
An Improved Genetic Algorithm for Set Cover

using Rosenthal Potential

Dena Tayebi

University College Dublin

Ireland

Email: dena.tayebi@ucdconnect.ie

ORCID: 0000-0001-6447-7930

Saurabh Ray

New York University

Abu Dhabi

Email:saurabh.ray@nyu.edu

ORCID: 0009-0005-6708-125X

Deepak Ajwani

University College Dublin

Ireland

Email:deepak.ajwani@ucd.ie

ORCID: 0000-0001-7269-4150

Abstract—A major issue with heuristics for set-cover
problem is that they tend to get stuck in a local optimum
typically because a large local move is necessary to find
a better solution. A recent theoretical result shows that
replacing the objective function by a proxy (which happens
to be Rosenthal potential function) allows escaping such
local optima even with small local moves albeit at the
cost of an approximation factor. The Rosenthal potential
function thus has the effect of smoothing the optimization
landscape appropriately so that local search works. In this
paper, we use this theoretical insight to design a simple but
robust genetic algorithm for weighted set cover. We modify
the fitness function as well as the crossover operator of
the genetic algorithm to leverage the Rosenthal potential
function. We show empirically this greatly improves the
quality of the solutions obtained especially in examples
where large local moves are required.

Our results are better than existing state of the art
genetic algorithms and also comparable in performance
with the recent local search algorithm NuSC (carefully
engineered for set cover) on benchmark instances. Our
algorithm, however, performs better than NuSC on simple
synthetic instances where starting from an initial solution,
large local moves are necessary to find a solution that is
close to optimal. For such instances, our algorithm is able
to find near optimal solutions whereas NuSC either takes
a very long time or returns a much worse solution.

I. INTRODUCTION

T
HE SET cover problem (SCP) is one of the most

fundamental and well studied problem in theoretical

computer science. An instance of the set cover problem

consists of a ground set X and a set S = {S1, · · · , Sm}
of subsets of X . The goal is to pick the smallest subset

Y ⊆ S so that the union of the sets in Y is equal to

X . In the weighted version of the problem, each set

has an associated non-negative weight and the goal is to

minimize the total weight of the sets in Y .

A simple greedy algorithm [1] is known to give an

O(log n)-approximation (even for the weighted variant)

and under standard complexity theoretic assumptions

this is asymptotically the best achievable in polynomial

time [2]. However, instances of the set cover problems

that arise from practical applications are often not worst

case instances and one can hope to do better. For

instance, significantly better algorithms are known for

geometric instances of the set cover problem [3].

A major issue with heuristics for the set-cover problem

is that they tend to get stuck in a local optimum. Even

for the unweighted setting, it is not difficult to construct

examples in which there are local optima for which

an arbitrarily large change is necessary to improve the

solution. A recent paper [4] finds a way to make local

search as good as the greedy algorithm for the general

set cover problem (which, as we mentioned before, is

the best possible in polynomial time). The main idea is

to replace the objective function by a proxy called the

Rosenthal potential [5]. With just this change (modulo

a few technical details), a local search algorithm which

only adds or removes one set from the current solution

in any step yields an O(log n) approximation! While

this result in itself is only of theoretical interest, we

believe that the idea of changing the objective function is

powerful and is likely to have a practical impact since a

large number of heuristics for optimization problems are

based on local search. In this paper, we present a simple

approach to incorporate this idea into the Genetic Al-

gorithm metaheuristic, which yields promising empirical

results. In addition to changing the objective function, we

need one more crucial ingredient: a crossover operator

(called the minimalization operator) that also utilizes

Rosenthal potential function. We also use an idea similar

to simulated annealing and slowly fade away the effect

of the Rosenthal potential so that in the end we are left

with the original objective function for the (weighted)

set cover problem.

