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Abstract—In the evolving domain of occupational health,
assessment of Work-related Quality of Life (WrQoL) has gained
critical importance, particularly with recent expedited
developments of decentralized and digital work. Conventional
methods relying on subjective questionnaires are limited by high
drop-out rates and potential biases. This paper introduces a
novel approach to evaluating WrQoL by leveraging data
generated from digital office environments, wearable devices,
and smartphone applications. Our methodology includes the
collection of physiological data, analysis of digital interactions,
and prosody analysis to construct a comprehensive model of
WrQoL influences. Initial and weekly questionnaires as well as
multiple daily self-reports of valence and arousal levels will serve
to initially validate this model. Prospectively utilizing machine
learning, we aim to predict WrQoL scores from aggregated data.
This method presents a non-invasive alternative for assessing
WrQoL, providing significant implications for both research
and industry with the potential to enhance workplace conditions
and employee well-being.

Index Terms—job  satisfaction,
Occupational Health, valence, sensors,
integration, Organizational studies-Behavior

machine  learning,
multimodal data
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|. INTRODUCTION

A. Background: (work-related) quality of life

IN THE contemporary landscape of occupational health and
well-being, the concept of Quality of Life (QoL) and, more
specifically, Work-related Quality of Life (WrQoL) has
gained paramount importance. While recent expedited devel-
opments of decentralized work due to the COVID-19 pan-
demic entailed the promise of a more seamless integration of
work and private life, it has simultaneously fractured the tra-
ditional work-leisure divide, necessitating a nuanced exami-
nation of the impacts of this new reality [1]. These new work
constructs not only encapsulate the general well-being of in-
dividuals but also highlight the critical interplay between their
professional environments and their life satisfaction. Under-
standing and improving WrQoL is essential for fostering pro-
ductive, healthy, and sustainable workplaces. Research shows
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that high workplace stress severely impacts employees’ men-
tal and physical health. For instance, a Harvard University
study found that insecure work environments increase poor
health risks by about 50%, high job demands raise illness like-
lihood by 35%, and long working hours elevate mortality
rates by nearly 20% [2]. This position paper presents the cur-
rent research endeavor focused on the objective measurement
of WrQoL, proposing a methodological advancement in the
assessment and optimization of employee well-being beyond
conventional measurement approaches.

QoL is a comprehensive concept encompassing overall
well-being, reflecting both positive and negative life dimen-
sions. It is inherently multidimensional, covering emotional,
physical, material, and social aspects along with subdomains,
such as income and wealth, jobs and earnings, housing, health
status and work-life balance [3]-[5]. The World Health Or-
ganization (WHO) defines QoL as “an individual’s percep-
tion of their position in life in the context of the culture and
value systems in which they live and in relation to their goals,
expectations, standards, and concerns,” highlighting its sub-
jective nature and measurement challenges (WHOQOL-
BREF [3]).

Given the significant time spent at work, WrQoL is a cru-
cial indicator of overall well-being and a core component and
subdomain of QoL. WrQoL, which focuses on how the work
environment affects an individual’s overall QoL, is defined as
“a multidimensional and dynamic psychological construct,
directly related to individual and situational characteristics,
which encompasses a set of worker characteristics and spe-
cific aspects of the organizational context” [6]. This definition
highlights WrQoL’s complexity, rooted in both personal at-
tributes and workplace conditions. High WrQoL enhances job
satisfaction, mental health, and personal fulfillment benefit-
ing organizations with enhanced productivity, better em-
ployee retention, and reduced absenteeism [7]-[10]. Tradi-
tional WrQoL measurements rely on subjective self-report
surveys, limited by respondent biases, mood fluctuations, and
low response rates [11], [12]. This hampers both immediate
data collection and longitudinal tracking. Hence, there is
growing interest in developing more objective, reliable, and
nuanced measurement tools to better understand WrQoL. The
“Machine intelligence to objectively measure individual qual-
ity of life” (MI-LQ) project aims to objectively measure key
indicators of WrQoL utilizing physiological data, digital in-
teraction, and prosodic data, that will be incorporated into ma-
chine learning models. Data will be gathered in real office and
residential environments as part of a pilot trial involving of-
fice workers. A mobile phone app prototype is developed
serving as a user interface and a data relay system to a cloud-
based platform for offline analysis of WrQoL metrics.

