach [13], SOMA [14],

SOMF [1], M. Papazoglou’s methodology [15], the research

record on the methods supporting the evolution of SOA-based

systems is rather scarce. The research presented in this paper

is aimed at filling this gap.

We developed a complete methodology, called MAD4SOA,

for evolving SOA systems. It comprises: the evolution process,

the model for capturing architectural decisions during the

evolution, which includes the model of an evolving service-

oriented system, set of relations between model entities and

integrity constraints. The course of the evolution is captured

with architectural decisions, which are first-class entities in the

proposed approach. It has been validated on a number of evolu-

tion steps of a real-world system operating in a clearing house

company. Because of the space limitations, we present here the

core concepts of the MAD4SOA methodology, namely, the

architecture decision model, set of relations between model

entities and its integrity rules. The model has been tailored to

the specifics of software evolution – it contains Request for

change, which is bound to all the important data describing

a single evolution step (requirements, architectural decisions,

versions of the SOA system and others). Using a significant

fragment of a real-world example, we show that it goes well

with the real conditions of service-oriented systems evolution.

The rest of the paper is organised as follows: Section II con-

tains an analysis of related research; Section III presents the

entire modelling approach, relations and integrity constraints,

as well as the diagrammatical notation; and Section IV sets

out a case study that presents the use of the model. Finally, in

Section V, we discuss the proposed modelling approach against

the related research. The conclusions and research outlook

close the paper.

II. RELATED WORK

Software architecture is currently perceived as a result of

a set of architectural decisions [3], [4], [5]. Architectural

decisions can be documented in the form of text records [2],

[3], [8], [11] or as diagrammatic models [12], [10]. The

model of a single architectural decision usually includes a

description of the problem, considered architectural solutions

to this problem and their characteristics, an indication of the

chosen solution, and the rationale for that choice.

Models of architectural decisions are usually accompanied

by a set of relations provisioned for capturing the asscociations

between architectural decisions – a number of such sets

have been proposed so far [10], [6], [7], [8]. In the existing

models, the decisions can also be linked to the engineering

artifacts [17] enabling a variety of tracability options.

While the existing research focuses mainly on the modeling

of architectural decisions, much less effort has been devoted

to the evolution of architectures represented as a set of

architectural decisions. The need for capturing the changes

to architecture decisions has been indicated in [20]. A special

view for architecting and evolving design decisions has been

proposed in [16].

Apart from these general-purpose architecture decision

models, RADM (Reusable Architectural Decision Model) has

been proposed in [6]. It has been specially tailored to assist ar-

chitecting of SOA systems. It combines architecture decisions

with a set of relations, integrity constraints and some inference

methods, as well as a means of classification of architectural

decisions (levels and topic groups). It is also possible to link

the architectural decisions with architectural elements [17].

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 67–76

DOI: 10.15439/2020F177

ISSN 2300-5963 ACSIS, Vol. 23

©2020, PTI 67



However, RADM does not explicitly address the evolution of a

SOA system. It does not allow for the capture of consecuitive

steps of service-oriented architecture evolution.

An attempt to address the evolution of the decisions made

during the evolution of service-oriented system has been

undertaken in [18], however, the proposed solutions focus only

on the decisions, which regard the composition of business

processes out of services. SOAD framework [19], in turn,

addresses the problem of reusing architectural decisions. There

is also an extensive study on the choice between REST and

SOAP webservices [21].

Outside the scope of research on architectural decisions, the

topic of evolution of SOA systems has been rather scarcely

addressed in the existing literature. Existing methodologies

of SOA system’s devlopment, such as Erl’s approach [13],

SOMA [14], SOMF [1], M. Papazoglou’s methodology [15],

address mainly the problem of early evolution of a SOA

system (for example: bug fixing at an early stage of operation

of the system) as well as aspects of small releases in the course

of agile SOA system development [22].

This short survey leads to the conclusion that development

of models and methodology supporting the evolution of SOA

systems is an open research issue. Its resolution seems to be

both important for software engineering practice as currently

evolution is the main part of system lifecycle. It can also

provide important insights into the intrinsic problems con-

nected with applying the concepts of architecture decision-

making in practice. In this paper we focus on the introduction

and validation of a model suitable for capturing evolution

of SOA systems, while combining a complete development

methodology is supposed to be supplemented in later research.

