Proceedings of the 19" Conference on Computer DOI: 10.15439/2024F7060
Science and Intelligence Systems (FedCSIS) pp. 689-694 ISSN 2300-5963 ACSIS, Vol. 39

&l

An Improved Genetic Algorithm for Set Cover
using Rosenthal Potential

Dena Tayebi
University College Dublin

Saurabh Ray
New York University
Ireland Abu Dhabi Ireland
Email: dena.tayebi@ucdconnect.ie =~ Email:saurabh.ray @nyu.edu Email:deepak.ajwani @ucd.ie
ORCID: 0000-0001-6447-7930 ORCID: 0009-0005-6708-125X ORCID: 0000-0001-7269-4150

Deepak Ajwani
University College Dublin

IEEE Catalog Number: CFP2485N-ART ©2024, PTI

Abstract—A major issue with heuristics for set-cover
problem is that they tend to get stuck in a local optimum
typically because a large local move is necessary to find
a better solution. A recent theoretical result shows that
replacing the objective function by a proxy (which happens
to be Rosenthal potential function) allows escaping such
local optima even with small local moves albeit at the
cost of an approximation factor. The Rosenthal potential
function thus has the effect of smoothing the optimization
landscape appropriately so that local search works. In this
paper, we use this theoretical insight to design a simple but
robust genetic algorithm for weighted set cover. We modify
the fitness function as well as the crossover operator of
the genetic algorithm to leverage the Rosenthal potential
function. We show empirically this greatly improves the
quality of the solutions obtained especially in examples
where large local moves are required.

Our results are better than existing state of the art
genetic algorithms and also comparable in performance
with the recent local search algorithm NuSC (carefully
engineered for set cover) on benchmark instances. Our
algorithm, however, performs better than NuSC on simple
synthetic instances where starting from an initial solution,
large local moves are necessary to find a solution that is
close to optimal. For such instances, our algorithm is able
to find near optimal solutions whereas NuSC either takes
a very long time or returns a much worse solution.

I. INTRODUCTION

HE SET cover problem (SCP) is one of the most

fundamental and well studied problem in theoretical
computer science. An instance of the set cover problem
consists of a ground set X and a set S = {51, ,Sn}
of subsets of X. The goal is to pick the smallest subset
Y C S so that the union of the sets in Y is equal to
X. In the weighted version of the problem, each set
has an associated non-negative weight and the goal is to
minimize the total weight of the sets in Y.

A simple greedy algorithm [1] is known to give an
O(log n)-approximation (even for the weighted variant)
and under standard complexity theoretic assumptions
this is asymptotically the best achievable in polynomial
time [2]. However, instances of the set cover problems
that arise from practical applications are often not worst
case instances and one can hope to do better. For

689

instance, significantly better algorithms are known for
geometric instances of the set cover problem [3].

A major issue with heuristics for the set-cover problem
is that they tend to get stuck in a local optimum. Even
for the unweighted setting, it is not difficult to construct
examples in which there are local optima for which
an arbitrarily large change is necessary to improve the
solution. A recent paper [4] finds a way to make local
search as good as the greedy algorithm for the general
set cover problem (which, as we mentioned before, is
the best possible in polynomial time). The main idea is
to replace the objective function by a proxy called the
Rosenthal potential [5]. With just this change (modulo
a few technical details), a local search algorithm which
only adds or removes one set from the current solution
in any step yields an O(logn) approximation! While
this result in itself is only of theoretical interest, we
believe that the idea of changing the objective function is
powerful and is likely to have a practical impact since a
large number of heuristics for optimization problems are
based on local search. In this paper, we present a simple
approach to incorporate this idea into the Genetic Al-
gorithm metaheuristic, which yields promising empirical
results. In addition to changing the objective function, we
need one more crucial ingredient: a crossover operator
(called the minimalization operator) that also utilizes
Rosenthal potential function. We also use an idea similar
to simulated annealing and slowly fade away the effect
of the Rosenthal potential so that in the end we are left
with the original objective function for the (weighted)
set cover problem.