B. State of the art

Current research in the field of capturing and analyzing
WrQoL includes a variety of methods that integrate both sub-
jective and objective measurements. Subjective approaches
such as questionnaires, interviews, and focus groups allow re-
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searchers to explore individual perceptions and interpreta-
tions of emotions in the workplace [13]. These predominantly
qualitative methods provide important insights into the sub-
jective experiences of employees and help to deepen our un-
derstanding of the complex dynamics of the work environ-
ment. The important insights include, for example, high work-
load, lack of support from superiors, job insecurity, inade-
quate work-life-balance or interpersonal conflicts [14]. Ob-
jective measurement approaches, however, rely on advanced
technologies to capture and analyze physiological signals, be-
havioral data, and environmental factors. These advanced
technologies can be organized based on the data sources they
use, such as mouse, keyboard data, biosensors and mobile
phone data.
Mouse and keyboard data
Behavioral data, such as keystrokes, mouse movements
[15], and mobile phone activity [16], are used to identify be-
havioral patterns and derive emotional states. Recent studies
by Naegelin et al. [17] and Shinde et al. [18] illustrate that the
merging of physiological and behavioral data using machine
learning models can lead to improved detection of workplace
stress. Naegelin et al. [17] developed a machine learning
method for stress detection based on multimodal data (mouse,
keyboard, and cardiac data) and tested it in a simulated group
office environment. They found that mouse and keyboard data
detect stress in the office context better than cardiac data and
that certain mouse movements and typing behavior are char-
acteristic for specific stress predictions [17].
Biosensors
Wearable biosensors, such as heart rate monitors and skin
conductance monitors, enable continuous data collection on
workers’ physical responses in different work situations [19].
Studies such as those by Shaffer and Ginsberg [20] and Ernst
[21] provide a thorough analysis of heart rate variability met-
rics and their association with emotional states and work per-
formance factors. Saganowski [22], on the other hand, dis-
cusses in particular the commercially available sensors for re-
cording physiological data, signal processing techniques and
deep learning architectures for the classification of emotions
and the integration of emotion recognition technologies into
everyday working life.
Mobile phone data
Furthermore, studies such as those by Burns et al. [23] and
Hart et al. [24] show the usefulness of smartphone sensor
technology for detecting depression and assessing well-being
in the work context. For example, Burns et al. [23] developed
a mobile phone application and supporting architecture like
the cloud system and programming environment. This ena-
bled the machine learning models to predict patients’ mood,
emotions, cognitive/motivational state, activities, environ-
mental context, and social context based on at least 38 con-
current sensor readings from the phone (e.g., global position-
ing system, ambient light, recent calls) [23]. Contrarily, Hart
et al. [24] investigated whether sparse motion-related sensor
data can be used to train machine learning models capable of
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inferring individuals’ states of work-related rumination, fa-
tigue, mood, arousal, life engagement, and sleep quality. The
participants’ sensor data was collected via questionnaires on
their smartphones [24].

Additionally, the objective measurement approaches can
be categorized by target outcomes, such as:

Work-Life Balance

Research findings by Pawlicka et al. [25] and Gamage and
Askana [26] contribute to the prediction of work-life balance
and the detection of mental stress in IT work environments.
For example, Pawlicka et al. [25] examined a machine learn-
ing tool to investigate correlations between employee-specific
and job-related factors and the subjective feeling of work-life
balance. They concluded that the relationship between the
feeling of work-life balance and actual working hours was the
most significant [25]. Moreover, Gamage and Asanka [26]
have worked on a concept for a screening system that can pre-
dict mental health problems based on people’s external char-
acteristics. Supervised machine learning is used to identify
workers at risk and refer them to professional help at an early
stage [26].

Stress and emotion detection

Shinde et al. [18] developed the Real Time Employee Emo-
tion Detection System (RTEED), which captures facial data
in real time and uses machine learning to recognize the emo-
tions of happiness, sadness, surprise, fear and disgust. The
system helps companies to monitor the well-being of their
employees and sends recognized emotions to the relevant em-
ployees to improve their work performance and lifestyle [18].

Moreover, Artificial Intelligence (Al) in speech analysis
has the potential to become a crucial tool for measuring work-
place stress as this technology can detect and evaluate stress-
related strains in real time [27]. The work of Bromuri et al.
[27] shows that a deep neural network trained for emotion
recognition based on speech data can predict stress in call cen-
ter employees with an accuracy of 80% in real time. This ap-
proach enables continuous and unobtrusive monitoring,
which can lead to early warning systems and personalized
training programs. The study by Baird et al. [28] investigates
how language features can predict physiological stress mark-
ers. By using Long Short-Term Memory-Recurrent Neural
Network (LSTM-RNN) and three German speech corpora,
the study shows that speech features can effectively predict
stress indicators such as cortisol levels, heart rate and respira-
tion, opening up new possibilities for real-time, non-invasive
stress monitoring.