III. CAPTURING THE EVOLUTION OF SERVICE-ORIENTED

SYSTEMS ARCHITECTURE

In order to capture the evolution of service-oriented systems

architecture, we developed a MAD4SOA model (Maps of

Architectural Decisions for Service-Oriented Architecture).

MAD4SOA comprises:

• the model of service-oriented system – it represents the

main entities of a SOA system – section III.A

• the model of architectural decisions and diagrammat-

ical notation that will be used in order to document the

evolution of a service-oriented system – section III.B;

• the set of relations between the model’s components

(e.g. alternatives, decision problems) – section III.C,

• the fourteen integrity constraints (section III.D).

The MAD4SOA model combines a model of a SOA system

with a model of architectural decisions. It extends our earlier

model and diagrammatical notation named “Maps of Archi-

tectural Decisions” (MAD) presented in [10]. Its conceptual

roots can also be traced back to RADM model by Zimmerman

et al. [6] and Harrison et al. in a paper on architectural

decisions [11].

A. Model of a Service-Oriented System

A SOA system model (Fig. 1) comprises three tiers: busi-

ness processes, services and system components. It should

be noted that they follow a scheme similar to the TOGAF

[9] standard, though the user interface is not included in our

model, as issues related to that are beyond the scope of our

research. The model represents the following semantics:

• Business processes are composed of the Activities, which

in turn are achieved by the Services. The latter are

indicated by the realizes association between the Activity

and Service classes in the UML model.

• The Services, in turn, are divided into three categories:

1) Complex services 2) Simple services and 3) Foreign

services. A Complex service is a composition of other

services, a Simple service is not a composition of other

services and a Foreign service is a service delivered by

an external provider.

• Components implement the functionalities of a Simple

service and are indicated by the invokes association

between a Simple Service and the Service Component

classes.

• A Service Component may use an Operational component

in order to implement its functionality. This is represented

by the use association connecting a Service Component

with the Operational Component class. The use of a

database by a service component is a common example

of this relation.

Although, the presented model captures the most important

entities of the service-oriented system, it can still be expanded,

depending on the needs of a given organisa-tion. Let us

emphasise that the model does not assume any specific form

of docu-mentation of the instances of its entities. This may be

just an identifier of a given component in the ITSM register

or a set of diagrams, text documents, formal models or even

fragments of source code or reference to its repository. The

service-oriented system model is used to represent releases of

the system that result from the consecu-tive evolution steps –

compare section III.

B. Model of Architectural Decisions

The complete model designed to capture the evolution

of service-oriented systems with architectural decisions is

presented in Fig. 2. The meaning of the entities of the

MAD4SOA model of architectural decisions can be explained

as follows (italics indi-cate names of classes or associations

in the model):

1) Request for change (RFC) class represents the typical

document prepared in order to launch the modifica-

tion process. It contains the specification of changes

that should be implemented in a given evolution step.

The RFC contains the list of architecturally significant

requirements that must be met by the resolution of a

number of decision problems. Each solution of such a

problem defines the change being either the addition,

removal or modification of at least one of the elements

68 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, 2020



Fig. 1. The model of a service-oriented system.

of an instance of a SOA system model. Resolving all the

problems makes a new system release. The current phase

of work on the realisation of the request for change is

represented by one of seven states that the Request for

change could be in one of the following states: defined -

the request for change has been defined and it is waiting

for the start of realisation, evaluated - the change has

been assessed and it is waiting for approval, approved

- the change has been approved and it is waiting for

realisation, designed - the change design has been re-

alised, implemented - the change has been implemented

and deployed, realised (after review) - a review of the

change has been carried out and the evolution step has

been completed, cancelled - the change request has been

cancelled (it was decided during the acceptance of the

change that it will not be implemented).

2) The current release of the system is indicated by the

association old binding the Request for change and

Business process class.

3) Requirements relevant to a given Decision problem are

distinguished by a motivates relation – compare section

III.C. The requirement can be in one of the three

states: defined – the requirement has been defined and

it is awaiting for realisation, in progress – works are

ongoing, completed - the requirement has been fulfilled

(all decision problems related to it have been resolved).