II. RELATED WORK

Given the fundamental importance of set cover prob-
lem, a large number of algorithmic techniques have
been developed for this problem. These include ex-
act algortihms (e.g., [6]) and approximation algorithms
(e.g. [7]). In addition, a number of heuristics and meta-
heuristics have been developed for this problem which
is also the focus of this paper. A significant research
focus in this area has been on unweighted set cover

Thematic Session: Computational Optimization

690

algorithms that deal with instances where all sets have
a uniform weight (also called unicost SCP). These in-
clude a greedy randomized adaptive search procedure
(GRASP) [8], element-state configuration checking to
cut down search spaces [9], a local search algorithm
based on "electromagnetism" theory [10] and an adaptive
row weighting algorithm [11]. In contrast, the weighted
set cover heuristics often rely on MIP or MaxSAT for-
mulations (e.g.,[12]), metaheuristics (such as simulated
annealing [13], genetic algorithm [14], bee colony [15]),
local search (e.g., [12], [16]) and greedy heuristics
(e.g. [17]).

Very recently, a local search heuristic NuSC [16] was
proposed that outperforms the other heuristics on bench-
mark instances. This heuristic combines the strengths of
algorithmic preprocessing (to reduce the search space),
a greedy algorithm (for generating an initial solution),
Tabu Search (to remove some local moves for consider-
ation for a limited time) and local search moves based on
a carefully designed scoring functions to add and remove
subsets. We use NuSC as the state-of-the-art baseline to
compare our genetic algorithm and show that while it
performs very well on the benchmark instances because
of its careful engineering, it is easy to generate instances
where it fails to provide good solutions in a reasonable
time.

Genetic algorithms is an extremely popular meta-
heuristic framework that is widely used in the design of
optimization heuristics. We refer the reader to a recent
survey [18] on the past, present and future of genetic
algorithms. For set cover problem, Beasley and Chu [14]
gave a genetic algorithm that has been widely used.
In their genetic algorithm, they used a fitness-based
fusion crossover opreator, a variable mutation rate and a
heuristic feasibility operator tailored specifically for the
set covering problem. We use this work as one of the
baselines for comparison.

III. ROSENTHAL POTENTIAL FUNCTION AND SET
COVER

The primary inspiration for this work is a recent paper
of Gupta, Lee and Li [4] who found a way to “redeem"
local search work for the weighted set cover for which it
apriori seems doomed. A simple example which shows
that local search does not work is the following. We have
a set system in which the ground set has n elements.
We have one set of weight 1 which covers all ground set
elements, and we have n sets of weight € < 1/n each of
which covers a distinct element of the ground set. In this
case, the optimal solution consists of the sets with weight
e. However, if we start with the set of weight 1 as our
initial feasible solution, we cannot reduce the objective
function (the sum of the weights of sets in the solution)
by making a small change. The only way to reduce the

PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

objective function is to remove the set of weight 1 from
the solution and add all n sets of weight € to the solution.
Depending on how small € is, the locally optimal solution
consisting of the set of weight 1 can be arbitrarily bad
compared to the optimal solution. This apparent obstacle
is bypassed in [4] via non-oblivious local search (NOLS)
(introduced in [19], see also [20], [21]). The idea is to
minimize a potential function different from the objective
function. Let X denote the ground set and S denote the
set of subsets of X in the given instance. At any point in
time, the algorithm of [4] maintains a feasible solution
F C S along with a mapping ¢ : X — F that maps
each element x € X to a set F' € F that covers z. The
potential function the algorithm seeks to minimize is the
Rosenthal potential defined as:

¢(F,c) = Y w(F)-H(le ' (F)]),

FeF

where w(F) is the weight associated with the set F,
H(m) is the m'™ Harmonic number 144 + %+ -+ %
and c"Y(F) = {z € X : ¢(x) = F}. The algorithm
starts with any feasible solution F and any valid mapping
c. In any local move, it adds a set S € S that is not in the
optimal solution and modifies the mapping c as follows:
for every © € S, we change ¢(z) to S. Any set F in
the current solution for which ¢~1(F) becomes empty
as result of this, is dropped from the current solution.
A relatively simple analysis then shows that the solution
obtained by repeatedly applying local moves that reduce
the potential until no such move is possible, has weight
at most H, times the weight of the optimal solution.
Here, k is the size of the largest set in S. Note that the
size of the local moves in this algorithm is just 1 - we
only add one set to the current solution at a time and
remove the sets made redundant by it. Local moves of
larger size are also considered in the paper for lower
order improvements in the approximation factor. From
our point of view, the key takeaway is that local search
can be “redeemed" by the use of a potential function.
Since local search is a powerful heuristic frequently used
in practical applications, we believe that incorporating
this idea into those applications will lead to practical
gains. We also believe that instead of fixing a particular
potential function, learning it from data could be more
effective. However, we don’t pursue that avenue in this

paper.
IV. OUR GENETIC ALGORITHM
Our algorithm follows the standard framework of
genetic algorithms. The key components that are distinct
from standard genetic algorithms are the following.
o Fitness function. We use the following slightly

modified form of the Rosenthal potential as the
fitness function:

O(F,c)= 3 w(F)- H (| (F))),
FeF

where a € [0,1] is a parameter.
The parameter o used in the modified Rosenthal
potential function is initially non-zero and is slowly
decreased to 0. Note that when o = 1, the objective
function is the Rosenthal potential and when o = 0,
it is simply the sum of the weights of the sets in F,
which is the original objective of the weighted set
cover problem. In this way, our algorithm initially
avoids getting stuck in a local minima, but later fo-
cuses only on moves that improve upon the original
objective. We note that this is somewhat similar to
the idea of simulated annealing. For some instances,
we even start the algorithm with an o > 1.
One difficulty with computing & is that in addition
to a feasible soution F, it requires the map c.
One way to avoid this is to define ¢ implicitly as
the mapping that minimizes the potential. However,
finding such a mapping is a non-trivial optimization
problem. Instead, we choose a mapping c greedily
as follows. We first map each ground set element
to one of the sets covering it uniformly at random.
We then do one or more rounds of the following:
we go over the elements one by one and find the
optimal set it should be mapped to while consid-
ering the mapping of all other ground set elements
fixed. Our experiments show that typically just one
round suffices to obtain a good mapping. In future
references to the potential function, we will not
explicitly define ¢ and assume that it is chosen by
the greedy algorithm.
Crossover operator. We combine two feasible so-
lutions as follows. We start with the union U of
two solutions which itself is a feasible solution and
apply the following minimalization operation. This
operation considers the sets in a feasible solution
in some order and removes the set currently being
considered from the solution iff the remaining sets
still form a feasible solution. For the crossover
operation, the order in which the sets in U are
considered is determined by the contributions of the
sets to the Rosenthal potential (with ¢ computed
greedily as described earlier).
Initial population. We considered two approaches
for creating an initial population of feasible solu-
tions.
Random Minimalization: This approach starts with
feasible solution consisting of all sets and then ap-
plies the minimalization operation while processing
the sets in a random order.
Probabilistic Greedy: Recall that the greedy algo-
rithm for set cover starts with an empty (infeasible)

DENA TAYEBI ET AL.: AN IMPROVED GENETIC ALGORITHM FOR SET COVER USING ROSENTHAL POTENTIAL

solution and add sets one by one until a feasible
solution is obtained. The next set S added is the
one that is the most cost effective i.e., it minimizes
w(S)/v(S) where w(S) is the weight of the set
S and v(S) is the number of elements that are
covered by S but not by previously added sets.
We make one slight modification to this in order
to obtain a large number of solutions. Instead of
always adding the most cost effective set, we add
any set S with probability proportional to its cost
effectiveness w(.S)/v(S).