II. RELATED WORK

Given the fundamental importance of set cover prob-

lem, a large number of algorithmic techniques have

been developed for this problem. These include ex-

act algortihms (e.g., [6]) and approximation algorithms

(e.g. [7]). In addition, a number of heuristics and meta-

heuristics have been developed for this problem which

is also the focus of this paper. A significant research

focus in this area has been on unweighted set cover

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 689–694

DOI: 10.15439/2024F7060

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 689 Thematic Session: Computational Optimization

algorithms that deal with instances where all sets have

a uniform weight (also called unicost SCP). These in-

clude a greedy randomized adaptive search procedure

(GRASP) [8], element-state configuration checking to

cut down search spaces [9], a local search algorithm

based on "electromagnetism" theory [10] and an adaptive

row weighting algorithm [11]. In contrast, the weighted

set cover heuristics often rely on MIP or MaxSAT for-

mulations (e.g.,[12]), metaheuristics (such as simulated

annealing [13], genetic algorithm [14], bee colony [15]),

local search (e.g., [12], [16]) and greedy heuristics

(e.g. [17]).

Very recently, a local search heuristic NuSC [16] was

proposed that outperforms the other heuristics on bench-

mark instances. This heuristic combines the strengths of

algorithmic preprocessing (to reduce the search space),

a greedy algorithm (for generating an initial solution),

Tabu Search (to remove some local moves for consider-

ation for a limited time) and local search moves based on

a carefully designed scoring functions to add and remove

subsets. We use NuSC as the state-of-the-art baseline to

compare our genetic algorithm and show that while it

performs very well on the benchmark instances because

of its careful engineering, it is easy to generate instances

where it fails to provide good solutions in a reasonable

time.

Genetic algorithms is an extremely popular meta-

heuristic framework that is widely used in the design of

optimization heuristics. We refer the reader to a recent

survey [18] on the past, present and future of genetic

algorithms. For set cover problem, Beasley and Chu [14]

gave a genetic algorithm that has been widely used.

In their genetic algorithm, they used a fitness-based

fusion crossover opreator, a variable mutation rate and a

heuristic feasibility operator tailored specifically for the

set covering problem. We use this work as one of the

baselines for comparison.

III. ROSENTHAL POTENTIAL FUNCTION AND SET

COVER

The primary inspiration for this work is a recent paper

of Gupta, Lee and Li [4] who found a way to “redeem"

local search work for the weighted set cover for which it

apriori seems doomed. A simple example which shows

that local search does not work is the following. We have

a set system in which the ground set has n elements.

We have one set of weight 1 which covers all ground set

elements, and we have n sets of weight ϵ ≪ 1/n each of

which covers a distinct element of the ground set. In this

case, the optimal solution consists of the sets with weight

ϵ. However, if we start with the set of weight 1 as our

initial feasible solution, we cannot reduce the objective

function (the sum of the weights of sets in the solution)

by making a small change. The only way to reduce the

objective function is to remove the set of weight 1 from

the solution and add all n sets of weight ϵ to the solution.

Depending on how small ϵ is, the locally optimal solution

consisting of the set of weight 1 can be arbitrarily bad

compared to the optimal solution. This apparent obstacle

is bypassed in [4] via non-oblivious local search (NOLS)

(introduced in [19], see also [20], [21]). The idea is to

minimize a potential function different from the objective

function. Let X denote the ground set and S denote the

set of subsets of X in the given instance. At any point in

time, the algorithm of [4] maintains a feasible solution

F ⊆ S along with a mapping c : X 7→ F that maps

each element x ∈ X to a set F ∈ F that covers x. The

potential function the algorithm seeks to minimize is the

Rosenthal potential defined as:

ϕ(F , c) =
∑

F∈F

w(F) ·H(|c−1(F)|),

where w(F) is the weight associated with the set F ,

H(m) is the mth Harmonic number 1+ 1

2
+ 1

3
+ · · ·+ 1

m

and c−1(F) = {x ∈ X : c(x) = F}. The algorithm

starts with any feasible solution F and any valid mapping

c. In any local move, it adds a set S ∈ S that is not in the

optimal solution and modifies the mapping c as follows:

for every x ∈ S, we change c(x) to S. Any set F in

the current solution for which c−1(F) becomes empty

as result of this, is dropped from the current solution.