4) Decision problem class represents architectural problems

that have to be solved. It can be in one of the four states,

which represent the stages of the problem’s life cycle:

defined – indicates a newly defined problem, being

solved – the problem has been created, but it has not

been resolved yet, resolved – problem has been resolved,

requires reassessment – indicates that solution, or the

occurrence of other problem, requires reconsidering an

already resolved problem.

5) There are three types of relations that can link different

decision problems: leadsTo, constrains and decompos-

esInto – compare section III.C.

6) The key element of the model of the service-oriented

system is the Business Process, which identifies the

SZYMON KIJAS, ANDRZEJ ZALEWSKI: CAPTURING THE EVOLUTION OF SERVICE-ORIENTED SYSTEMS WITH ARCHITECTURAL DECISIONS 69



system and allows navigation to all other elements of

the model. The change of any element of the system,

e.g. the change of one service, creates a new system

that consists of new instances of all elements: Business

process, Activities, Services, Service components and

Operational components. Each Decision problem relates

to a specific, currently considered, instance of the system

and is indicated in the model by the input relation. The

Business process identified by the input relation does

not have to be identical to the initial process (associated

by the old relation with the request for change). If the

decision is made as the n in turn then the previous n-1

decisions may already have modified this process.

7) There can be many alternative Solutions to a given Deci-

sion problem. Each of these solutions may create a new

instance of a given Business process and its underlying

components (services, service components, operational

components). This is reflected by the output relation

connecting the Solution and Business process classes.

The analysis of a given solution can be in one of the

four states: defined – assigned immediately after creating

an element; feasible – indicates a solution meeting all

the requirements, infeasible – indicates a solution that

does not meet at least one of the requirements, chosen

– indicates the finally selected solution.

8) Each of the alternative Solutions is supposed to be as-

sessed in terms of its Pros and Cons. They are described

by: a textual description; significance: low, medium or

high; related requirements. The latter is optional and

indicates: in case of cons – the requirements that cannot

be met because of a given cons; in the case of pros –

the requirements whose fulfilment is guaranteed by the

given pros.

9) Decision maker class represents the architects that re-

solve a Decision problem.

In practice, the MAD4SOA models should be created with

the use of a diagrammatical notation summarised in Fig. 3. It

is an extension of our previous MAD notation, made in order

to capture the additional elements necessary to document the

evolution of SOA systems.

Similarly to MAD, MAD4SOA notation comprises two

types of diagrams: an Architecture Decision Relation Dia-

gram (ADRD) and an Architecture Decision Problem Map

(ADPM). ADRD represents the identified decision problems,

while ADPM models an individual decision problem. De-

spite obvious similarities, there are many extensions made

to MAD diagrams, aimed at including all the elements of

the MAD4SOA model. The ADRD diagram now includes

symbols that represent requests for change, requirements and

business processes. As well as solutions of decision problems

that produce a new release of the system. The ADPM diagram

can now contain more than one decision problem. This is

necessary in cases of a problem decomposition, as well as

if a relation between the solutions to various problems has to

be shown.

C. Relations

The MAD4SOA model comprises a set of relations that

may be used in order to capture the real-world relations

that may exist between: decision problems, decision problems

and requirements, decision problems and solutions of other

problems, as well as between the solutions of different decision

problems. For the purpose of the definitions given below, let:

R – denote a set of requirements, P – a set of architectural

problems, and A – a set of considered solutions (alternatives).

The motivates relation:

motivates ⊆ R × P

It connects the requirements with the decision problems that

have to be solved in order to meet the requirements.

For example: take a requirement to implement a new

functionality of verifying a personal ID number. To fulfil this

requirement, two decision problems have to be solved: “Which

service should be used in order to verify the personal ID

number?" and “In which step of the business process does

this service have to be invoked?”.

The leadsTo relation:

leadsTo ⊆ P × P

In many cases, one decision problem implies the need to

resolve another problem. Such problems should be connected

with leadsTo relation.