The remaining details of our genetic algorithm are as
follows:

e Selection operator. We use a 2-way tournament
selection operator. For this, we choose two ran-
dom pairs from the current population perform a
crossover on the pair obtained by choosing the fitter
individual from each random pair. This process is
repeated until the required number of individuals
are created for the next generation. We refer the
readers to an extensive survey by Goldberg and
Deb [22] for a comparative analysis of different
selection operators. In addition, a fraction of the top
(elite) individuals are passed from one generation to
the next without any crossover operation.

o Mutation operator. In the mutation operator, we
simply add to the current solution a few randomly
selected sets that are not already part of it.

V. EXPERIMENTAL ANALYSIS

A. Dataset description

o We use the OR-library weighted SCP instances [6],
[23], [17]. This dataset is a collection of test data
sets for a variety of Operations Research (OR)
problems and is divided into two sets OR-small and
OR-large according to their size. We consider the
OR-large instances in this paper.

o The second benchmark (Rail)! contains real-world
weighted SCP instances that arise from an applica-
tion in Italian railways.

e The third benchmark (STS) [24] is obtained from
Steiner triple systems and consists of unweighted
(or equivalently, uniformly weighted) SCP in-
stances.

B. Experimental Set up

Next, we describe our experimental set up. Our code
is implemented in C++11 and compiled using g++ with
optimization flags -O3. All running times are measured
on a server with an AMD EPYC 7281 16-Core Processor
with 32 threads. Each core has a boost speed of 2.7 GHz.

Thttp://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

691

692

The server has a total shared memory of 96 GB and a
total L3 cache of 32 MB.

For the baseline NuSC, we used the publicly available
implementation®. For the genetic algorithm for set cover
from Beasley and Chu [14], we couldn’t find any public
implementation, so we implemented it ourselves based
on the description in their paper.

In our genetic algorithm, the population size is set to
100 for all instances, and the number of genetic iterations
is 500. The initial value of « is 1 and in each iteration,
the o decays by a multiplicative factor of 0.99. We
transfer 20% of elite individuals directly to the next
generation without crossover operation. The mutation
probability is set to 0.2 and the crossover probability
is 0.8. For NuSC, we took the default values from their
publicly available implementation that were tuned for the
benchmark instances.

All algorithms have been run for 10 independent runs
and the best and average objective function is recorded
in the tables.

C. Performance on Benchmark Instances

Tables I, II and III show the comparison between the
different algorithms on the weighted, unweighted and the
Rail instances, respectively. Here, ILP refers to solving
the integer linear programming formulation of weighted
set cover using the Gurobi solver. The "obj" column of
the ILP gives the optimal objective function value for
the instance. As expected, the ILP takes a very long time
on larger and more complex instances. We refer to our
genetic algorithm with Rosenthal potential function (with
a decaying from 1 by a factor of 0.99 in each iteration)
and probabilistic greedy initial population as "GA (with
pot. fn.)", our genetic algorithm without the Rosenthal
potential function (i.e., « = 0) as "GA (w/o pot. fn.)" the
genetic algorithm from Beasley and Chu [14] as "GA-
BC" and the NuSC heuristic [16] as "NuSC".

From Table I, we observe that our genetic algorithm
gives near-optimal solutions on weighted instances. In
fact, we get optimal solutions on these instances except
for instances scpnrgl where we get 177 instead of
176 and scpnrg3 where we get 168 instead of 166.
Furthermore, we find that there is very little variance
in the objective function and the time between the ten
independent runs of our genetic algorithm, as indicated
by the best and the average set cover weight obtained.
We note that GA-BC also obtains near optimal solutions.
However, this comes at the cost of a very high running
time. This is because GA-BC requires a large number
of iterations (generations) to obtain these solutions. The
heuristic NuSC is able to achieve near-optimal solutions
with significantly less running time. The results on

Zhttps://github.com/chuanluocs/NuSC-Algorithm

PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

unweighted instances and Rail instances (Tables II and
IIT) are similar, though on these larger instances, GA-
BC can’t get anywhere close to optimal in reasonable
running time (less than 5 minutes).