A relatively simple analysis then shows that the solution

obtained by repeatedly applying local moves that reduce

the potential until no such move is possible, has weight

at most Hk times the weight of the optimal solution.

Here, k is the size of the largest set in S . Note that the

size of the local moves in this algorithm is just 1 - we

only add one set to the current solution at a time and

remove the sets made redundant by it. Local moves of

larger size are also considered in the paper for lower

order improvements in the approximation factor. From

our point of view, the key takeaway is that local search

can be “redeemed" by the use of a potential function.

Since local search is a powerful heuristic frequently used

in practical applications, we believe that incorporating

this idea into those applications will lead to practical

gains. We also believe that instead of fixing a particular

potential function, learning it from data could be more

effective. However, we don’t pursue that avenue in this

paper.

IV. OUR GENETIC ALGORITHM

Our algorithm follows the standard framework of

genetic algorithms. The key components that are distinct

from standard genetic algorithms are the following.

• Fitness function. We use the following slightly

modified form of the Rosenthal potential as the

fitness function:

690 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Φ(F , c) =
∑

F∈F

w(F) ·Hα(|c−1(F)|),

where α ∈ [0, 1] is a parameter.

The parameter α used in the modified Rosenthal

potential function is initially non-zero and is slowly

decreased to 0. Note that when α = 1, the objective

function is the Rosenthal potential and when α = 0,

it is simply the sum of the weights of the sets in F ,

which is the original objective of the weighted set

cover problem. In this way, our algorithm initially

avoids getting stuck in a local minima, but later fo-

cuses only on moves that improve upon the original

objective. We note that this is somewhat similar to

the idea of simulated annealing. For some instances,

we even start the algorithm with an α > 1.

One difficulty with computing Φ is that in addition

to a feasible soution F , it requires the map c.
One way to avoid this is to define c implicitly as

the mapping that minimizes the potential. However,

finding such a mapping is a non-trivial optimization

problem. Instead, we choose a mapping c greedily

as follows. We first map each ground set element

to one of the sets covering it uniformly at random.

We then do one or more rounds of the following:

we go over the elements one by one and find the

optimal set it should be mapped to while consid-

ering the mapping of all other ground set elements

fixed. Our experiments show that typically just one

round suffices to obtain a good mapping. In future

references to the potential function, we will not

explicitly define c and assume that it is chosen by

the greedy algorithm.

• Crossover operator. We combine two feasible so-

lutions as follows. We start with the union U of

two solutions which itself is a feasible solution and

apply the following minimalization operation. This

operation considers the sets in a feasible solution

in some order and removes the set currently being

considered from the solution iff the remaining sets

still form a feasible solution. For the crossover

operation, the order in which the sets in U are

considered is determined by the contributions of the

sets to the Rosenthal potential (with c computed

greedily as described earlier).

• Initial population. We considered two approaches

for creating an initial population of feasible solu-

tions.

Random Minimalization: This approach starts with

feasible solution consisting of all sets and then ap-

plies the minimalization operation while processing

the sets in a random order.

Probabilistic Greedy: Recall that the greedy algo-

rithm for set cover starts with an empty (infeasible)

solution and add sets one by one until a feasible

solution is obtained. The next set S added is the

one that is the most cost effective i.e., it minimizes

w(S)/ν(S) where w(S) is the weight of the set

S and ν(S) is the number of elements that are

covered by S but not by previously added sets.

We make one slight modification to this in order

to obtain a large number of solutions. Instead of

always adding the most cost effective set, we add

any set S with probability proportional to its cost

effectiveness w(S)/ν(S).

The remaining details of our genetic algorithm are as

follows:

• Selection operator. We use a 2-way tournament

selection operator. For this, we choose two ran-

dom pairs from the current population perform a

crossover on the pair obtained by choosing the fitter

individual from each random pair. This process is

repeated until the required number of individuals

are created for the next generation. We refer the

readers to an extensive survey by Goldberg and

Deb [22] for a comparative analysis of different

selection operators. In addition, a fraction of the top

(elite) individuals are passed from one generation to

the next without any crossover operation.