For example: The problem of “choosing webservice im-

plementation technology” makes it necessary to resolve a

problem concerning the choice of the runtime environment for

our webservices (it could be one of many application servers

available on the market, or the application server already used

by the corporate systems). Therefore the problems “Which

type of webservices?” and “Which runtime environment?” are

connected by the leadsTo relation.

Properties: The leadsTo relation is irreflexive, anti-

symmetrical and transitive. Therefore, this is a relation of acute

partial order in the set of problems P.

The decomposesInto relation:

decomposesInto ⊆ P × P

It captures the decomposition of a given decision problem

into several sub-problems. In practice, there are often cases, in

which in order to solve a complicated decision problem, it is

necessary to decompose it into several smaller sub-problems.

The decomposed problem can be assumed as resolved only if

all its sub-problems have been resolved.

For example: the problem of “choosing the software im-

plementation technology” may comprise two sub-problems,

namely: “choice of a programming language?” and “Choice

of a mechanism of communication with the database?”.

Properties: The decomposesInto relation is reflexive, anti-

symmetrical and transitive. Therefore, this is a relation of acute

partial order in the set of problems P. There must be no cycles

in the graph of this relation.

70 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, 2020



Fig. 2. Model of architectural decisions in the evolution of a service-oriented system.

SZYMON KIJAS, ANDRZEJ ZALEWSKI: CAPTURING THE EVOLUTION OF SERVICE-ORIENTED SYSTEMS WITH ARCHITECTURAL DECISIONS 71



The constrains relation:

constrains ⊆ P × P

There are often situations in which the solution of a given

decision problem limits the scope of possible solutions to

another problem. This is captured by the constrains relation.

For example: take two decision problems: “the problem

of database selection” and the problem of “choosing the

mechanism of data replication from the selected database to

the MS SQL Server 2014 database”. The choice of the Oracle

12c database will exclude the use of the replication mechanism

provided with the MS SQL Server 2014 database, because MS

SQL Server 2014 does not support replication from Oracle

version 12c. Therefore, there is a constrains relation between

these problems.

Properties: The constrains relation is irreflexive and transi-

tive. There must be no cycles in the graph of this relation.

The compatible, incompatible and forces relations:

compatible ⊆ A×A

incompatible ⊆ A×A

forces ⊆ A×A

In many cases, some solutions of different problems can

exist together (they are compatible) or they cannot (they

are incompatible) in the system architecture. Sometimes the

relation between solutions is even stronger, so that choosing a

certain solution simply forces us to choose a specific solution

to another problem.

For example: take the problems of choosing the system

implementation technology and selecting a specific application

server that will be the execution environment for the designed

software.

In the case of choosing J2EE as the implementation technol-

ogy, we can choose both Jboss and Weblogic as the application

server, because both of them support J2EE technology. There

is a compatible relation between the J2EE and the Jboss

solutions and Weblogic solution.

In the case of choosing J2EE technology, we cannot choose

the IIS application server, because IIS does not support J2EE

technology. There is an incompatible relation between the

J2EE and IIS solutions.

In the case of choosing .NET as the implementation tech-

nology, we then have to choose IIS as the application server,

because only this application server supports .NET technol-

ogy. Therefore there is the forces relation between the .NET

solution and the IIS solution.

Properties: The compatible relation is reflexive and sym-

metric. The incompatible relation is irreflexive and symmetric.

The forces relation is irreflexive and antisymmetric.

D. Integrity constrains of the model

The relations between the elements of the MAD4SOA

model of architectural decisions are not independent of each

other. Some relations between decisions can exist at the same

time, while others cannot. The integrity constrains make it

possible to discover potential flaws in an instance of the

MAD4SOA model crafted by an architect. Fourteen integrity

constrains for the MAD4SOA model are presented below.

Integrity constraint 1: The decomposesInto and the lead-

sTo relations are mutually exclusive. The decomposed decision

problem can only be solved when all subsequent problems

raised as a result of its decomposition have been resolved.

This would be superfluous to treating the problems resulting

from the decomposition of a given problem as being enforced

by the decomposed problem.

Integrity constraint 2: The decomposesInto and the con-

strains relations are mutually exclusive. The decomposed

decision problem can only be solved if all its sub-problems

are resolved. The solution of the decomposed problem is the

superposition of the solutions to the sub-problems. Therefore,

the solution to the decomposed problem cannot constraint the

scope of the solutions to sub-problems.