These research findings contribute significantly to deepen-
ing our understanding of the physiological underpinnings of
different aspects of WrQoL and support the development of
more accurate models for predicting and assessing well-being
in the workplace.

C. MI-LQ project: base model

Building upon our conceptual understanding of overall
QoL, our focus is directed towards the nuanced factors shap-
ing WrQolL, recognizing the pivotal role of workplace envi-
ronment, job satisfaction, and occupational stress within this

framework. The MI-LQ project is based on identifying key
factors that influence WrQoL and translating them into a base
model, which comprises the following indicators: 1) work-
load, 2) overtime, 3) workspace (office/home office), and 4)
commute. All of these factors influence WrQoL through emo-
tional experiences measured in two dimensions: 5) valence
and arousal [29]. In addition, because of their strong direct
influence on WrQoL, 6) spatial autonomy, 7) task autonomy,
and 8) temporal autonomy are core components of the model
(Fig. 1). The base model is conceptualized as an initial frame-
work, established within office and residential settings to lev-
erage digital behavioral data collection, crucial for refining
and validating WrQoL indicators objectively. This conceptual
framework guides the application of a digital assessment ap-
proach in a pilot study involving office workers for a mini-
mum duration of four weeks, facilitating the initial validation
and refinement of WrQoL assessment methods.

I1.CONCEPTUAL FRAMEWORK

A. Data sources and model of data integration

The WrQoL indicators of the base model are measured by
different objective measurement approaches. 1) Workload is
assessed using calendar system-related data (e.g., Outlook)
such as meeting overlap and meeting to work ratio. 2) Over-
time is calculated as the difference between absolute hours
worked, derived from computerized behavioral data, and self-
reported contractual hours worked per week. 3) Workspace is
intended to be assessed via workplace booking systems and
4) Commute via GPS. 5) Valence and arousal are determined
by several approaches: a) work-related data from mouse and
keyboard as well as software (e.g., Outlook, calendar) utiliza-
tion b) physiological data application such as heart rate vari-
ability (HRV) from wrist-worn, c) stress index data based on
plethysmography method obtained by ShenHealth applica-
tion, and d) prosody analysis serving as speech-based emotion
classification. 6-8) Autonomy data are mainly gathered by
questionnaires and additionally by workplace booking sys-
tems (6), task management software, e.g., Trello (7) and
working arrangement (8). Currently, the project is focused on
gathering behavioral (5a), physiological (5b) and prosodic
data (5d).

Features describing movements and actions of the mouse,
speed of typing, and error correction of typed words have pre-
viously been studied as approach to predict work-related va-
lence and arousal. Investigations have mostly been conducted
in laboratory settings [15], [17], [30] and less in real office
environments [31], with non-publicly available software.
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Fig. 1. Base model of WrQoL indicators and their objectifiability with different digital approaches

Therefore, a software prototype was developed to continu-
ously monitor the mouse and keyboard dynamics by the office
worker under real office conditions. For each keystroke, the
time of press, the time of release and the type of the key
pressed are documented, without content of typing. Privacy is
ensured by distinguishing between two types of keys: delete
keys (Delete, Backspace) and general use keys. Mouse dy-
namics include recording of mouse operation (move, scroll,
click), time of movement, cursor speed, screen size in pixels,
and x/y-coordinates for each mouse movement. The raw data
collected are used to extract 25 mouse and 11 keyboard fea-
tures per minute (Table 1), representing the aggregated fea-
tures with the highest predictive value [17]. In addition to the
Naegelin et al. [17] metrics, two new metrics have been im-
plemented: mean dwell time and SD dwell time to improve
accuracy. The software prototype also monitors the applica-
tions and types of software being used by the office worker
on a minute basis to extract the number of open windows

without content analysis. Tracking and data collection is ini-
tiated after the user has launched the software and agreed to
data collection upon every launch. To relate the aggregated
mouse and keyboard data to the individual stress levels of of-
fice workers, respondents are asked to rate their current mood
on a two-dimensional 5-point Likert scale several times a day
via a software-integrated questionnaire using Self-Assess-
ment Manikins (SAM) — non-verbal pictorial emotion man-
ikins [31], [32]. The two dimensions describe valence and
arousal, allowing any emotion to be described using the Cir-
cumplex model [29]. The Job-Related Well-Being Scale
adapted this model to the work context [33].