• Mutation operator. In the mutation operator, we

simply add to the current solution a few randomly

selected sets that are not already part of it.

V. EXPERIMENTAL ANALYSIS

A. Dataset description

• We use the OR-library weighted SCP instances [6],

[23], [17]. This dataset is a collection of test data

sets for a variety of Operations Research (OR)

problems and is divided into two sets OR-small and

OR-large according to their size. We consider the

OR-large instances in this paper.

• The second benchmark (Rail)1 contains real-world

weighted SCP instances that arise from an applica-

tion in Italian railways.

• The third benchmark (STS) [24] is obtained from

Steiner triple systems and consists of unweighted

(or equivalently, uniformly weighted) SCP in-

stances.

B. Experimental Set up

Next, we describe our experimental set up. Our code

is implemented in C++11 and compiled using g++ with

optimization flags -O3. All running times are measured

on a server with an AMD EPYC 7281 16-Core Processor

with 32 threads. Each core has a boost speed of 2.7 GHz.

1http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/files/

DENA TAYEBI ET AL.: AN IMPROVED GENETIC ALGORITHM FOR SET COVER USING ROSENTHAL POTENTIAL 691

The server has a total shared memory of 96 GB and a

total L3 cache of 32 MB.

For the baseline NuSC, we used the publicly available

implementation2. For the genetic algorithm for set cover

from Beasley and Chu [14], we couldn’t find any public

implementation, so we implemented it ourselves based

on the description in their paper.

In our genetic algorithm, the population size is set to

100 for all instances, and the number of genetic iterations

is 500. The initial value of α is 1 and in each iteration,

the α decays by a multiplicative factor of 0.99. We

transfer 20% of elite individuals directly to the next

generation without crossover operation. The mutation

probability is set to 0.2 and the crossover probability

is 0.8. For NuSC, we took the default values from their

publicly available implementation that were tuned for the

benchmark instances.

All algorithms have been run for 10 independent runs

and the best and average objective function is recorded

in the tables.

C. Performance on Benchmark Instances

Tables I, II and III show the comparison between the

different algorithms on the weighted, unweighted and the

Rail instances, respectively. Here, ILP refers to solving

the integer linear programming formulation of weighted

set cover using the Gurobi solver. The "obj" column of

the ILP gives the optimal objective function value for

the instance. As expected, the ILP takes a very long time

on larger and more complex instances. We refer to our

genetic algorithm with Rosenthal potential function (with

α decaying from 1 by a factor of 0.99 in each iteration)

and probabilistic greedy initial population as "GA (with

pot. fn.)", our genetic algorithm without the Rosenthal

potential function (i.e., α = 0) as "GA (w/o pot. fn.)" the

genetic algorithm from Beasley and Chu [14] as "GA-

BC" and the NuSC heuristic [16] as "NuSC".

From Table I, we observe that our genetic algorithm

gives near-optimal solutions on weighted instances. In

fact, we get optimal solutions on these instances except

for instances scpnrg1 where we get 177 instead of

176 and scpnrg3 where we get 168 instead of 166.

Furthermore, we find that there is very little variance

in the objective function and the time between the ten

independent runs of our genetic algorithm, as indicated

by the best and the average set cover weight obtained.

We note that GA-BC also obtains near optimal solutions.

However, this comes at the cost of a very high running

time. This is because GA-BC requires a large number

of iterations (generations) to obtain these solutions. The

heuristic NuSC is able to achieve near-optimal solutions

with significantly less running time. The results on

2https://github.com/chuanluocs/NuSC-Algorithm

unweighted instances and Rail instances (Tables II and

III) are similar, though on these larger instances, GA-

BC can’t get anywhere close to optimal in reasonable

running time (less than 5 minutes).