Integrity constraint 3: If there is a constrains relation

between two decision problems, then there is at least one pair

of their solutions that are incompatible together (they are in

an incompatible relation). The above property results from the

meaning of the constrains relation. If problem A limits the set

of solutions available to problem B, it means that there must

be solutions to problem B that are incompatible with one or

more solutions to problem A.

Integrity constraint 4: The compatible and the incompat-

ible relations are mutually exclusive. It is impossible for two

solutions to be both compatible and incompatible at the same

time.

Integrity constraint 5:

forces ⊆ compatible

If a certain solution to one problem forces the adoption of

a specific solution of another problem in the same system,

then the consistency of the system design requires that both

solutions can coexist with each other.

Integrity constraint 6: The forces and the incompatible

relations are separable. Because the forces relation is a subset

of the compatible relation, it means that the forces and the

incompatible relations are also mutually exclusive.

Integrity constraint 7: The forces relation cannot occur

between solutions of the same decision problem. The next

rules define the meaning of the states of the individual model

elements.

Integrity constraint 8: The requirement may change its

state to completed only if all related decision problems are in

the resolved state. The requirement is considered as met only

if it is possible to resolve all the problems connected with this

requirement. That means that all decision problems arising as

a result of this requirement will be resolved.

Integrity constraint 9: The RFC can go into the completed

state only if all the requirements associated with it are in

the completed state. The request for change can only be

considered complete once all its architecturally significant

requirements have been met.

72 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, 2020



Fig. 3. The notation representing components of the MAD4SOA model.

Integrity constraint 10: At most, one solution of a decision

problem can assume the chosen state. The system design

must be unambiguous. That means that for each considered

decision problem there must be only one clearly indicated

chosen solution.

Integrity constraint 11: The decision problem may go into

the resolved state only if one of its solutions assumes the

chosen state.

Integrity constraint 12: If at least one cons of a solution

goes into the requirement not met state, then this solution

cannot be selected as the resolution of the decision problem,

and should therefore go into the infeasible state.

Integrity constraint 13: There must be no incompatible

relation between any two solutions in the chosen state (these

solutions concern different problems). All resolutions of deci-

sion problems must coexist with each other in the same system

to ensure system design consistency.

Integrity constraint 14: If there is a forces relation between

the two solutions, then if one of them is chosen, the other must

also be selected. Some solutions of decision problems cannot

exist independently in the system.

IV. THE CASE STUDY – VALIDATION OF MAD4SOA

MODEL

This section presents a case study illustrating the use of

the MAD4SOA model for capturing the evolution of a real

service-oriented system. This case study is based on the

clearing system operating in the Polish banking system. The

system has been designed to settle instant transfers carried out

between two banks. The clearing system verifies each payment

order, confirms the consent of both banks to carry out the

transaction and registers the change in the account balances

SZYMON KIJAS, ANDRZEJ ZALEWSKI: CAPTURING THE EVOLUTION OF SERVICE-ORIENTED SYSTEMS WITH ARCHITECTURAL DECISIONS 73



of both banks and in the Central Bank system. Performing

these activities requires the interaction of the clearing system

with the systems of banks participating in a transaction (the

ordering bank and the bank receiving the transfer) and with

the system of the Central Bank. The evolution process of the

system has produced six releases of the system in several

evolution steps:

• Creation of functionality of instant payments between

commercial banks as the first release

• Adding instant payments to the Central Bank (tax pay-

ments) as the second release

• Adding a simple functionality of complaints as the third

release

• Adding a Back Office module as the fourth release

• Adding postponed payments as the fifth release

• Removing one type of tax payment as the sixth release.

The lifecycle of the system has not been finished yet.

As a part of the example, the evolution of the Back

Office module of the clearing system has been presented.

This module enables customer complaint handling, as well

as the parameterisation and monitoring of the system. These

activities were carried out manually by making changes to

the tables in the database using previously prepared scripts in

earlier stages of the life cycle of the system. Next, the Back

Office has been implemented to enable the automation of these

activities.