B. Questionnaires

An initial questionnaire, based on existing validated
WrQoL questionnaires, will be developed to assess baseline
characteristics and self-reported WrQoL of office workers.
Follow-up questionnaires will be administered throughout the
study period to subjectively assess workload and emotional
states for cross-checking with objective measurement data.

TABLE I.

EXAMPLES OF AGGREGATED DATA SOURCES OBTAINED BY MOUSE AND KEYBOARD INTERACTION

e Number of mouse movements per minute

e Direct distance of a movement

e Number of mouse pauses per minute

e Mean/SD duration of a mouse pause

e Mean/SD time between two clicks

e Mean/SD Euclidean distance of a mouse movement

e Mean/SD real distance of mouse movement

e Mean/SD time duration of a mouse movement

e Mean/SD average speed of a mouse movement per min

e Mean/SD average angle of all angles in a movement

e Mean/SD average distance of the real and straight line of a move-
ment

e Mean/SD sum of the difference between the real and straight line

e Mean/SD number of direction changes in a mouse movement

e Number of pressed
keys per minute

e Error count

e Mean/SD dwell time

e Mean/SD digraph
duration

e Typing time

e Mean/SD pause in
typing per min

e Keyboard pause
count

e Average window
count

e Category of soft-
ware (e.g., calen-
dar, E-mail, presen-
tation editor, text
editor, messenger,
programming envi-
ronment etc.)
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We evaluated four German validated self-report question-
naires and combined them into a comprehensive set of indi-
cators of the base model and beyond, creating an initial and a
shorter weekly questionnaire to be conducted in the MI-LQ
app. The initial baseline questionnaire is designed to provide
detailed information on participants’ job satisfaction, auton-
omy dimensions, and work preferences. The shorter weekly
check-in surveys via the MI-LQ app will be administered to
capture changes over time on workload. The state of valence
and arousal is asked using SAM at hourly intervals at the com-
puter.

C. User interface

Our project’s mobile phone app prototype (MI-LQ app)
serves as both user interface and a data relay system to a
cloud-based platform for offline analysis for WrQoL metrics.
To enhance data collection, future iterations of the app will
incorporate additional sensor categories, including work-re-
lated schedules and external influences. Ultimately, our aim
is to provide participants with individualized WrQoL indica-
tor scores and potential resources based on their analyzed
data. The central aim of the application is to become a trans-
parent point of data collection and data analysis presentation
for the user, illustrated in Fig. 2.

D. Sensors and pulse data extraction and aggregation

After evaluation of various wearables from several manu-
facturers (Polar, Xiaomi, Apple, Samsung, Garmin, Fitbit),
we decided to focus on Polar optical heart rate sensors: OH1
and Verity Sense. Those devices provide pulse-to-pulse inter-
vals (PPI) extracted from photoplethysmography (PPG) sig-
nals. The Polar SDK for the iOS platform allows us to connect
with a Polar device and perform live streaming measure-
ments. The SDK provide pulse-to-pulse interval data in the
following structure: 1) a PPI integer value which represents
the interval between two pulses in milliseconds, 2) a heart rate
(HR) value as calculated based on the PPI, 3) an error estimate
integer value which represents an estimate of the expected ab-
solute error of the PPl in milliseconds, 4) a block bit value
which is set to 0 if PPI is considered valid, and otherwise set

Menu Mood log Device stream

14:26 >em
< Zuriex

27 >

How are you feeling?

Neutral

Fig. 2. Screenshots of the mobile app prototype

to 1, e.g., due to strong movement, and 5) a binary skin con-
tact value which is 0 if there is no contact of the wearable to
the skin detected, and 1 otherwise. Such additional infor-
mation is important for a high-quality HRV analysis. Upon
receipt from the sensor each PPl measurement is provided
with a timestamp by the MI-LQ application and stored locally
on the mobile phone in the following structure: Unix
timestamp, PPI value, error estimate, block bit, skin contact
bit. These data are accessible exclusively through the MI-LQ
application, ensuring data security and privacy. The data is
then processed and aggregated for analysis.

Basically, we can also integrate devices such as wearables
into our application that can measure and provide health-re-
lated information. The workflow for those devices is slightly
different:

1) Use device-specific application provided by manufac-
turers.

2) Synchronize health-related data from the manufactory’s
app into HealthKit (Apple, Cupertino, California, USA)

3) Grant permission for MI-LQ application to read data
from HealthKit.