D. Comparison with Genetic Algorithm without Poten-

tial Function

We observe that the high quality of the solutions

from our genetic algorithm is due in large parts to the

usage of Rosenthal potential function. Tables I, II and

III show that if we were to optimize the weighted set

cover objective directly, the objective function value of

the resultant solutions would have been significantly

worse. For instance, on scpnrh1 instance, our genetic

algorithm with Rosenthal potential function yields an

optimal solution with the objective of 63, while the

genetic algorithm without it returns a solution with

objective of 80 (27% away from the optimal solution).

E. Comparison with NuSC

We compare our genetic algorithm with the state of

the art local search heuristic NuSC. As described in

Section II, NuSC is a very recent approach (published

in 2024) and is carefully engineered for weighted set

cover problem benchmark instances. It has been shown

to outperform a large number of existing heuristics on

these benchmark instances [16].

Since our main motivation for using the Rosenthal

potential was to escape local optima, we created simple

synthetic instances which would require moves of large

size with the standard local search as follows. We

consider two collections of sets called A and B, which

contain n and m sets respectively where m ≈ n/2. There

are n+m sets in total. For each triple of sets, consisting

of two sets from A and one set from B, we create a

ground set element present in exactly those three sets.

Thus, the number of ground set elements is m·
(

n

2

)

. It can

be checked both A and B are feasible solutions and B is

an optimal solution to the unweighted set cover problem.

Despite the large gap in sizes, if we start from A, there is

no local move that improves the solution other than the

move that changes A to B directly - involving a large

local move (of size proportional to n). We also extend

these instances by replacing each set in A by k copies of

the same set for some k > 1. We now have kn+m sets

and the number of ground set elements remains m ·
(

n

2

)

.

Note that on these instances, the linear programming

(LP) relaxation of the set cover integer linear program

will result in all sets from the collection A getting the

value 1/2 while all sets from the collection B will

get the value 0. Thus, heuristics based on LP rounding

techniques or those that just return sets with non-zero

LP values will fail on these instances.

692 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Table I: Comparison of different algorithms on weighted SCP instances from the OR Library

ILP Our GA (with pot. fn.) GA (w/o pot. fn.) GA-BC NuSc

Instance obj time min-obj (avg) time min-obj (avg) time min-obj (avg) time min-obj (avg) time

scpnrg1 176 791.9 177(177.6) 418.54 195(195.7) 387.5 178(180.1) 2124.2 176(176) 0.08
scpnrg2 154 318.8 154(155.3) 417.67 165(167.5) 402.4 158(159) 2613.4 154(154) 0.14
scpnrg3 166 3510.5 168(168.8) 419.99 183(184.5) 378.8 168(169.2) 2921.7 166(166) 2.16
scpnrg4 168 2339.2 168(169.8) 420.10 189(192.1) 398.2 170(171.6) 2431.3 168(168) 99.28
scpnrg5 168 8099.3 168(169) 420.10 188(188.8) 365.7 170(171) 2812.2 168(168) 2.55
scpnrh1 63 300259.5 63(63.7) 498.95 80(80.3) 335.9 64(64.8) 3701.3 63(63) 3.49
scpnrh2 63 121093.7 63(63.9) 499.42 78(78.9) 387.3 64(64.8) 3503.3 63(63) 0.44
scpnrh3 59 12897.6 59(60) 494.22 65(67) 412.4 60(61) 3723.9 59(59) 1.43
scpnrh4 58 26613.8 58(58.8) 491.69 65(66.5) 387.2 59(59.9) 3402.3 58(58) 0.91
scpnrh5 55 33843.5 55(55.8) 477.54 62(63) 404.2 55(58.2) 3801.1 55(55) 0.5

Table II: Comparison of different algorithms on unweighted SCP instances from the OR library and the Steiner triple system (sts) instances