D. Comparison with Genetic Algorithm without Poten-
tial Function

We observe that the high quality of the solutions
from our genetic algorithm is due in large parts to the
usage of Rosenthal potential function. Tables I, II and
IIT show that if we were to optimize the weighted set
cover objective directly, the objective function value of
the resultant solutions would have been significantly
worse. For instance, on scpnrhl instance, our genetic
algorithm with Rosenthal potential function yields an
optimal solution with the objective of 63, while the
genetic algorithm without it returns a solution with
objective of 80 (27% away from the optimal solution).

E. Comparison with NuSC

We compare our genetic algorithm with the state of
the art local search heuristic NuSC. As described in
Section II, NuSC is a very recent approach (published
in 2024) and is carefully engineered for weighted set
cover problem benchmark instances. It has been shown
to outperform a large number of existing heuristics on
these benchmark instances [16].

Since our main motivation for using the Rosenthal
potential was to escape local optima, we created simple
synthetic instances which would require moves of large
size with the standard local search as follows. We
consider two collections of sets called A and B, which
contain n and m sets respectively where m = n/2. There
are n+m sets in total. For each triple of sets, consisting
of two sets from A and one set from B, we create a
ground set element present in exactly those three sets.
Thus, the number of ground set elements is m- (). It can
be checked both A and B are feasible solutions and B is
an optimal solution to the unweighted set cover problem.
Despite the large gap in sizes, if we start from A, there is
no local move that improves the solution other than the
move that changes A to B directly - involving a large
local move (of size proportional to n). We also extend
these instances by replacing each set in A by & copies of
the same set for some k > 1. We now have kn +m sets
and the number of ground set elements remains m - ().

Note that on these instances, the linear programming
(LP) relaxation of the set cover integer linear program
will result in all sets from the collection A getting the
value 1/2 while all sets from the collection B will
get the value 0. Thus, heuristics based on LP rounding
techniques or those that just return sets with non-zero
LP values will fail on these instances.

DENA TAYEBI ET AL.: AN IMPROVED GENETIC ALGORITHM FOR SET COVER USING ROSENTHAL POTENTIAL

693

Table I: Comparison of different algorithms on weighted SCP instances from the OR Library

ILP Our GA (with pot. fn.) GA (w/o pot. fn.) GA-BC NuSc

Instance obj time min-obj (avg) time min-obj (avg) time min-obj (avg) time min-obj (avg) time

scpnrgl 176 791.9 177(177.6) 418.54 195(195.7) 387.5 178(180.1) 2124.2 176(176) 0.08
scpnrg2 154 318.8 154(155.3) 417.67 165(167.5) 402.4 158(159) 2613.4 154(154) 0.14
scpnrg3 166 3510.5 168(168.8) 419.99 183(184.5) 378.8 168(169.2) 2921.7 166(166) 2.16
scpnrgd 168 2339.2 168(169.8) 420.10 189(192.1) 398.2 170(171.6) 2431.3 168(168) 99.28
scpnrg5 168 8099.3 168(169) 420.10 188(188.8) 365.7 170(171) 2812.2 168(168) 2.55
scpnrthl 63 300259.5 63(63.7) 498.95 80(80.3) 335.9 64(64.8) 3701.3 63(63) 3.49
scpnrth2 63 121093.7 63(63.9) 499.42 78(78.9) 387.3 64(64.8) 3503.3 63(63) 0.44
scpnrh3 59 12897.6 59(60) 494.22 65(67) 412.4 60(61) 3723.9 59(59) 1.43
scpnrh4 58 26613.8 58(58.8) 491.69 65(66.5) 387.2 59(59.9) 3402.3 58(58) 0.91
scpnrthS 55 33843.5 55(55.8) 477.54 62(63) 404.2 55(58.2) 3801.1 55(55) 0.5

Table II: Comparison of different algorithms on unweighted SCP instances from the OR library and the Steiner triple system (sts) instances