4) Prepare the received data for further aggregation and
analysis.

E. Calculation of HRV metrics

HRV parameters have long been valued for their objective
assessment of physical and mental status [34]. Within our pre-
parative work we have seen more than 30 aggregated HRV-
related indices based on Polar PPG sensor-derived PPI values.
Although the manufacturers of so-called fitness trackers or
pulse watches clearly have noticed the huge potential of the
HRV framework for their consumer products, we rarely see
reliable ready-to-use HRV-based measures, and some solu-
tions applying a stress scale (from 0 to 100 percent) are pres-
ently not convincing: Calculations from different manufactur-
ers are not transparent and cannot be verified; and each man-
ufacturer uses its own scale, which is not comparable and not
reproducible. Currently, we consider seven HRV-related in-
dices (either statistical ones or combined ones according to
Baevsky and Chernikova [34]) to be significant and meaning-
ful as well as computationally effective:

1) Mean HR: mean of Heart Rate, i.e., average number of
heart beats per minute

2) Mean NNI: mean of PPG-based PPIs

3) CV: Coefficient of Variation, i.e., mean of standard devia-
tion of PPIs divided by the respective mean PPl (mean NNI)
4) RMSSD: Root Mean Square of Successive Differences of
PPIs

5) Sl: Stress Index according to Baevsky and Chernikova
[34], i.e., ratio of amplitude of the modal value in the PPI his-
togram and the doubled product of modal value itself
weighted by the min-max-span of PPIs

6) IVR: Index of Vegetative Regime is characterizing the ratio
between sympathetic and parasympathetic influences on the
heart rhythm, i.e., amplitude of the modal value in the PPI
histogram divided by the standard deviation of PPIs
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7) PAPR: Parameter of Appropriateness of Processes of heart
Regulation, i.e., amplitude of the modal value in the PPI his-
togram divided by the respective modal value

These HRV parameters provide information about the au-
tonomic nervous system during working hours and they allow
to assess the effects of physiological responses to work stress.

F. Al-driven analysis of speech for emotion classification

In future work, we aim to develop a proprietary dataset for
valence and arousal speech analysis based on the SAM scale
[31], [32]. One of the objectives is to minimize aleatoric un-
certainty, and therefore, we aim to achieve high entropy be-
tween the distinct classes. The available datasets do not meet
our study’s specific requirements, necessitating the decision
to collect our own data. They lack German language compat-
ibility, essential annotations for valence, and SAM, and ac-
cess to datasets solely annotated with valence and arousal rat-
ings has been denied despite requests. Moreover, the accessi-
ble dataset contains machine-generated annotations and an in-
sufficient sample size (less than 200). Therefore, to ensure the
completeness and accuracy of our research, independent data
collection is imperative. Questions are asked under artificial
induction of emotions according to Almazrouei et al. [35].

Once the dataset is created, we will develop separate clas-
sification models for valence and arousal respectively. These
models will leverage prosodic features extracted from the
speech data, such as pitch, shimmer, jitter (which play a cru-
cial role when it comes to predicting stress out of the voice
[36]), and Mel-Frequency Cepstral Coefficients (MFCC). Ac-
cording to the findings of Li et al. [36] these features play a
critical role in the accurate classification of emotional states.
For example, does a higher pitch directly correlate with emo-
tions like anger.

Our approach will use these prosodic features to make pre-
dictions about the SAM ratings, providing a detailed analysis
of how these features correlate with subjective emotional as-
sessments. We will implement cross-validation techniques to
evaluate the performance of the valence and arousal speech
models, ensuring that they are rigorously tested and validated
against diverse speech data collected through a website set up
for this purpose.

This future work aims to contribute to the field of affective
computing by providing a robust dataset and a validated meth-
odology for speech-based stress classification, which could
have wide-ranging applications in areas such as human-com-
puter interaction and mental health monitoring.

G. Machine learning concept

Being time series data, PPI data as well as mouse and key-
board dynamics data allow tracking changes over time. There-
fore, we use Long Short-Term Memory (LSTM) models
based on the Keras framework to predict hourly valence and
arousal class values, respectively. LSTM is a deep learning,
sequential neural network that can learn hidden patterns in
temporal sequences and retain information from previous
time points [37]. The training data includes minute-by-minute
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data with up to 60 samples of HRV, mouse and keyboard fea-
tures, along with information on defined active windows per
target. These models are individually trained to generalize
across different individuals, considering variations in physio-
logical responses and interaction patterns, and are evaluated
using classification report metrics to predict valence and
arousal classes while capturing human emotional states over
time.