Size ILP Our GA (with pot. fn.) GA (w/o pot. fn.) GA-BC NuSc

Instance row×column min-obj time min-obj (avg) time bj time min-obj (avg) time min-obj (avg) time

scpclr10 511×210 25 3.2 25(26.7) 15.2 47(48.3) 20.9 25(26.7) 28.9 25(25) 0.0
scpclr11 1023×330 23 88.6 25(25.2) 230.8 54(57) 219.1 25(26.2) 35.6 23(23) 0.04
scpclr12 2047×495 23 1304.0 26(26.2) 610.3 44(45.6) 596.8 26(26.5) 39.3 23(23) 0.35
scpclr13 4095×715 23 19772.7 25(25.2) 1211.3 43(44.5) 1102.9 25(26.5) 46.7 23(23) 0.61

scpcyc06 240×192 60 1002.4 62(62.1) 21.0 70(74.2) 21.1 66(68.0) 61.4 60(60) 0.0
scpcyc07 672×448 144 1002.1 148(148.8) 87.1 161(165.5) 83.2 160(160.8) 66.3 144 0.03
scpcyc08 1792×1024 342 1003.3 360(362.1) 283.4 392(398.1) 291.3 402(408.8) 79.5 344(344) 30.52
scpcyc09 4068×2304 772 1001.5 850(885) 1413.1 892(900.8) 1398.3 911(917.3) 115.7 780(780) 796.36
scpcyc10 11520×5120 1798 1000.9 1992(1996.8) 3098.3 2087(2092.6) 2871.3 2108 217.6 1794 340.15
scpcyc11 28160×11264 3968 1004.3 4104(4108.4) 4873.4 4687(4693.3) 4242.4 4398(4404.5) 783.4 3968(3968) 288.08

sts135 3015×135 103 − 106(106.5) 117.1 118(119.6) 129.6 106(106.5) 126.8 103(103) 158.67
sts243 9801×243 198 − 204(204.5) 508.1 227(227.8) 563.1 206(206.5) 618.3 198(198) 0.0
sts405 27270×405 335 − 344(345.7) 832.3 379(282.4) 862.4 350(250.5) 922.4 336(336.5) 10.33
sts729 88452×729 617 9142.1 628(630.1) 4974.9 687(690.3) 4871.3 652(653.1) 2118.2 617(617) 52.19

Table III: Comparison of different instances on Rail instances

Size ILP Our GA (with pot. fn.) GA (w/o pot. fn.) NuSc

Instance row×column min-obj time min-obj (avg) time min-obj (avg) time min-obj (avg) time

rail507 507×63009 174 104.8 182(182.5) 873.1 297(299.4) 814.6 174(174) 528.79
rail516 516×47311 182 56.7 189(189.3) 1841.4 286(288.2) 1791.5 182(182) 2.95
rail582 582×55515 211 89.2 216(216.8) 2487.3 298(299.1) 2413.3 211(211) 50.46
rail2536 2536×1081841 689 6277.6 726(727) 4481.5 954(958.5) 4173.9 699(699.4) 185.51
rail2586 2586×920683 951 11092.8 1108(1109.2) 6723.2 1985(1985.6) 6034.3 960(961.5) 866.2

Table IV: Comparison of our Genetic algorithm and NuSC on synthetic instances. Ins(m,n,k) is an instance

with m sets in collections B, n sets in collection A and k copies of each set in A.

Size ILP Our GA (with pot. fn.) GA (w/o pot. fn.) NuSc

Instance row×column obj time min-obj (avg) time min-obj (avg) time min-obj (avg) time

Ins(7,13,1) 546×20 7 0.03 7(7) 0.2 7(7) 0.2 7(7) 205.9
Ins(11,20,1) 2090×31 11 0.21 11(11) 1.3 19(19) 45.5 11(11) 403.5
Ins(16,30,1) 6960×46 16 1.06 16(16) 2.2 29(29) 169.9 16(16) 2540.3
Ins(51,100,1) 252450×151 51 789.9 51(51) 180.6 99(99) 3000.0 99(99) 3000

Ins(7,13,2) 546×33 7 0.05 7(7) 1.2 12(12) 13.0 7(7) 981.0
Ins(11,20,2) 2090×51 11 0.34 11(11) 3.1 19(19) 49.2 19(19) 3000
Ins(16,30,2) 6960×76 16 1.60 16(16) 17.8 29(29) 187.2 29(29) 3000
Ins(51,100,2) 252450×251 51 615.3 51(51) 214.2 99(99) 3000.0 99(99) 3000