Size ILP Our GA (with pot. fn.) GA (w/o pot. fn.) GA-BC NuSc
Instance row X column min-obj time min-obj (avg) time bj time min-obj (avg) time min-obj (avg) time
sepelrl0 511x210 25 3.2 25(26.7) 15.2 47(48.3) 20.9 25(26.7) 28.9 25(25) 0.0
sepelrll 1023x330 23 88.6 25(25.2) 230.8 54(57) 219.1 25(26.2) 35.6 23(23) 0.04
sepelrl2 2047x495 23 1304.0 26(26.2) 610.3 44(45.6) 596.8 26(26.5) 39.3 23(23) 0.35
sepelrl3 4095x715 23 19772.7 25(25.2) 1211.3 43(44.5) 1102.9 25(26.5) 46.7 23(23) 0.61
scpeyc06 240x 192 60 1002.4 62(62.1) 21.0 70(74.2) 21.1 66(68.0) 61.4 60(60) 0.0
scpeyc07 672x448 144 1002.1 148(148.8) 87.1 161(165.5) 83.2 160(160.8) 66.3 144 0.03
scpeyc08 1792x 1024 342 1003.3 360(362.1) 2834 392(398.1) 291.3 402(408.8) 79.5 344(344) 30.52
scpeyc09 4068 x2304 772 1001.5 850(885) 1413.1 892(900.8) 1398.3 911(917.3) 115.7 780(780) 796.36
scpeyel0 11520x5120 1798 1000.9 1992(1996.8) 3098.3 2087(2092.6) 2871.3 2108 217.6 1794 340.15
scpeyell 28160 11264 3968 1004.3 4104(4108.4) 4873.4 4687(4693.3) 42424 4398(4404.5) 783.4 3968(3968) 288.08
sts135 3015% 135 103 - 106(106.5) 1171 118(119.6) 129.6 106(106.5) 126.8 103(103) 158.67
sts243 9801x243 198 - 204(204.5) 508.1 227(227.8) 563.1 206(206.5) 618.3 198(198) 0.0
stsd05 27270x405 335 - 344(345.7) 832.3 379(282.4) 862.4 350(250.5) 9224 336(336.5) 10.33
sts729 88452729 617 9142.1 628(630.1) 49749 687(690.3) 4871.3 652(653.1) 2118.2 617(617) 52.19
Table III: Comparison of different instances on Rail instances
Size ILP Our GA (with pot. fn.) GA (w/o pot. fn.) NuSc
Instance rowXxcolumn min-obj time min-obj (avg) time min-obj (avg) time min-obj (avg) time
rail507 50763009 174 104.8 182(182.5) 873.1 297(299.4) 814.6 174(174) 528.79
rail516 516x47311 182 56.7 189(189.3) 1841.4 286(288.2) 1791.5 182(182) 2.95
rail582 58255515 211 89.2 216(216.8) 2487.3 298(299.1) 2413.3 211(211) 50.46
rail2536 2536x 1081841 689 6277.6 726(727) 4481.5 954(958.5) 4173.9 699(699.4) 185.51
rail2586 2586920683 951 11092.8 1108(1109.2) 6723.2 1985(1985.6) 6034.3 960(961.5) 866.2

Table IV: Comparison of our Genetic algorithm and NuSC on synthetic instances. Ins(m,n,k) is an instance
with m sets in collections B, n sets in collection A and k copies of each set in A.

Size ILP Our GA (with pot. fn.) GA (w/o pot. fn.) NuSc

Instance row X column obj time min-obj (avg) time min-obj (avg) time min-obj (avg) time
Ins(7,13,1) 546 %20 7 0.03 7(7) 0.2 7(7) 0.2 7(7) 205.9
Ins(11,20,1) 2090%31 11 0.21 11(11) 1.3 19(19) 45.5 11(11) 403.5
Ins(16,30,1) 6960x46 16 1.06 16(16) 2.2 29(29) 169.9 16(16) 2540.3
Ins(51,100,1) 252450x151 51 789.9 51(51) 180.6 99(99) 3000.0 99(99) 3000
Ins(7,13,2) 546%33 7 0.05 7(7) 1.2 12(12) 13.0 7(7) 981.0
Ins(11,20,2) 2090x51 11 0.34 11(11) 3.1 19(19) 49.2 19(19) 3000
Ins(16,30,2) 6960%76 16 1.60 16(16) 17.8 29(29) 187.2 29(29) 3000
Ins(51,100,2) 252450x251 51 615.3 51(51) 214.2 99(99) 3000.0 99(99) 3000