I1l. NEXT STEPS

Our research develops instruments to objectively assess
workload through valence and arousal using smartphones and
wearables in tandem with a software prototype for keyboard
and mouse tracking. In the developmental stage of the tech-
nology, questionnaire responses from study participants are
used to annotate and check data but will later be phased out
when validity is reached.

Next steps in the MI-LQ project cover the establishment
and implementation of the Al-driven analysis of speech-based
emotion classification, an additional and supporting approach
to detect and annotate stress-related strain at work to physio-
logical and computer interaction-derived data. In addition,
data derived from outlook, calendar, and project management
system will be integrated into the MI-LQ app. Following this,
the pilot study we aim to conduct will assess the reliability,
validity, and feasibility of the digital framework for objective
WrQoL assessment, involving office workers for a minimum
of four weeks. This study will also enable the collection of
work-related data within an authentic office environment, fa-
cilitating the assembly of a dataset sufficient for machine
learning annotation.

IV. LIMITATIONS

While this study provides valuable insights into WrQoL
and new approaches on how to measure it more objectively,
several limitations should be acknowledged. First, due to the
limited standards for wearable electronics, MI-LQ currently
uses well-defined, brand-specific digital devices with propri-
etary hardware and software interfaces such as Polar optical
sensors combined with iOS platform. Currently, there is no
easy way to broadly integrate fitness trackers and smart-
watches to reliably quantify QoL, as they lack comprehensive
monitoring capabilities due to their lifestyle focus, limiting
the number of potential users. HRV-related indices can only
be calculated using PPI data, but most wearables only provide
heart rate data and not PPI. This is not the case with Polar’s
optical sensors, which offer reliable measurement and data
quality, and the great advantage of live streaming measure-
ments when combined with the Polar iOS-SDK. As MI-LQ
evolves, the integration of a wider range of digital devices and
services will be considered, as well as the expansion to the
Android platform. Second, in the initial phase, the MI-LQ
project focused on assessing WrQoL specifically within the
office context, recognizing the necessity to start with a de-
fined population subset. Importantly, the modular design of
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the base model enables the seamless incorporation of new di-
mensions, indicators, and technologies as the study pro-
gresses. However, it’s crucial to acknowledge the limitation
of generalizability beyond the office context, necessitating
further validation and demonstration of transferability in sub-
sequent projects. This highlights the project’s iterative nature
and the ongoing refinement required to extend its applicabil-
ity to diverse occupational settings such as construction work-
ers, laboratory technicians, and beyond. Third, the data anno-
tation process and subsequently the applied ML model de-
pends on the provision of numerous reliable and continuous
individual physiological and computational data and is there-
fore susceptible to patient dropouts. One countermeasure to
avoid critical attrition rates that will be implemented in the
pilot is incentives in the form of gift cards or expense reim-
bursements. Fourth, Likert scales, which will be part of the
initial and weekly questionnaires need to be implemented
carefully in terms of the number of items and a neutral posi-
tion. Survey precision requires a careful balance; too few
items risk imprecision, while an excess can hinder responses.
Pre-test observations revealed a tendency to avoid extreme
positions on the Likert scale.

V.CONCLUSION

WrQoL has emerged as a powerful indicator for industry
and research into workplace conditions and employee well-
being, revealing areas for improvement as well as levels of
employee stress and burnout. As realized in the innovative
MI-LQ approach, leveraging and linking the large amounts of
data generated by wearable biosensors and computer interac-
tion offers the opportunity to make WrQoL objectively meas-
urable. In a base model, important physiological and WrQoL
indicators have been considered and linked to measurement
variables and instruments, set up in a modular way, with the
possibility to expand the base model to more indicators and
variables. Brand-specific digital devices and applications, ML
and a mobile app architecture were found to be suitable tools
as a basic framework for data input, output, processing, and
prediction aimed at WrQoL assessment. Two wearable bio-
sensors with satisfactory data granularity and quality were
identified to provide the PPI needed to calculate the identified
seven meaningful and computationally effective HRV indi-
ces. HRV data combined with mouse and keyboard dynamics
and mood tracking data will be used to train LSTM models to
predict particularly stressful working periods and emotional
states. Opening to a greater variety of digital devices within
the current model as well as expansion to other indicators or
dimensions of WrQoL and/or QoL will be considered as MI-
LQ evolves.
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