DENA TAYEBI ET AL.: AN IMPROVED GENETIC ALGORITHM FOR SET COVER USING ROSENTHAL POTENTIAL 693

As seen in Table IV, our genetic algorithm (with

α = 4 and decay factor of 0.98) always obtains the

optimal solution on these instances. In contrast, NuSC

is often quite far from the optimal solution even after

the time-out of 3000 seconds. This is particularly true

for instance that are large or instances that have multi-

ple copies of A. For instance, on Ins(51,100,1), NuSC

obtains a solution of 99 while the optimal solution has

the objective value of 51. For these instances, NuSC is

reporting the sets from the collection A in the returned

solution while the actual optimal solution consists of sets

from the collection B. The results with 4, 6 and 8 copies

of sets in A are similar to that of 2 copies.

Again, we note that without the Rosenthal potential

function, our genetic algorithm would have returned

solutions similar to the NuSC heuristic or even worse.

Thus, we conclude that the main reason why our genetic

algorithm is able to do local moves of larger size on these

instances is the usage of Rosenthal potential function.

VI. CONCLUSION

Our experiments indicate that incorporating the

Rosenthal potential has a significant impact on the qual-

ity of the solution obtained. While our genetic algorithm

is able to match the quality of the solution obtained for

benchmark instances, NuSC is faster on those instances.

The difference in running times stems primarily from

the large populations sizes maintained in a genetic

algorithm. On the other hand, the advantage of the

our genetic algorithm with modified Rosenthal potential

is clear when we have instances requiring large local

moves. For instance, on synthetic instances requiring

large local moves, our algorithm gets optimal solutions

in time that is often two orders of magnitude less than

the state-of-the-art heuristic NuSC (which typically fails

to obtain the optimal solution even after a long time).

It is an interesting challenge to combine the advantages

of both the algorithms. Another interesting direction is

to find other applications where modifying the objective

function improves the practical performance of local

search.

REFERENCES

[1] V. Chvatal, “A greedy heuristic for the set-covering problem.”
Math. Oper. Res., vol. 4, no. 3, pp. 233–235, 1979. doi:
https://doi.org/10.1287/MOOR.4.3.233

[2] I. Dinur and D. Steurer, “Analytical approach to
parallel repetition,” in STOC. ACM, 2014. doi:
https://doi.org/10.1145/2591796.2591884 p. 624–633.

[3] K. Clarkson and K. Varadarajan, “Improved approxi-
mation algorithms for geometric set cover,” Discrete

Computational Geometry, vol. 37, pp. 43–58, 2007. doi:
https://doi.org/10.1007/S00454-006-1273-8

[4] A. Gupta, E. Lee, and J. Li, “A local search-based ap-
proach for set covering,” in SOSA. SIAM, 2023. doi:
https://doi.org/10.1137/1.9781611977585.CH1 pp. 1–11.

[5] R. W. Rosenthal, “A class of games possessing pure-strategy nash
equilibria,” Int. Jour. of Game Theory, vol. 2, pp. 65–67, 1973.

[6] J. E. Beasley, “An algorithm for set covering problem,” European

Journal of Operational Research, vol. 31, no. 1, pp. 85–93, 1987.
doi: https://doi.org/10.1016/0377-2217(87)90141-X

[7] N. Bansal, A. Caprara, and M. Sviridenko, “A new approximation
method for set covering problems, with applications to multidi-
mensional bin packing,” SIAM J. Comput., vol. 39, pp. 1256–
1278, 2009. doi: https://doi.org/10.1137/080736831

[8] J. Bautista and J. Pereira, “A grasp algorithm to solve
the unicost set covering problem,” Computers & Opera-

tions Research, vol. 34, no. 10, pp. 3162–3173, 2007. doi:
https://doi.org/10.1016/j.cor.2005.11.026