694

As seen in Table IV, our genetic algorithm (with
a = 4 and decay factor of 0.98) always obtains the
optimal solution on these instances. In contrast, NuSC
is often quite far from the optimal solution even after
the time-out of 3000 seconds. This is particularly true
for instance that are large or instances that have multi-
ple copies of A. For instance, on Ins(51,100,1), NuSC
obtains a solution of 99 while the optimal solution has
the objective value of 51. For these instances, NuSC is
reporting the sets from the collection A in the returned
solution while the actual optimal solution consists of sets
from the collection B. The results with 4, 6 and 8 copies
of sets in A are similar to that of 2 copies.

Again, we note that without the Rosenthal potential
function, our genetic algorithm would have returned
solutions similar to the NuSC heuristic or even worse.
Thus, we conclude that the main reason why our genetic
algorithm is able to do local moves of larger size on these
instances is the usage of Rosenthal potential function.

VI. CONCLUSION

Our experiments indicate that incorporating the
Rosenthal potential has a significant impact on the qual-
ity of the solution obtained. While our genetic algorithm
is able to match the quality of the solution obtained for
benchmark instances, NuSC is faster on those instances.
The difference in running times stems primarily from
the large populations sizes maintained in a genetic
algorithm. On the other hand, the advantage of the
our genetic algorithm with modified Rosenthal potential
is clear when we have instances requiring large local
moves. For instance, on synthetic instances requiring
large local moves, our algorithm gets optimal solutions
in time that is often two orders of magnitude less than
the state-of-the-art heuristic NuSC (which typically fails
to obtain the optimal solution even after a long time).
It is an interesting challenge to combine the advantages
of both the algorithms. Another interesting direction is
to find other applications where modifying the objective
function improves the practical performance of local
search.

REFERENCES

[1]1 V. Chvatal, “A greedy heuristic for the set-covering problem.”
Math. Oper. Res., vol. 4, no. 3, pp. 233-235, 1979. doi:
https://doi.org/10.1287/MOOR.4.3.233

[2] I. Dinur and D. Steurer, “Analytical approach to
parallel repetition,” in STOC. ACM, 2014. doi:
https://doi.org/10.1145/2591796.2591884 p. 624—633.

[3] K. Clarkson and K. Varadarajan, “Improved approxi-
mation algorithms for geometric set cover,” Discrete
Computational Geometry, vol. 37, pp. 43-58, 2007. doi:
https://doi.org/10.1007/S00454-006-1273-8

[4] A. Gupta, E. Lee, and J. Li, “A local search-based ap-
proach for set covering,” in SOSA. SIAM, 2023. doi:
https://doi.org/10.1137/1.9781611977585.CH1 pp. 1-11.

[5] R. W. Rosenthal, “A class of games possessing pure-strategy nash
equilibria,” Int. Jour. of Game Theory, vol. 2, pp. 65-67, 1973.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

J. E. Beasley, “An algorithm for set covering problem,” European
Journal of Operational Research, vol. 31, no. 1, pp. 85-93, 1987.
doi: https://doi.org/10.1016/0377-2217(87)90141-X

N. Bansal, A. Caprara, and M. Sviridenko, “A new approximation
method for set covering problems, with applications to multidi-
mensional bin packing,” SIAM J. Comput., vol. 39, pp. 1256—
1278, 2009. doi: https://doi.org/10.1137/080736831

J. Bautista and J. Pereira, “A grasp algorithm to solve
the unicost set covering problem,” Computers & Opera-
tions Research, vol. 34, no. 10, pp. 3162-3173, 2007. doi:
https://doi.org/10.1016/j.cor.2005.11.026