The complaint handling process is the most important

functionality of the Back Office application. Complaints are

generated if the bank ordering the transfer does not have

sufficient funds on the internal account, or the bank receiving

the transfer does not confirm the transfer. If necessary, the

administrator can make a decision and manually modify the

transaction state.

Several decision problems had to be resolved by the ar-

chitect during the design of the Back Office functionality

during both evolution steps. The ADRD diagram that presents

the decision problems solved by the architect is presented in

Figure 4. The example of the ADPM diagram presented in

Figure 5 describes how the problems identified during this

evolution step (step 4) have been resolved. The most important

is the evolution of the decision problem: “How to implement

the complaint handling functionality?”. This problem had been

resolved in the current version as “Using predefined scripts”

during the previous evolution step (step 3). It had to be revised

due to implementing a new RFC during the next evolution step

(step 4). Both solutions to this problem produced new releases

of the system in subse-quent evolution steps. It is represented

by output relation linking solutions and in-stances of business

processes.

The business process representing the third release of the

system and a Request for Change describing changes imple-

mented in the fourth evolution step are connected by the old

relation. It means that this RFC applies to the modification

of the third release of the system. The business process

representing the third release of the system is also linked with

the "How to implement the complaint handling functionality?"

decision problem resolved in the fourth evolution step by

the input relation. This means that the third release of the

system has been modified and transformed to the fourth

release. Additionally, this ADRD diagram represents several

decision problems that have been resolved during the fourth

evolution step. The detailed process of solving those problems

is presented in Figure 5.

V. DISCUSSION

The MAD4SOA model, which is the core contribution of

this paper, has been tailored to the needs of documenting

and supporting the engineering in the course of evolution

of service-oriented systems. It provides for linking decisions

made during different evolution steps, which makes it possible

to trace the sequence of actions taken by architects during

the development of subsequent releases of the system. An

important feature of the proposed model is the inclusion of

request for change document and its requirements as a model’s

entity. This brings the model closer to the real-world practice.

All these unique features of MAD4SOA model constitute the

core of our contribution.

Naturally, there are many similarities between proposed

models and alternative architecture decision models presented

in Section II, which is inevitable. They concern mainly:

• the model of architectural decisions, which can be traced

back to our earlier research on MAD model [10] as well

as to classical works on architecture decisions [5];

• some relations (e.g. decomposesInto) and integrity con-

straints (e.g. integrity constraint No. 6) can be easily

traced back to the RADM model [6];

• tracability machanism linking diagramatical architectural

models (e.g. in BPMN) with architectural decisions can

also be found in [17].

An added value that MAD4SOA delivers is also an intuitive

diagrammatic notation for representing architectural decisions,

which is similar to popular mind maps. In contrast to RADM,

we do not introduce any scheme or mechanism for classifying

architectural decisions similar to topic groups or levels. Our

internal experiments, have shown that this in too many cases

leads rather to confusion than to clarity. In our model all

the changes are linked to business processes, which they may

finally affect.

The main limitation of the proposed approach results from

the complexity of the architecture-decision model and its asso-

ciations with the models of SOA system (e.g. business process

models in BPMN), which may hinder its use. Naturally, more

extensive evaluation and tool support is necessary.

VI. CONCLUSION

The complete model supporting the capturing of architec-

tural decisions during the evolution of a service-oriented sys-

tem has been proposed. It combines an architectural decision

model and a model of a service-oriented system. Thanks to

this, MAD4SOA supports capturing architectural knowledge

created during the evolution of a service-oriented system. The

use of the model has been validated on the evolu-tion of a

74 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, 2020



Fig. 4. The ADRD diagram presenting problems resolved during the design of the new release.

real service-oriented system operating in the Polish banking

system.

Further work shall include defining formal semantics of

MAD4SOA model and developing supporting tools.

REFERENCES

[1] M. Bell, “SOA Modeling Patterns for Service-oriented Discovery and
Analysis,” Wiley and Sons, 2010.

[2] M. Ali Babar, et al.,“Architecture knowledge management. Theory and
Practice,” Springer – Verlag Berlin Heidelberg, 2009.