[9] Y. Wang, S. Pan, S. Al-Shihabi, J. Zhou, N. Yang, and M. Yin,
“An improved configuration checking-based algorithm for the
unicost set covering problem,” EJOR, vol. 294, no. 2, pp. 476–
491, 2021. doi: https://doi.org/10.1016/j.ejor.2021.02.015

[10] Z. Naji-Azimi, P. Toth, and L. Galli, “An electromag-
netism metaheuristic for the unicost set covering prob-
lem,” EJOR, vol. 205, no. 2, pp. 290–300, 2010. doi:
https://doi.org/10.1016/j.ejor.2010.01.035

[11] C. Gao, X. Yao, T. Weise, and J. Li, “An efficient local
search heuristic with row weighting for the unicost set covering
problem,” EJOR, vol. 246, no. 3, pp. 750–761, 2015. doi:
https://doi.org/10.1016/j.ejor.2015.05.038

[12] Z. Lei and S. Cai, “Solving set cover and dominating set via
maximum satisfiability,” in EAAI. AAAI Press, 2020. doi:
https://doi.org/10.1609/AAAI.V34I02.5517 pp. 1569–1576.

[13] M. J. Brusco, L. W. Jacobs, and G. M. Thompson, “A
morphing procedure to supplement a simulated annealing
heuristic for cost- andcoverage-correlated set-covering prob-
lems,” Ann. Oper. Res., vol. 86, pp. 611–627, 1999. doi:
https://doi.org/10.1023/A%3A1018900128545

[14] J. Beasley and P. Chu, “A genetic algorithm for the set cov-
ering problem,” EJOR, vol. 94, no. 2, pp. 392–404, 1996. doi:
https://doi.org/10.1016/0377-2217(95)00159-X

[15] B. Crawford, R. Soto, R. Cuesta, and F. Paredes, “Appli-
cation of the artificial bee colony algorithm for solving the
set covering problem,” Scientific World Journal, 2014. doi:
https://doi.org/10.1155/2014/189164

[16] C. Luo, W. Xing, S. Cai, and C. Hu, “Nusc: An effective
local search algorithm for solving the set covering problem,”
IEEE Trans. Cybern., vol. 54, no. 3, pp. 1403–1416, 2024. doi:
https://doi.org/10.1109/TCYB.2022.3199147

[17] T. Grossman and A. Wool, “Computational experience with ap-
proximation algorithms for the set covering problem,” EJOR, vol.
101, no. 1, pp. 81–92, 1997. doi: https://doi.org/10.1016/S0377-
2217(96)00161-0

[18] S. Katoch, S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimed Tools Appl,
vol. 80, p. 8091–8126, 2021. doi: https://doi.org/10.1007/s11042-
020-10139-6

[19] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, “On
syntactic versus computational views of approximability,” SIAM

Journal on Computing, vol. 28, no. 1, pp. 164–191, 1998.
[20] Y. Filmus and J. Ward, “Monotone submodular maximization

over a matroid via non-oblivious local search,” SIAM Journal on

Computing, vol. 43, no. 2, pp. 514–542, 2014.
[21] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic, “An

improved local search algorithm for k-median,” in SODA. SIAM,
2022. doi: 10.1137/1.9781611977073.65 pp. 1556–1612.

[22] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in First Workshop on

Foundations of Genetic Algorithms, vol. 1. Elsevier, 1991. doi:
https://doi.org/10.1016/B978-0-08-050684-5.50008-2 pp. 69–93.

[23] J. E. Beasley, “A lagrangian heuristic for set-covering problems,”
Naval Research Logistics, vol. 37, pp. 151–164, 1990. doi:
https://doi.org/10.1002/1520-6750

[24] D. Fulkerson, G. L. Nemhauser, and L. Trotter, “Two com-
putationally difficult set covering problems that arise in com-
puting the 1-width of incidence matrices of steiner triple
systems,” in Approaches to integer programming, 1974. doi:
https://doi.org/10.1007/BFb0120689 pp. 72–81.

694 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