Y. Wang, S. Pan, S. Al-Shihabi, J. Zhou, N. Yang, and M. Yin,
“An improved configuration checking-based algorithm for the
unicost set covering problem,” EJOR, vol. 294, no. 2, pp. 476—
491, 2021. doi: https://doi.org/10.1016/j.ejor.2021.02.015

Z. Naji-Azimi, P. Toth, and L. Galli, “An electromag-
netism metaheuristic for the unicost set covering prob-
lem,” EJOR, vol. 205, no. 2, pp. 290-300, 2010. doi:
https://doi.org/10.1016/j.ejor.2010.01.035

C. Gao, X. Yao, T. Weise, and J. Li, “An efficient local
search heuristic with row weighting for the unicost set covering
problem,” EJOR, vol. 246, no. 3, pp. 750-761, 2015. doi:
https://doi.org/10.1016/j.ejor.2015.05.038

Z. Lei and S. Cai, “Solving set cover and dominating set via
maximum satisfiability,” in EAAL AAAI Press, 2020. doi:
https://doi.org/10.1609/AAAI1.V34102.5517 pp. 1569-1576.

M. J. Brusco, L. W. Jacobs, and G. M. Thompson, “A
morphing procedure to supplement a simulated annealing
heuristic for cost- andcoverage-correlated set-covering prob-
lems,” Ann. Oper. Res., vol. 86, pp. 611-627, 1999. doi:
https://doi.org/10.1023/A%3A 1018900128545

J. Beasley and P. Chu, “A genetic algorithm for the set cov-
ering problem,” EJOR, vol. 94, no. 2, pp. 392-404, 1996. doi:
https://doi.org/10.1016/0377-2217(95)00159-X

B. Crawford, R. Soto, R. Cuesta, and F. Paredes, “Appli-
cation of the artificial bee colony algorithm for solving the
set covering problem,” Scientific World Journal, 2014. doi:
https://doi.org/10.1155/2014/189164

C. Luo, W. Xing, S. Cai, and C. Hu, “Nusc: An effective
local search algorithm for solving the set covering problem,”
IEEE Trans. Cybern., vol. 54, no. 3, pp. 1403-1416, 2024. doi:
https://doi.org/10.1109/TCYB.2022.3199147

T. Grossman and A. Wool, “Computational experience with ap-
proximation algorithms for the set covering problem,” EJOR, vol.
101, no. 1, pp. 81-92, 1997. doi: https://doi.org/10.1016/S0377-
2217(96)00161-0

S. Katoch, S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimed Tools Appl,
vol. 80, p. 8091-8126, 2021. doi: https://doi.org/10.1007/s11042-
020-10139-6

S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, “On
syntactic versus computational views of approximability,” SIAM
Journal on Computing, vol. 28, no. 1, pp. 164-191, 1998.

Y. Filmus and J. Ward, “Monotone submodular maximization
over a matroid via non-oblivious local search,” SIAM Journal on
Computing, vol. 43, no. 2, pp. 514-542, 2014.

V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic, “An
improved local search algorithm for k-median,” in SODA. SIAM,
2022. doi: 10.1137/1.9781611977073.65 pp. 1556-1612.

D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in First Workshop on
Foundations of Genetic Algorithms, vol. 1. Elsevier, 1991. doi:
https://doi.org/10.1016/B978-0-08-050684-5.50008-2 pp. 69-93.
J. E. Beasley, “A lagrangian heuristic for set-covering problems,”
Naval Research Logistics, vol. 37, pp. 151-164, 1990. doi:
https://doi.org/10.1002/1520-6750

D. Fulkerson, G. L. Nemhauser, and L. Trotter, “Two com-
putationally difficult set covering problems that arise in com-
puting the 1-width of incidence matrices of steiner triple
systems,” in Approaches to integer programming, 1974. doi:
https://doi.org/10.1007/BFb0120689 pp. 72-81.