[3] J. Tyree, A. Akerman, “Architecture Decisions: Demystifying Architec-
ture,” IEEE Software, vol. 22, iss. 2, 2005, pp. 19–27.

[4] ISO/IEC, “ISO/IEC/IEEE 42010:2011: Systems and software engineer-
ing – Architecture description,” ISO/IEC, 2011.

[5] A. Jansen, J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions,” 5thWorking IEEE/IFIP Conference on Software

Architecture, 2005, pp. 19–27.
[6] O. Zimmermann, et al., “Managing architectural decision models with

dependency relations, integrity constraints, and production rules,” Jour-

nal of Systems and Software, vol. 82, no. 8, 2009, pp. 1249–1267.
[7] P. Kruchten, P. Lago, H. van Vliet, “Building up and reasoning about

architectural knowledge,” QoSA, 2006.
[8] P. Kruchten, “An Ontology of Architectural Design Decisions,” Proc.

of 2nd Groningen Workshop on Software Variability Management,

2004, pp. 54–61.
[9] The Open Group, “The Open Group Architecture Framework (TO-

GAF®) Version 9.1,” The Open Group, http://pubs.opengroup.org/
architecture/togaf9-doc/arch/ 2018.

[10] A. Zalewski, S. Kijas, D. Sokołowska, “Capturing Architecture Evolu-
tion with Maps of Architectural Decisions 2.0,” ECSA 2011 Lecture

Notes in Computer Science, vol. 6903, 2011, pp. 83–96.
[11] N. B. Harrison, P. Avgeriou, U. Zdun, “Using Patterns to Capture

Architectural Decisions,” IEEE Software, vol. 24, no. 4, 2007, pp. 38–
45.

[12] M. Shahina, P. Lianga, M. Ali Babar, “A systematic review of software
architecture visualization techniques,” The Journal of Systems and
Software, vol. 94, 2014, pp. 161–185.

[13] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and De-
sign, Upper Saddle River,” Prentice Hall PTR, 2015.

[14] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, K. Holley,
“SOMA: A method for developing service – oriented solutions,” IBM

Systems Journal, vol. 47, no. 3, 2008, pp. 377–396.
[15] M. P. Papazoglou, W. J. van den Heuvel, “Service-oriented design and

development methodology, International Journal of Web Engineering
and Technology,” IJWET, 2006.

[16] R. Capilla, F. Nava, J. C. Dueñas, “Modeling and Documenting the
Evolution of Architectural Design Decisions,” Proc. 2nd Workshop
Sharing and Reusing Architectural Knowledge Architecture, 2007.

[17] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, J. M. Küster, “An
Enhanced Architectural Knowledge Metamodel Linking Architectural
Design Decisions to other Artifacts in the Software Engineering Life-
cycle,” ECSA 2011 Lecture Notes in Computer Science, vol. 6903,
2011, pp. 303–318.

[18] O. Zimmermann, J. Grundler, S. Tai, F. Leymann, “Architectural Deci-
sions and Patterns for Transactional Workflows in SOA,” ICSOC 2007

Lecture Notes in Computer Science, vol. 4749, 2007, pp. 81–93.
[19] O. Zimmermann, “Architectural Decisions as Reusable Design Assets,”

IEEE Software, vol. 28, 2011, pp. 64–69.
[20] M. Nowak, C. Pautasso, O. Zimmermann, “Architectural decision mod-

eling with reuse: challenges and opportunities,” Proceedings of the

2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge, 2010, pp. 13–20.

[21] C. Pautasso, O. Zimmermann, F. Leymann, “Restful web services vs.
"big"’ web services: making the right architectural decision,” Proceed-

ings of the 17th international conference on World Wide Web,
2008, pp. 805–814.

[22] X. Wang, N. Ali, I. Ramos, R. Vidgen, “Agile and Lean Service-Oriented
Development: Foundations, Theory, and Practice,” IGI Global, 2012.

SZYMON KIJAS, ANDRZEJ ZALEWSKI: CAPTURING THE EVOLUTION OF SERVICE-ORIENTED SYSTEMS WITH ARCHITECTURAL DECISIONS 75



Fig. 5. The ADPM diagram presenting how to be resolve the problems arising during the design of the new system release.

76 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, 2020


